Communication Complexity of dP Automata Accepting
{(ac)*(bd)* | s = 0}

Kelvin Cui Bufo
Algorithms and Complexity

Richelle Ann B. Juayong
Algorithms and Complexity

Henry N. Adorna
Algorithms and Complexity

Laboratory Laboratory Laboratory
University of the Philippines University of the Philippines University of the Philippines
Diliman Diliman Diliman

Quezon City, Philippines
kcbuno@up.edu.ph

ABSTRACT

Paun and Pérez-Jiménez introduced a variant of P systems
that computes in a distributed way called distributed P sys-
tems (dP systems)[9]. They also introduced a distributed
computing P automata[3][4] called dP automata. [9] gives
a dP automata with two components recognizing the lan-
guage L = {(ac)’(bd)’|s > 0}. This dP automata uses two
component P systems that communicate bidirectionally, us-
ing a single intercomponent communication rule, and runs
in 2s + 2 steps. In this paper, we have shown that the lan-
guage L can be recognized by an n-component dP automata
that runs in 4—: + C steps, for some constant C.

1. INTRODUCTION

Membrane computing has two main classes of P systems,
namely cell-like P systems and tissue-like P Systems. Cell-
like P systems is composed of hierarchical structure of mem-
brane. Membranes of the cell-like P systems each has mul-
tiset of objects within their regions and computes in a max-
imally parallel way. Tissue-like P systems emulates how
cells interact within a tissue system. The cells in tissue-like
P systems can be represented as a graph, all of the same
level. The cells communicate through synapses using sym-
port/antiport rules. Symport rules communicate objects in
a unidirectional way. Antiport rules communicate objects
in a bidirectional manner.

In [5], Csuhaj-Varjd et. al. introduced a system similar
to tissue-like P systems called P Colonies. In P Colonies,
its components referred to as agents act and evolve in a
shared environment. No direct communication happens in
between these agents, agents are not connected through links
like in tissue-like P systems. Agents communicate through
the changing environment which is initially uniform. Agents
change the environment using rules similar to antiport rules.

Quezon City, Philippines
rbjuayong@up.edu.ph

Quezon City, Philippines
ha@dcs.upd.edu.ph

Early proposal of communication complexity of P systems
were made in [1]. ECP with energy is a cell-like P system
using both evolution rules and symport/antiport rules. It
is defined in a way that using symport/antiport rules can
only happen when enough quanta of energy is present within
the membranes. The quanta of energy is represented by
multiset of objects, usually over the alphabet {e}. Using
symport /antiport rules would decrease the multiplicity of e’s
within the membrane regions. Communication complexity
of ECP is the measure of the maximum quanta of energy
used, the communication effort of using symport/antiport
rules. Although there is a communication analysis of the
system, it is not an analysis for an explicitly distributed
system.

An explicit form of distributed systems is wherein given a
problem, the problems is broken down, or partitioned into
subproblems and each component of the system will take
in a subproblem computing in a parallel manner, and then
constructing a solution to the initial problem. Although,
ideally, these components should compute independently, it
is sometimes unavoidable that the components need partial
results from other components, thus a need for communica-
tion. If components become too dependent on the partial
results from other components, the resulting computation
time may increase which can be seen as loss in performance.

In [9], a distributed version of cell-like P systems was in-
troduced, called dP Systems. Similar to tissue-like P sys-
tems, the dP Systems has its components connected through
synapses, but each component in itself is a complete P sys-
tem. Components of dP systems can be defined to interact
with the environment, taking in arbitrarily many copies of
objects needed by the system for computation. Additionaly,
using the environment, the idea of partitioned input can be
made, components only interact with their partition.

The idea of dP systems is to (1) take in a problem or a string,
(2) partition it according to the number of components the
system has, (3) components compute in a maximally parallel
manner with minimal communication through the synapses,
and (4) the output of the system is determined by all of the
components. To say that the system uses minimal communi-
cation, three communication complexity measures were de-
fined for dP Systems. ComN measures the number of steps
in which a communication happens throughout the compu-

tation. C'omR measures the number of rules used during
the computation. And ComW measures the number of ob-
jects communicated throughout the computation. A mini-
mal communication is defined to be a communication com-
plexity measure upper bounded by a constant value. An-
other measure made is the analysis of the parallel efficiency,
given by the speed up ratio between the dP system, and a
usual P system solving the same problem. From the paral-
lel efficiency, we can determine if using dP system is better
or worse than a usual P system solving the same problem.
Note that a usual P system can be thought of as a single
component dP system.

