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ABSTRACT

Hardness results for NP-hard problems are usually achieved
for worst-case scenarios. In many cases, however, the worst-
case behavior seems to be restricted to quite special cases
and it may deviate considerably from the behavior for prob-
lem instances that are given as input. We address this effect
by giving a survey of methods to achieve a more fine-grained
analysis of the hardness of optimization problems. The main
idea behind this analysis is to find some parameter according
to which one can classify the hardness of problem instances.
In this spirit, we give an overview on parameterization, sta-
bility of approximation, a specific class of Hybrid algorithms,
and win/win algorithms. We especially focus on the last
topic which aims to relate different problems. For instance,
we characterize instances for the metric TSP according to
the solution computed by Hoogeveen’s 5/3-approximation
algorithm for the problem to find a Hamiltonian path with
prespecified ends in the same metric graph. Our analysis
reveals that the sets of the hardest instances of both prob-
lems for Christofides’ and Hoogeveen’s algorithm are dis-
joint in the sense that any instance is guaranteed to allow
at least one of the two algorithms to achieve a significantly
improved approximation ratio. In particular, we show that
in any worst-case instance of Christofides’ algorithm we can
compute a 1.5-approximations for the Hamiltonian paths be-
tween any pairs of vertices.

1. INTRODUCTION

In this survey we want to address the discrepancy between
the hardness of different problem instances of a hard prob-
lem. We want to analyze which structural properties of a
problem instance improve the behavior of algorithms and,
provided that a problem instance is hard, whether this hard-
ness itself is a property that we can use.

In order to talk about hard problems, we first have to discuss
the term hardness. Intuitively, we may consider a problem
to be hard if the computational power that is needed to
solve the problem exceeds the resources that are available

for this task. This means that the term hardness is closely
related to further conditions: a real-time application has
much stricter time constraints than an algorithm that is used
once to compute a good schedule for setting up a production
line. These conditions, however, depend on the speed of
currently available computers and they do not provide an
exact specification of hardness.

Here, we want to talk about hardness on a more general
level that is independent of contemporary technology. To
this end, we need a more robust definition of hardness. The
most popular definition that is in accordance with our re-
quirements is that problems are “easy” if the runtime of any
problem instance is asymptotically bounded by a polynomial
and that they are “hard” if there is a problem instance that
has a runtime that cannot be bounded by a polynomial. In
other words, a hard problem is a problem that is hard in the
worst case.

This definition offers a robust base for a well founded anal-
ysis of hardness. The drawback of this definition is that
polynomial runtime does not guarantee that we can find so-
lutions efficiently (this is the case if there is a factor with
a large exponent) and — due to the use of worst-case in-
stances in the definition — not every exponential-time algo-
rithm runs unreasonably long. We consider the first point
as a minor issue, since for most problems that are known to
be solvable in polynomial time, eventually an efficient algo-
rithm is found. The second point is much more severe. For
instance, the simplex algorithm has exponential runtime in
the worst case but in general it is considered to run fast [23].

In order to address this issue in a consistent way, we aim for
a fine-grained analysis that considers the choice of problem
instances that we specify as feasible input. In the context
of this survey we restrict ourselves to decision problems in
NP and optimization problems in NPO, that is, optimiza-
tion problems that can be solved in polynomial time by a
nondeterministic Turing machine. Additionally, for a prob-
lem to be in NPO, the feasibility of a solution is required
to be verifiable deterministically in polynomial time. In or-
der to talk about hardness within this complexity class, we
have to assume that the P # NP conjecture holds. We are
interested in those problems from NPO that are NP-hard.

At this point, we have to define hardness of problem in-
stances in a sound way. In particular, we cannot talk about
the hardness of a single instances within NPO, since for each



specific instance we can construct an efficient algorithm by
simply providing one of its optimal solutions as additional
information hard-coded in an algorithm.

Instead, we aim for a partition of the set of all problem
instances into infinitely many classes each of which has in-
finitely many members. In other words, we aim to analyze
given problem instances in order to find certain structural
properties. Then we use these properties in order to classify
the hardness of these problem instances. This way, deter-
mining the class of a given problem instance gives us an
upper bound on its hardness.

The most famous approach that provides a classification as
described above is parameterization. Section 2 gives an in-
troduction to this topic and gives an overview on stability of
approximation, which is closely related to parameterization
but based on approximation instead of exact algorithms.

In Section 3 we focus on the relation between different com-
plexity measures and, in Section 4, the relation between dif-
ferent problems. The idea is that we have several goals that
we want to achieve, each of which is known to be hard in
the worst case. While it is clear that we cannot guarantee to
achieve all of the goals, we can guarantee that we can achieve
some. This concept relates to parameterization and stability
of approximation in the sense that now a computed solution
becomes a property according to which we determine the
hardness.

2. PARAMETERIZATION AND STABILITY
OF APPROXIMATION

The main idea of parameterization is to confine the hard-
ness of a problem to a parameter. Such a parameter can
be, for instance, the size of the computed solution (this is
also called the standard parameterization) or the number of
variables in a boolean formula. More formally, given a deci-
sion problem U and a natural number k, the pair (U, k) is a
parameterization of U according to k if there are infinitely
many problem instances with parameter k.

A large part of the research in parameterized complexity fo-
cuses on fixed parameter tractable problems, which form the
class called FPT. The idea of this class is that the runtime of
a parameterized problem (U, k) is polynomial in the length
of the input, whereas there may be a factor that is super-
polynomial in k. More formally, a parameterized problem
(U, k) is in FPT, if, for any k, there is some computable func-
tion f such that one can decide (U, k) in time O(f(k) - n°)
for some constant ¢ (that does not depend on k).

A famous example for an NP-hard problem in FPT is the
standard parameterization of the vertex cover problem:

DEFINITION 1 (k-VC).

Input: An unweighted graph G
Output:

yes if there is a set of at most k vertices such that each
edge is incident to at least one of the vertices in
the set,

no otherwise.

If, for a graph G, the answer is “yes”, we also say that there
is a k-VC in G.

THEOREM 1. The problem k-VC is in FPT.

ProOF. To show this theorem, we use an argumentation
similar to that in [12]. Observe that for each edge e = {u,v}
in the input graph G, either w is in the vertex cover or v —
there is no other way for e to be incident to the set of vertices
forming a solution. But this implies that each solution of size
k contains each vertex of degree greater than k: suppose v
is a vertex of degree k + ¢ for some constant ¢ > 0 and v is
not in the solution. Than, according to our observation, all
k + ¢ neighboring vertices have to be in the solution. These,
however, are too many vertices since we can only choose k
vertices in total. If there are more than k vertices of degree
higher than k, we know that there is no k-VC in G. After
removing the chosen vertices and all its incident edges, the
remaining graph has a bounded degree of k. We reduce k
by the number of chosen vertices and remove all isolated
vertices.

We continue the proof by showing that, if the remaining
graph has more than k> edges, we are sure that there is no
k-VC. Due to the bounded degree, each vertex is incident
to at most k edges and therefore k vertices are incident to
at most k> edges. Hence the remaining graph has at most
2k? vertices. The number of possibilities to choose k vertices
from those is (Qf). Since the runtime to compute a solution
in the remaining graph only depends on k, the claimed result
immediately follows. [

Note that in the first part of the algorithm runs in polyno-
mial time. Afterwards we either know the result or we are
left with a graph of size at most 2k2. Such a processing is
called kernelization. More general, a kernelization is a poly-
nomial time computation that results in a smaller input the
size of which only depends on the parameter k& but not on
the size of the original input.

The concept of kernelization is closely related to the class
FPT.

THEOREM 2 (DOWNEY, FELLOWS, STEGE [20]). A pa-
rameterized problem is in FPT if and only if it has a kernel-
ization. [

We would like to refer to the book “An Invitation to Fixed
Parameter Algorithms” from Niedermeier [16] as an excellent
introduction into the field of parameterization that focuses
on kernelization.