In this paper, we look into a particular language L = {(ac)®
(bd)® |s > 0} given in [9]. Pdun and Pérez-Jiménez have al-
ready given some results for its communication complexity
and parallelizability using a two component dP Automa-
ton. We will build a three component dP Automaton and
compare its communication complexity and parallelizabil-
ity with that of the two component construct. We then
generalize it to n-components and show that the language is
efficiently parallelizable for all n-component dP Automaton,
n > 2.

Certain languages such as L = {(ac)’(bd)® |s > 0} can seem-
ingly be recognized by distributed parallel manner without
loss of performance even if the number of processors is in-
creased indefinitely. As we know, increasing the number
of processors for parallel computation may decrease parallel
efficiency compared to the sequential computation. But for
languages such as L, increasing the number of components
of the dP Automata solving it also increases the speed-up
ratio, meaning higher parallel efficiency. We look into L as
a candidate member for such languages exhibiting this kind
of property.

We discuss briefly what each section of the paper contains.
The Definition section provides the terminology and nota-
tions used for this paper. This section also provides the
definition of the dP system we will use and we state the
description of the language we would focus on. Section 3
defines the dP systems that uses P automata components
called dP Automata. Results regarding the studied language
from [9] will be discussed in this section. Section 4 provides
a construction of dP automata using 3 P automaton com-
ponents to recognize the studied language. The section also
gives results on the communication measure and the parallel
efficiency of the constructed system. The n-dP Automata
section will extend the results from section 3 and section 4
to an n-component P automaton model. The last section
will provide a summary and some open problems from the
results.

2. DEFINITION

The reader is assumed familiar with the basics of membrane
computing and of formal language theory. Here we give the
formal definitions of dP Systems and dP Automata, as well
as the methods of measuring the communication costs of
these systems.

Let ¥ be an alphabet. Let x and y be strings over X. |z|
denotes the length of the string z. If |z| = 1, x is referred
to as a character. xy denotes the concatenation of strings x

and y.

We denote the set of finite multiset over the alphabet V as
V°, and the set of their sequences as (V°)*. We denote u €

V° by the corresponding string a*(*)q(®2) _g(@) ¢ v*,

A P automaton, II, defined by [3][4] is a symport/antiport
P-system that accepts strings. The system takes in from the
environment a sequence of objects referred to as the input
sequence. Let vy, ..., v, be an input sequence of II. Let g be
a homomorphic mapping from V° — ¥*. We refer to the
homomorphic image of the input sequence as the string of
IT or II string and is denoted by g(v1)...g(vn). A II string
g(v1)...g(vn) is an accepted string if and only if the input
sequence v1, ..., Un, leads II to a halting computation.

We define a dP Scheme as follows:

DEFINITION 1. [9] A dP scheme of degreen > 1 is a con-
struct

A =(0,1L,...,1I,,, R),

where:

e O is an alphabet of objects;

o Iy,11, are cell-like P systems with O as the alpha-
bet of objects and the skin membranes are labeled with
81, ..., Sn TESPECtiVElY;

e R is a finite set of rules of the form (s;,u/v, s;), where
1<4,j<n,i#j, and u,v € O*, with uwv # A; |uv| is
called the weight of the rule (si,u/v,s;).

The systems 111, ...,11,, are called the components of A, and
R contains the rules called inter-components communication
rules. FEach component can take some input and compute
and the system accepts if all components end in a halting
configuration. Each components can also communicate sym-
bols with other components as defined by the rules in R.

DEFINITION 2. [9] Let A be a dP scheme and § : wo =
w1 = ... = wp be a halting computation in A, where wo is
initial configuration of A. Then for each i1 =0,1,....,h — 1:

e ComN(w; = wi+1) = 1 if a communication rule is
used in this transition, and 0 otherwise;

o ComR(w; = wiy1) = the number of communication
rules used in this transition,

o ComW (w; = wit1) = the total weight of the commu-
nication rules used in this transition.

We can also use these parameters to measure computations,
results of computations, systems, and languages. We denote
the set of strings accepted by A as L(A). For ComX €
{ComN,ComR,ComW}, we define

ComX(8) = Y} ComX(w; = wis1), for § which is a
halting computation.