To summarize, the class FPT contains paramterized prob-
lems that are not computationally hard according to our
notion of hardness, provided that the parameter is a con-
stant. But not all parameterized problems have these nice
properties. In fact, there is an infinite hierarchy of so-
called W-hardness for parameterized problems. This way,



for instance, FPT = W/[0], the standard parameterization
of the independent set problem (i.e., the problem to decide
whether there are k vertices that are pairwise not adjacent)
is W[1]-hard, and the standard parameterization of the dom-
inating set problem (i.e., the problem to decide whether
there are k vertices such that each other vertex in the graph
is adjacent to at least one of them) is W[2]-hard. To get a
rough idea of W-hardness, note that, if FPT = W1], then
any problem in NP can be decided by a deterministic Turing
machine in subexponential time. The books from Downey
and Fellows [5] and from Flum and Grohe [8] give a detailed
introduction into parameterized complexity.

One way to connect parameterization and optimization is to
use the concept of efficient polynomial time approximation
schemes. An approximation algorithm for a problem U is an
algorithm A that computes a solution for U that deviates
from an optimal solution by at most a factor a. The value
a is the approzimation ratio of A. More formally, if Opt([)
is an optimal solution for some input I and A(I) is the so-
lution computed by A, then A(I) is a c(A(I))/c(Opt(I))-
approximative solution for I, where c is the cost function of
U'. The approximation ratio of A is the approximation ratio
achieved in the worst case (i. e., minimum approximation ra-
tio over all feasible inputs / for maximization problems and
maximum for minimization problems).

An algorithm is a polynomial time approximation scheme
(PTAS) for U, if for any ¢ it computes a 1+ ¢ approximation
and the runtime is guaranteed to be bounded by a polyno-
mial in the input (say n) and 7!, Note that, since e7! is

a constant, such a runtime may be very high, since it may

have factors such as, for instance, n21/5. To avoid such large
factors to a certain degree, we consider a restriction of poly-
nomial time approximation schemes that relates to the defi-
nition of FPT. If we restrict the runtime to O(f(¢~1)p(n)),
where f is an arbitrary computable function and p is a poly-
nomial, then an algorithm in this class is an efficient poly-
nomial time approximation scheme (EPTAS). This concept
was introduced by Cesati and Trevisan [3].

To conclude this section, we give a short introduction into
the concept of stability of approximation. The main idea
is to split the class of all input instances of a problem into
possibly infinitely many subclasses according to their ap-
proximability. In other words, we analyze the effect of a
small deviation of the specification of feasible inputs on the
approximation ratio.

For example let us consider a complete graph G = (V, E, ¢)
with a metric cost function ¢ : E — Q7 i.e., c({u,v}) <
c({u,w}) + c({w, v}) for any three pairwise disjoint vertices
u, v, and w. We can use Christofides’ algorithm (which we
will describe more detailed in Section 4) in order to obtain
a solution for G that has at most 1.5 times the cost of an
optimal solution. But what happens if we relax the restric-
tions of ¢? We could, for instance, consider a cost function
cg with relaxed triangle inequality such that c({u,v}) <
B(c({u,w}) + c({w, v})), where 8 > 1 is a constant. In this
case, Christofides’ algorithm does not behave well anymore

!Note that in some books, the approximation ratio for max-
imization problems is defined as ¢(Opt(1))/c(A(I)).

(for instance, we cannot guarantee that the cost of the com-
puted solution is bounded by a constant factor of the cost
of an optimal solution). Using the notion of stability of ap-
proximation, we say that Christofides’ algorithm is unstable
according to the distance § — 1 between the metric function
¢ and the relaxed function cg. One can, however, modify
Christofides’ algorithm in order to obtain an algorithm that
is stable according to the mentioned distance. For details
of stability of approximation and an excellent introduction
into the study of hard problems we would like to refer to the
book “Algorithmics for Hard Problems” of Hromkovic [12].

3. HYBRID ALGORITHMS

The previous section focused on identifying structural prop-
erties of problems that allow us to guarantee improved so-
lutions according the runtime and the approximation ratio.
The instances, however, that do not have these properties,
were left behind. In some cases, we can handle problems
in such a way that different complexity measures are played
against each other such that we can always guarantee some
improvements. We could specify, for instance, a single pa-
rameter for both exact computations and approximations.
According to this parameter we choose either to run an ex-
act algorithm or an approximation algorithm. Our aim is to
show that, if the exact algorithm is selected, we can guaran-
tee an improved runtime and if the approximation algorithm
is chosen, we can guarantee an improved approximation in
polynomial time.

In more general terms, algorithms that select an algorithm
from a collection of algorithms based on properties of the
input are called hybrid algorithms. Using the terminology
of hybrid algorithms, the parameter is used by a selector
S. A selector is basically an algorithm that selects which
algorithm of the collection of available algorithms is used
for a given input. The origin of this class of algorithms is
the so-called algorithm selection problem [19].

Here we consider a special type of hybrid algorithms that
ensures guarantees for different complexity measures. We
can rephrase the description above as follows. Given a hard
problem U, we search for a hybrid algorithm A such that
the selector S of A chooses a measure m from a set of com-
plexity measures M according to a parameter of the given
input. Now we require that, whichever m is chosen by .S,
the solution computed by A is guaranteed to be “good” ac-
cording to m. In this context, “good” usually means to be
better than what we are able to guarantee in general.

The set M can contain, for example, the worst-case running
time, the approximation ratio achievable in polynomial time,
or the approximation ratio achievable in linear time.

We continue with illustrating the concept by describing a
concrete hybrid algorithm for the problem MaxCut.

DEFINITION 2 (MAXCuT).

Input: An unweighted graph G = (V, E)
Output: A set of vertices V' C V.
Cost: The number of edges between V' and V' \ V'



Goal: Mazimization

For this problem, we focus on two complexity measures,
namely the runtime of an exact algorithm measured in the
number of edges and the approximation ratio that we can
achieve in linear time. The parameter according to which
the selector chooses one of the two measures is the size of a
maximal matching in G. Note that a maximal matching is
simply a matching such that each of the remaining edge is
adjacent to at least one of the edges in the matching. Such
a matching can be found in linear time by greedily adding
edges. (In contrast, a maximum matching is a largest pos-
sible one.)

The currently best exact algorithm for MaxCut measured in
the number of edges is from Scott and Sorkin [22] and runs in
time O(2™/%), where m is the number of edges. Measured in
the number of vertices, the best algorithm is from Wiliams
[25].

The best approximation algorithm for MaxCut achieves an
approximation ratio of 0.87856 [9]. Provided that the unique
games conjecture is true, this ratio cannot be improved [13].
The drawback of the mentioned approximation algorithm,
however, is that it is based on semidefinite programming.
Even though the runtime to solve a semidefinite program is
polynomially bounded, it is computationally quite demand-
ing. Therefore it is reasonable to also focus on faster algo-
rithms. The best known algorithm for MaxCut that does
not depend on semidefinite programming achieves an ap-
proximation ratio of 2 and runs in linear time [21].

In the following theorem, the notation O*(n) means that
polynomial factors are omitted. Apart from that it is iden-
tical to the asymptotic upper bound O(n).

THEOREM 3  (VASSILEVSKA ET AL. [24]). For any € >
0, there is a hybrid algorithm for MazCut that either com-
putes an ezact solution in time O™ (2°™) or an expected (1/2+
e/4)-approzimation in linear time.

PROOF. We design a hybrid algorithm A that has the
claimed properties. Let G = (V, E) be the graph given as
input, where V' is the set of vertices and F is the set of edges.
Let |V| =n and |E| = m. Then the selector of A computes
a maximal matching M for G in linear time by repeatedly
adding matching edges to M until no edge can be chosen.
Now, the selector chooses a complexity measure according
to the size of M: if |[M| < em/2, it chooses to aim for an
exact solution and otherwise to aim for an approximation.

We now describe the two algorithms starting with the exact
one. The idea is that we only have to find a partition of the
vertices in M into two sets that corresponds to an optimal
solution. Then we can efficiently deal with the remaining
vertices. In order to find an optimal partition of M, we sim-
ply try all possibilities in order to keep the one that leads
to the largest solution after processing the remaining ver-
tices. Thus, one of the partitions, say M™* and M \ M™),
corresponds to an optimal solution. Now let us consider the
iteration in which M™ is chosen. Now the algorithm has to

complete M™* to an optimal solution. To this end, it takes
one vertex after the other from V'\ M and sorts it in in such a
way that the number of new edges in the cut is maximized.
Let V' be the solution obtained. It remains to show that
V' is optimal. To this end note that the vertices in V' \ M
form an independent set since otherwise M is not maximal.
Therefore, the vertices from V \ M do not interfere with
each other: the number of new edges introduced by sorting
in one vertex does not depend on where or when the other
vertices of V'\ M are sorted in. In particular, there cannot
be a distribution of the vertices from V' \ M that introduces
more edges into the cut then the one chosen greedily.