ComX(w,A) = min{ComX(5)|6 is a computation of A
that accepts the string w},

ComX (A) = maz{ComX (w,A)|w € L(A)},

ComX (L) = min{ComX (A)|L = L(A)}.

Parallelizability is a measure of how a language can be effi-
ciently computed in a distributed and parallel paradigm. [9]
gives two levels of parallelizability.

DEFINITION 3. [9] A language L C V™ is said to be (n,m)-
weakly ComX parallelizable, for somen > 2, m > 1, and
X € {N,R,W}, if there is dP automaton A with n compo-
nents and there is a finite subset Fa of L such that each
string x € L — Fa can be written as x = x1...xyn, with
[lz:| — |zi|]| < 1 for all 1 < 4,5 < n, each component II;
of A takes as input the string x;, 1 < i <n, and the string
x is accepted by A by a halting computation & such that
ComX(6) < m. A language L is said to be weakly ComX
parallelizable if it is (n,m)-weakly ComX parallelizable for
somen > 2,m > 1.

DEFINITION 4. [9] A language L C V* is said to be (n,m, k)-

efficiently ComX parallelizable, for some n > 2, m > 1,
k>2, and X € {N,R, W}, if it is (n,m)-weakly paralleliz-
able, and there is a dP automaton A that

timen (z)

—_—t >
timea(z) — K

hszL,|z|—>oo

for all P automata 11 such that L = L(II).
We say that a language L is efficiently parallelizable if and

only if L is (n,m, k)-efficiently ComX parallelizable for any
X € {N,R,W}, for somen >2,m>1k > 2.

We now define the language to be considered for this study.

L = {(ac)* (bd)*]s = 0}

Note that L is a member of Context-Free languages. Sample
members of L are: €, acbd, acacbdbd, and acacacacbdbdbdbd.

3. COMMUNICATION COMPLEXITY OF
2 DP AUTOMATA

(1,2) (2,2)
(¢y, out; ¢, in) (c,, out; d, in)|
(#,in) , (#,in)
c1 (#, out) (#, out)
(51,€1/Cy, S5) . J
(1,3) (2,3)
R
#
(#, out; ¢y, in) (#, out; ¢, in)|
\—/ i}
(c, out; a, in) (d, out; b, in)
(a, out; ¢, in) (b, out; d, in)

Figure 1: Recognizing L = {(ac)’(bd)’|s > 0} using dP
Automaton with two-way communication from [9]

By using P automata as components for the dP Scheme,
we obtain a distributed version of P automata referred to
as dP Automata. For this case, we consider extended P
automata, where a distinguished alphabet of objects, T, is
used whose elements are taken into account when building
the accepted string. Other symbols coming into the system
from the environment not an element of 7" is not considered.

DEFINITION 5. An extended dP automaton is a construct
A =(OaEyTa L, -’-7Hn7R)7

where (O, 114, ...,11,, R) is a dP scheme, E,T C O, E is the
set of objects that have arbitrarily many copies in the en-
vironment, T is the set of symbols that are only considered
when building the accepted string,

II; = (O,Miywi,h--'»wi,ki»EaTsz’,lv--'
P automaton and the skin membrane labeled with (i,1) = s;
foralli=1,... n.

A halting computation with respect to A accepts the string
T = x1%2...T, over O if the components 11y, ..., 11, start-
ing from the initial configuration, using the symport/antiport
rules as well as the inter-component communication rules, in
a non-deterministically mazimally parallel way, bring from
the environment the substrings xi,...,Tn, Tespectively, and
eventually halts.

We only consider a balanced partition of the problem, mean-
ing given a string x = 2122...2x, ||z:] — |z;]| < 1. [9] also
gives a constraint of having ComX upper bounded by a
constant.

Here we present the 2-component dP automaton that was
presented in [9]

Figure 1 shows the graphical illustration of a two-way dP
Automaton having O = {a,b,c1,c2,#} and E = {a,b,c,d}
and recognizing L as presented in [9]. The details of its
computation is as follows:

, Rik;) is a ki-membrane

c
2
de (d, out; ¢, imn)
(ab.in)
(e,out: d,in) (c,outya.in)
(#.out: ea.in) (a, out: c,in)
(#. out; eb,in) (d, out: b, in)

/ (b, out; d, imn)
ﬁ) (#,in)

(#, out)

g, et

Figure 2: Recognizing L = {(ac)’(bd)°|s > 0} using a
P Automaton from [9]