It is not hard to see that the runtime of the algorithm is
dominated by trying all possibilities to partition M into two
sets. This number corresponds to the number of subsets
of M which is 2/*™!. This leads to a runtime of at most
O*(2°™) since greedily sorting in the remaining vertices only
contributes a polynomial factor.

We finish the proof by describing and analyzing an approx-
imation algorithm that is used if | M| > em/2.

The main idea of the algorithm is to randomly distribute
the vertices in such a way that all edges in M are in the cut.
To this end, we first handle the vertices of M separately.

The algorithm repeatedly takes edges {u,v} from M and
chooses uniformly at random whether u or v is put into V.
Note that this way exactly one vertex of every edge in M
is in V’. This ensures that, as mentioned above, each edge
from M is in the cut.

The algorithm handles each of the remaining vertices in-
dependently. It simply takes one vertex after the other and
chooses uniformly at random whether is is in V'’ or in V\ V",

Now we show that the expected number of edges from E\ M
that are in the cut is |E\M|/2. For an edge e ¢ M, let X, be
the random variable that takes the value 1 if e is in the cut
and 0 otherwise. Then, for each e = {u, v}, the probability
that X. = 1 holds is exactly 1/2: each of the vertices is in
V' with a probability of 1/2. Thus the probability that both
are in the same set is 1/4 4+ 1/4 = 1/2. Due to linearity of
expectation, the expected number of edges in the cut is

dOEX]= > 1/2

e€ E\M e€ E\M

The total number of edges in the cut is therefore | M|+ |E '\
M|/2=em/24+ (m —em/2)/2 =m/2+em/4.

The claimed expected approximation ratio now follows im-

mediately, since the cost of an optimal solution is bounded
from above by m:

M:W”/‘*'

O

By choosing ¢ < 1/5, we obtain the claimed properties of
the hybrid algorithm: if it computes an optimal solution, the



runtime is guaranteed to be improved and if it computes an
approximate solution in linear time, the guaranteed approx-
imation ratio is improved.

4. WIN/WIN ALGORITHMS

We now consider the relation between different problems
using so-called win/win algorithms. More precisely, given
two problems U; and Uz such that both of them have the
same set of valid input instances (e.g., both problems take
a graph as input), we aim for algorithms that, on a given
input, either compute an improved solution for Uy or for Us.

Early algorithms of this type appeared in the context of pa-
rameterization, mainly used in order to find a kernelization;
see [7] for an overview. The name win/win originates from
this context and incorporates the idea that one always wins
(i.e., one always gets a good kernelization), no matter which
input instance is given. This concept naturally translates to
approximation and was used in this context in [1, 6, 15].

Note that the concept of win/win algorithms generalizes the
type of hybrid algorithms that we considered in Section 3,
since we can also see each pair of a problem and a complexity
measure as a separate problem.

We now give a few examples of win/win algorithms. To
this end, we start with parameterized problems. In [18],
Prieto and Sloper presented a kernelization for the k-internal
spanning tree problem:

DEFINITION 3 (k-IST).

Input: An undirected unweighted graph G.
Output:

yes if G has a spanning tree with at least k internal
vertices,

no Otherwise.

The kernelization of the k-internal-spanning-tree problem
uses as its main ingredient a win/win algorithm for k-vertex-
cover and k-internal-spanning-tree.

We now show the following win/win result.

THEOREM 4  (PRIETO, SLOPER [18]). There is a poly-
nomaal-time algorithm that, for a given graph G, either com-
putes a vertex cover of at most k vertices or a spanning tree
with at least k internal vertices.

A main idea of this result is to find a spanning tree in G
where the leaves form an independent set. However, we
cannot guarantee that we always find such a tree. Instead,
we show the following lemma.