The strings (ac)® and (bd)s,, 5,8 > 0 are generated by con-
tinuously applying rules (c,out;a,in), (a,out;c,in) in II;
and (d,out;b,in), (b,out;d,in) in Iz, respectively. The
generation stage stops when rules (ci1,out;c,in) in mem-
brane (1,2) and (c2,out;d,in) in (2,2) is applied. At this
point, the computation will only be successful if the inter-
component communicating rule (si,c1/ca, out) is applicable
in the next step. This indicates that the generation stage
for both processors terminates at the same time, so that
s = s'. If this does not occur, the trap object # will be
moved out to the skin membrane and both processors shall
oscillate forever because of the rules (#,in) and (#, out) in
both membranes (1,2) and (2,2).

Figure 2 is a P automaton solving L. By Theorem 1 of [9],
L is efficiently ComX parallelizable, for X € {N, R, W}.
We strengthen this result by showing that L is efficiently
parallelizable using higher number of components. A 3-
component dP Automaton solving L is created, and then
generalized to n-component dP Automaton, for n > 2.

4. COMMUNICATION COMPLEXITY OF

3 DP AUTOMATA

A 3 dP Automata is simply a dP Automata consisting of 3
P automaton components. That is,

DEFINITION 6.

As = (0, E,T,111,115, 113, R),

where (O, 111,112,113, R) is a dP scheme, E C O is the set of
all objects having arbitrarily many copy in the environment,
T C O is the output alphabet, and for i =1,2,3, II; is a P
automaton.

We also consider a balanced partition of input, that is for
T = x122x3, ||as| — |x;]| <1, for i # 4, 4,7 =1,2,3. We also
restrict the components to be connected similar to a linear
array. That is a component can only have at most two links

to other components, a left link and a right link. When
components are sorted by numerical label, component i is
connected only to component (i —1) and component (i+ 1).
The first and last component are not linked to together.

We now show that L is parallelizable using 3 dP Automaton.
We prove the following theorem for L,

THEOREM 1. Let L = {(ac)’(bd)’|s > 0}. The language
L is efficiently parallelizable for 3-component dP automaton.

We construct a 3 dP Automata accepting L and show the
time and communication complexity of this dP automaton
to prove the theorem.

We define our 3-component dP automaton, As as follows:

As = (

0= {ay ba &) d7 8, Lac,]-:Lm Oaca 1pa, 1;)d7 Obdy 0, Ta, To, t, fl, f2,
VERE

E ={a,b,c,d,za, 1}
T= {(l,b, c, d}

R ={(s1,f1/f2,82),(81,0ac/A, 82), (81, lac/A, s2),
(82, f2/f3,83), (52, A/ 0bd, $3), (52, A /134, 83)}

I = ([s, [ap]an las]asn]ls,
s1 = ({s},{(c, out; a,in), (a, out; c,in)}),

(1,2) = ({e, ¢, f1,0ac, Lac, 0}, {(c, out; s,in), (0, out; s, in),
(04ctf1, out; c,in),
(Lactfr, out; a,in), (tf1, out; 0,in), (#,in), (#, out)})

(1,3) = ({#}, {(t,in), (fo,in), (t#, out; f1,in)})),
Iz = ([s.[ealeanleslesnlevleals,

s2 = ({s},{(c, out; axq,in), (c, out; bxy,in), (a, out; c,in),
(d, out; bxy, in), (b, out; d,in)}),

(2» 2) = ({a7 G t, f2a f2a Ow:a 1cha Obda 1bda 0» xu}»
{(0qc, out; s,in), (all.xq, out; s,in), (0, out; s,in),
(Obdthfz, out; d, in), (lbdtfgfg, out; b, in),

(than OUt; 07 Zn)» (#» Z?’l), (#> OUt)})a

(2,3) = ({}, {(zamp,in), (Lacliucloalpg), (00c04c0pa06q)}),

(274) = ({#}7 {(tv iIl), (f1f37 iIl), (t#y OU.t; f27 iIl), (f1f3#7
OUt; Ta, in)7 (f1f3#a Ollt; T, in)a (f1f3#7 Out’; OaC» in)a
(f1fs#, out; Opa, in), (f1fs#, out; lac, in),(f1f3#, out; 1q.,
in)7 (flf3#a Ollt; 1bda in)7 (f1f3#7 Ollt; 1;7(15 ln) }))7

I3 = ([ss[3,2)]3.2)[(3,3)](3,3)] s3>

ss = ({s},{(d, out; b,in), (b, out; d,in)}),

(3,2) = ({b,d,1, 3, 0pa, 134, 0}, {(dOsa, out; s, in), (b144, out;
S, in)> (0> Out; S, in)a (tf3> Ollt; da in)> (tf«ia OUt; 07 in)a (tf'da
out; 0, in), (#, in), (#, out)})

(37 3) = ({#}7 {(t»in)v (f2,in), (t#, out; f3»in)}))7

Fach component’s skin membrane would have the object
s. s indicates the start of the string generation stage when
it enters membrane (i,2), for ¢+ = 1,2,3. For II;, since it
will always start the string by an ’a’, then s can only be
exchanged by c. For I, it can start the string with ’a’,
or ’c’ , so s enters (2,3) and either ¢, or a will enter so
respectively. For Ils, it can start with 'b’, or ’d’.

Part of the computation of Az is to alternate the a’s and
c's, and b’s and d’s to form (ac)®(bd)°. We refer to this part
of the computation as the string input stage.

The partitioning forces the Ils substring to always have a
balanced number of ac’s and bd’s. This means that num(a)+
num(c) = num(b) + num(d). num(z) indicates the number
of x characters in the string.

The objects Ouc, lac, 1he, Opa, lpa, 1,4 indicates a prop-
erty of the substring of the components. 0,. indicates that
num(a) = num(c). l,. means num(a) > num(c). 1,. is
num(a) < num(c). The same is similar for the other sym-
bols, comparing num(b) and num(d). O0pq indicates that
num(b) = num(d). 1lpq means num(b) > num(d). 1j, is
num(b) < num(d). For brevity, we refer to this symbols
as form-count symbols. We pass these objects towards Ils
using the intercomponent communication rules in R.

For As to recognize L, all the following conditions must be
met:

1. Form-count objects does not only indicate count but
also implicitly tells the start and end character of the
input string of a component. Therefore, there exists
a finite combination of form-count objects that must
be followed. There are only two possible combinations
that would result to valid form and equal number of
pairs of ac’s and bd’s. This is either 14c1,.1pq154 OT
0ac04c0p405q. These objects would enter (2,3) only if
it follows one of the two combinations. If it fails to
enter (2,3), when the objects fi and fs enter (2,4),

indicating the end of the string input stage, then it
would exchange one of these symbols with the trap
symbol # to cause a non-halting computation.

2. There must be an equal number of ac’s and bd’s in
II. The rules in s2 takes in z,’s and x3’s from the
environment. It should be that the number of z,’s
is equal to the number of z;’s. Otherwise, when the
string input stage ends, (2,4), would consume an z,
or x, and release the trap symbol.

We have now constructed our 3-component dP automaton
As recognizing L. The following lemma is a result from
taking the time and communication complexity of As.

LEMMA 1. The language L = {(ac)’(bd)®|s > 0} is (3, m,
efficiently ComX parallelizable, for (m, X) € {(1,N), (4, R),
(6, W)}, and for k, 2 <k < 3.

The running time of As for any accepting computation is
4—35 + 3. 1 step to prepare the string input stage, 1 step
to communicate, 1 step to check the combinations, and 435
steps for the string input stage.

The communication measure is as follows: ComN (As) =1,
ComR(As) = 4, and ComW (As) = 6. The communica-
tion step happens only once at the end of the string input
stage. Components II; and IIs will use the communica-
tion rule to send fi and fs to component II». At the same
time, II; and I3 will use exactly one communication rule to
communicate a form-count symbol, so the total number of
communcication rules used is 4. The objects communicated
are fi1, f2, f2, f3 and two form-count objects for a total of 6.

We measure As’s running time against a single component
P automaton recognizing the same language. By the defini-
tion, it is efficiently parallelizable if:

timern () >k

lim —_—
z€L,|z|—oc0 timeA(a:) -

where k > 2 is some constant. The P automaton that rec-
ognizes L in [9] runs in 4s + 2 steps. Plugging in the values

and taking the limit, we get that limsﬂw% = 3.
3

Therefore our language L = {(ac)’(bd)’|s > 0} is (3,m,k)-
efficiently ComX parallelizable, k < 3.

By Lemma 1 and Definition 4, we have proven Theorem 1.