LEMMA 1 (PRIETO, SLOPER [18]). Given a graph G =
(V, E), there is a polynomial time algorithm that finds a
spanning tree T in G such that either T is a Hamiltonian
path or the leaves of T form an independent set in G.

PRrROOF. We first compute a spanning tree 71 in G without
considering the aimed-for properties. Then we transform T}
successively in such a way that each time, the number of
internal vertices is increased until we get one of the two
desired results.

For any i > 1 such that T; does not fulfill the claimed condi-
tions, we transform T; into T;4+1 as follows. Since the leaves
of T; do not form an independent set, there are two leaves
u and v in T; that are connected by an edge (in E). Let
P; be the unique path in 7; that connects v and v. Since
T; is not a Hamiltonian path, P; contains vertices that have
a degree higher than two. Let {s,¢} be the edge leading to
the first such vertex when starting from u ,i.e., ¢ is the first
vertex of a degree higher than 2 and s is its predecessor.
Then T;y1 is T; including the edge {u,v} but without the
edge {s,t}. Note that T; is still a tree and still connected,
but the structure changed. The vertices u and v are now
internal vertices and s is a leaf (unless u = s in which case
u does not become an internal vertex).

Since the number of internal vertices is increased in each it-
eration and cannot be higher than n — 2, there are at most
n — 3 transformation steps, which shows that the algorithm
performing the transformation terminates. The outcome is
a spanning tree T with the aimed-for properties, because
otherwise the algorithm can apply an additional transfor-
mation step. (Note that n — 2 internal vertices is equivalent
with 7" being a Hamiltonian path.) [

With the preparation done in Lemma 1, Theorem 4 now
follows quite naturally.

PROOF. (of Theorem 4) Let T be the spanning tree from
Lemma 1 and let n be the number of vertices in G. If we
obtain a Hamiltonian path, in particular we have found a
spanning tree with n—2 internal vertices. Since there cannot
be a spanning tree with more internal vertices, the result for
k-IST is yes for k <n —2and no for k =n—1or k = n.
If the answer is no, however, the answer for k-VC is yes,
because the n — 2 internal vertices of T' also form a vertex
cover.

Otherwise, the leaves of T form an independent set. Note
that the internal vertices of T' form a vertex cover (all inter-
nal edges and the edges between internal vertices and leaves
are incident to the internal vertices and there are no edges
that connect two leaves). Thus, if there are at most & inter-
nal vertices, the answer for k-VC is yes and if there are at
least k internal vertices, then the answer for k-IST is yes. [J

We now shift our focus to the use of win/win algorithms in
approximation. This type of algorithm was also called paired
approzimation [6], because we start with a pair of problems,
obtain a pair of approximative solutions and have the guar-
anty that one of the solutions is an improved approximation
for the corresponding problem. We can see the concept of
win/win algorithms for approximation also as a special type
of parameterization: the approximation ratio achieved for
one of the problems is a parameter for the other one?.

2Note that this type of parameterization does not com-



We illustrate this concept by relating the traveling salesman
problem in graphs that have only edges of cost one and two
to the independent set problem. The traveling salesman
problem is defined as follows:

DEFINITION 4 (TSP).

Input: An edge-weighted complete graph G = (V, E) with
cost function c

Output: A cycle C in G that visits each vertex exactly once
Cost: The cost of the cycle, i. e., ¢(C)

Goal: Minimization

If ¢ is an arbitrary cost function, the TSP is hard to approx-
imate. The problem changes considerably, if we restrict the
cost function. If edges can only have the cost one or two, we
obtain the (1, 2)-TSP for which there is a 7/6-approximation
algorithm by Papadimitriou and Yannakakis [17]. For the
independent set problem, one cannot even design an approx-
imation algorithm with an approximation ratio of 1/n' = for
any constant & unless NP=Z7PP [10]. The relation of the two
problems has an additional motivation: it was used to find a
polynomial time approximation scheme (PTAS) for a graph
embedding problem in [2].

THEOREM 5 (EPPSTEIN [6]). Let G be a complete graph
with edge weights 1 or 2 only and let G’ be G without the
edges of cost 2. There is a win/win approzimation algorithm
that, for any e > 0, either computes a (14 €)-approximative
(1,2)-TSP tour in G or an (g)-approrimative independent
set in G'.