S. NDP AUTOMATA

Now, we generalize the construction of an n-component dP
automaton recognizing L, n > 3. We can partition the string
w € L such that half of the components generate the ac pairs
and the other half generates the bd pairs. If n is odd, then
one component will have to generate both pairs. Because
of this, there are some differences in the construction of the
dP automaton when n is odd or even.

k)-

First we introduce another checking phase we would refer to
as ’start-end check’. The start-end check is used to ensure
that adjacent component substrings form a correct sequence
when concatenations between the substrings is done. Hence,
we compare the start and end character of each adjacent
component string.

A string w € L is of the form (ac)®(bd)®. We let w be parti-
tioned into n substrings of almost equal length, w = wy...wn,
[lwi| — |wj]] <1, for 1 < 4,5,< n. Let w; and w11 be
substrings of w, for 1 < ¢ < n. Let x be the end charac-
ter of w; and y be the start character of w;+1. What we
mean by the start character is the first symbol that enters
the skin membrane of a component and the end charac-
ter is the last symbol that enters the skin membrane from
the environment. Since we are using extended P automata,
z,y € T ={a,b,c,d}.

We say that w; and w;+1 passes the start-end check if it
satisfies one of the following conditions:

L I

aand y =c¢

ex=candy=a

ex=candy=>

ex=bandy=4d

exrx=dandy=0>

The start-end check is done between adjacent components.
The checking can be done using the intercomponent com-
munication rules. Adjacent components would use symbols
to the indicate the start and end characters of their string.
Since there are n components, there would be n—1 adjacent
pairs, II; and Ilg, Iy and I, ..., IT,—1 and II,,. We define
II; and Il as the 1st adjacent pair and II,,—; and II,, as the
(n — 1)th adjacent pair.

We denote the start and end symbols as follows: ’I‘EJ), where
r € {a,b,¢,d}, i = 1..m, j = 1..n — 1. r indicates which
character a component starts or ends with. ¢ indicates which
component it came from. j indicates which adjacent pair rz(-])
belongs to. If ¢ = j, then TZ(]) is the end character of the 1I;

string. If j =4 —1, then rgj) is the start character of the 11;
string. For brevity, we refer to these objects as ’start-end’
objects.

We modify the antiport rules that we used to start and end
the string input stage. The string input stage starts when s
enters the (4,2) membrane of the component II;, for 1 <i <
n, exchanging it with a, ¢, b or d, with some other objects.
We include in this rule the objects rzm. Taking for example
(¢, out; s,in), we modify this to (caﬁj),out; s,in). We paired
¢ with az(]) because when we start the string input stage, if
c is the object present at the skin, the first object to enter
the component is a, thus the component string starts with

an ’a’.

For the antiport rule that ends the string input stage, we do
the same. Take for instance the II; rule (Oqctf1, out;c,in)

of the 3-component dP automaton in section 4. We know
that II; always starts with ’a’;, so we know that when c
is the last to enter the component, the component sub-
string ended with ’c’. Therefore, we modify the rule to
(Oaccgl)tfl, out; c,in).

We form our intercomponent communication rules based on
the given conditions above. If (si,r]/r ,si41) is in R,
then the jth pair has valid start and end characters so we
can apply this communication rule. We list the following
valid pairs of r and 7', denoted by (r,7'): (a,c), (c,a), (¢,b),
(b,d), (d,b). We refer to (s;,7! /77, |,si11) as a comparison
communication rule. Note that all pairs should use these
rules. If not, then it means there is at least one pair that
have an invalid start and end causing the trap symbol # to
be released triggering an non-halting computation.

We also take into account that for n > 3, the start and end
characters are not predetermined for other components in
between the first component, IT;, and the last component,
I1,,. We modify some antiport rules in (¢,2), for 1 <1i < n,
for it to release the correct form-count objects.

We double each start-end object that indicates the start
character of the component substring. When we use an
rule to place s within the second membrane, we exchange
the two start-end objects. One would be used later for
the start-end check of the adjacent components, and the
other will be used to acquire the correct form-count object.
An example for the rule modification is: (caij), out; s,in) to
(ca&j)agj), out; s,in).