PROOF. We first construct a win/win algorithm A that
has the claimed properties. Suppose that G’ has k compo-
nents. First, A computes a spanning tree T; for each com-
ponent C; in G’ such that either the leaves of T; form an
independent set or 7; is a Hamiltonian path in C;. We can
do this by using Lemma 1. Let I be the set of all leaves the of
all computed trees T; where the leaves form an independent
set and one vertex of each remaining component (where T;
is a Hamiltonian path). Note that I is an independent set
in G'.

Now A computes a Hamiltonian path P; for each component
C; in G (i.e., we use some edges of cost 2). To this end, for
each T; that is not a Hamiltonian path, A runs a depth
first search starting from a leaf. The path P; is formed by
connecting the vertices in order of the depth first search.
This way, there is at most one edge of cost 2 for each leaf
except the root and the leaf visited last in the depth first
search. (Note that P; always follows a path within 7} until
it reaches a leaf and then it jumps to another vertex in T;.
The jumps may be of cost 1 or 2, but all other edges are
of cost 1.) Finally A forms a Hamiltonian tour L in G by
including each path P; and, for each i, inserting an edge of

pletely fit into the usual framework of parameterization,
since determining the value of the parameter itself can be a
hard problem.

cost 2 between the last vertex of P; and the first one of P11
as well as an edge between the last vertex of Py and the first
one of P;. The output of A is the pair (I, L).

To analyze A, we first compute the cost of L. Let ¢ be the
cost function in G. Since G has n vertices, ¢(L) is n plus
the number of edges of cost 2. But these are at most I: each
component contributes at least one vertex to I which pays
for the connections between the components. Each further
edge of cost 2 within some path P; starts from a vertex from
I that was not considered before.

We now analyze the achieved approximation ratios. To this
end, let L™ be an optimal Hamiltonian tour in G. Since
c¢(L*) > n, if ¢(L) < (14 €)n, the approximation ratio is
bounded by (1+¢)n/n =1+ ¢ and we are done. Otherwise,
since |I| > ¢(L) —n, |I| > en. Since no independent set can
be larger than n, this directly implies the approximation
ratio en/n = e, which finishes the proof. [

We will now sketch a second pair of approximation ratios. In
contrast to the examples before, now we show a relation of
two quite similar minimization problems, namely the met-
ric traveling salesman problem (AT'SP) and the minimum
Hamiltonian path problem in metric graphs with prespeci-
fied end-vertices (AHPP,). This shows that the relations
established due to win/win algorithms are quite different
from dual relationships as they appear, for instance, in lin-
ear programming.

Both problems run on the same input, namely a metric undi-
rected graph G = (V, E). In this context, a metric graph is a
edge-weighted graph where the weight function ¢ obeys the
triangle inequality (see Section 2).

Currently, the algorithm of Christofides [4] has the best
proven approximation ratio for the AT'SP, which is 1.5.

The idea of Christofides’ algorithm is to compute a minimum
spanning tree T of G and a minimum cost perfect matching
M on the odd vertices of T. (Remember that in any graph,
the number of odd vertices is even.) This way, the multi-
graph formed by combining 7" and M has no odd vertices:
each odd vertex of T' has one additional incident edge. In
other words, the graph formed by T and M is Eulerian (since
it is even and connected) and thus we can compute an Eu-
lerian tour. Since G is metric, we can shorten the Eulerian
tour to a Hamiltonian tour that is not more expensive.

This strategy leads to an approximation ratio of 1.5 by
bounding the cost of T and M according to the cost of an
optimal Hamiltonian cycle Opt. in G, ¢(Opts). To this
end, note that any Hamiltonian cycle contains a spanning
tree (just remove one arbitrary edge). Therefore we have
¢(T) < ¢(Opte). To see that ¢(M) < ¢(Opt)/2, suppose
that we know Opt,. Now we can deduct two disjoint per-
fect matchings from Opt. as depicted in Figure 1. Due to
the triangle inequality, both matichings together do not cost
more than ¢(Opt). This directly implies that at least one of
them has not more than half the cost of Opt,. A minimum
cost perfect matching cannot cost more than the matching
that we identified. Thus, T and M together cannot cost
more than 1.5¢(Opt.), which shows that Christofides’ algo-



Figure 1: Two disjoint matchings within an optimal
Hamiltonian tour. The gray vertices are those that
have an odd degree in the spanning tree 7.

rithm is 1.5-approximative.

A slight modification of that algorithm was shown by Hoo-
geveen [11] to be 5/3-approximative for the AHPP,.

As in Christofides’ algorithm, we compute a minimum span-
ning tree T' and a matching M. This time, however, we com-
pute a matching on the odd vertices of T + {s,t}, i.e., we
change the parity of the degrees of s and of ¢. The purpose
of this is to obtain a connected graph were all vertices but s
and ¢ are even. In such a graph we can efficiently compute
an Eulerian path from s to ¢t and — similar to Christofides’
algorithm — shorten that path to a Hamiltonian path. As
before, T cannot be more expensive than ¢(Optp), the cost
of an optimal Hamiltonian path Optp. The challenge is to
bound the cost of M, since an optimal path might cost less
than an optimal cycle and thus we cannot use the trick with
the two disjoint matchings. Instead, we find three disjoint
matchings of the odd vertices in a multigraph formed by T
and Optp, which has a cost of at most 2¢(Opt ). Note that
we do not know this graph; we only know that it exists. The
path Optp has a similar effect as the edge {s,t} above, i.e.,
the parity of the degrees of s and of ¢ is changed and all other
parities stay the same. Let C' be the even connected graph
formed by Optp and the unique path connecting s and ¢ in
T. Then C shortened to a Hamiltonian cycle contains two
disjoint matchings. The third one is contained in the forest
that is formed by removing C from T+ Optp.

The two problems AT'SP and AHPP; are strongly related
in the sense that, for any given metric graph, either we are
guaranteed to obtain an approximation ratio for AT'SP that
is significantly better than 1.5-approximative or we can solve
the AH P P; better than 5/3-approximatively for any choice
of end-vertices.

To this end, let us consider an algorithm A that works as
follows. The input of A is a complete edge-weighted metric
graph G = (V, E, ¢) and two vertices v and v. Then A runs
both Christofides’ algorithm and Hoogeveen’s algorithm on
the input using the same minimum-cost spanning tree.

Let Optc and Optp denote the optimal solutions for the
ATSP and the AHPP;, given an input G, u,v and let He
and Hp be the solutions computed by A. Then we define
o = c¢(Hp)/c(Optp) to be the approximation ratio of the

Figure 2: Upper bound on the approximation ratio
from Theorem 6. The horizontal line displays the
approximation ratio a < 5/3 proven in [11]

computed Hamiltonian path and 3 := ¢(H¢)/c(Optc) to be
the approximation ratio of the computed Hamiltonian tour.

THEOREM 6 (MOMKE [14, 15]). For any input of A,
1 1
< mi 5 — — =
6 < mln{lt'),a_1 2} and
5 1
< i - —+1>.
a < mln{3,6+1/2+}
O

The main idea of the proof is find two disjoint matchings
along an optimal Hamiltonian path in G. One of these
matchings is for the cycle, the other one for the path.

Note that o = 5/3 implies 8 = 1. Thus, each worst-case
instance of Hoogeveen’s algorithm allows us to compute an
optimal Hamiltonian tour.

5. CONCLUSION

‘We have seen several approaches to use structural properties
to facilitate the computation. The concept of win/win algo-
rithms extends the use of such properties in a nice way, since
the unability to solve a problem becomes a useful property
that we can use to solve a different problem.

We have seen some examples of pairs of problems that al-
low to apply the concept of win/win algorithms successfully.
One may now ask whether this is always the case. But
we have to answer this question negatively, since Eppstein
showed in [6] that as well for the pair of the independent set
problem and the maximum clique problem as for the pair
of the set cover problem and the hitting set problem, there
are no win/win algorithms that lead to improved approxi-
mations unless P = NP.

Since this field of of win/win algorithms for approximation
is very new, there is a huge number of pairs of problems
one may consider. In other words, there is a whole menu of
open problems involved in analyzing which pairs of problems
allow win/win algorithms and which ones can be shown to
not allow win/win algorithms.
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