Similar to the previous section, our form-count set would
consist of:

FC = {lac, 1:167 Oac> 1bd> 1;;0{, Obd}

At the end of the string input stage, there should be an
object x € T on the skin membrane and the two start-end
objects. For the components II;, i =14 1...n — 1, the mem-
brane (4, 2) would use the following rule to release the correct
form-count object:

(zm§j+1)tf¢, out; J:yz(j), in)

wherej =i—1,2 € FC,z,y e T, xﬁ”l),yij) are start-end
objects. Note that yl(j) indicates the start character of the
I1; substring and a:ﬁj ™ is the end character. T" is a subset
of T. For components II; to Iz, 7" = {a, c}. For the other
half, T’ = {b,d}. If n is odd, the middle component would
have T' =T.

Components II; and II,, uses another rule since II; does

not need to check for its start character and II,, for its end
character with another component. We use the following
rules for ITy and II, respectively for releasing the correct
form-count symbol.

. (zazil)tfl,out;m,in) for II;.

o (ztfn,out;xyl " in)

z depends on z and y. If x # y then it means that the com-
ponent started and ended with a different character. There-
fore there is an equal number of a’s with ¢’s or b’s with d’s
then z is Ouc or Opq. If x = y, then we would have the
following: z = a,lac, * = b, 1pa, * = ¢, 15, and z = d, 13,.

5.1 Algorithm for » is even

We now discuss how the dP automaton will run. We start
with even numbered component dP automaton. We sepa-
rate the case because we handle odd numbered components
differently because of the existence of the middle component.

Let w € L, w = wiwa... w,. We partition w so that II;
to H% would generate the pairs of ac’s and II» 1 to II,
would generate the pairs of bd’s, and ||w;| —| w;|| < 1, for
1<i,5<n.

We connect the components similar to a linear array. The
intercomponent communication rules would only have the
following form, (s;,x/y,si4+1) for 1 <i<n -1, z,y € O*.
With these, we can use our start-end check algorithm.

We choose Iy as the ’central’ component of the ac compo-
nents and IIz | as the ’central’ component of the bd compo-
nents. The central components are responsible for checking
if there is an equal number of pairs of ac’s and pairs of bd’s.

Each non-central component would pass their form-count
objects towards the central components. For II;, 1 <1i < 3,
the components pass the form-count objects {Oac, lac, 15.}
towards H%. For II;, ¥ +1 < i < n, they pass the form-
count objects {0pa, 1pa, 134} towards 4y Wedo this by

adding the following intercomponent communication rules
to R:

ForII;, 1 <i< § —1
o (siyouu/)\asi-l»l)

o (si,lac/A, 8i41)
L4 (s’iv 1:16/>\7 5i+1)

ForIL;, 3 +1<i<n-—1

® (5i,A/0pa, 8i11)
° (S‘i?)‘/lbd»5i+1)

o (5, M/ 1hq, 8i+1)

The central components would exchange their collected form-
count objects from each side. If all ac form-count objects
are given to H% 11 and all bd form-count objects are given
to Ilz, then it is a successful and accepting computation.

Note that the length of w, 4s, is always even. Therefore,
if take ¢ = 4s mod n, for an even n, then the result would
always be even. ¢ indicates the number of components that
would take one more step to finish the string input stage,
meaning these components would have strings of length greater
than the others by one symbol.

Since q is even, then we can divide it by two and we can re-
strict the dP automaton so that half of ¢ components would
generate ac’s and the other half of ¢ would generate bd’s. We
use this to form the intercomponent communication rules
between the two central components. This the rules simpler
but other valid partitioning of w may not be considered.

For the exchange between H% and H%H, we add the fol-
lowing rules to R:

’ /
i (5%)]-ac]-ac/]-bd]-bd7 SLQLJrl)

o (5%701“:/01%178%-’—1)

The rules are formed so that it satisfies two conditions: (1)
num(a) = num(c) and num(b) = num(d). For every lg,,
there should be an 17,. If this is not the case, not only will
it fail in these exchange between the central components,
it will also not pass the start-end check. (2) num(ac) =
num(bd). Because 1,. and 1}, would make an extra pair of
ac, we compare these to the extra pairs produced by 14 and
15g-

When the central components fail to exchange all the form-
count objects, we should make it so that the membrane con-
taining the trap symbol # consumes the form-count ojbects
and release #. But since the form-count object from the
first and last component would be the last to enter the the
central component, we can add an object on both ends so
that the central component’s # membrane would only do
this when the form-count objects from both ends arrive.

Let e; and e, be the objects to indicate that the form-count
objects from II; and II, has already reached the central
components. All components would also pass these towards
the central component. The central components would then
exchange these objects and use it as a trigger to consume
any remaining unexchanged form-count objects. We add the
following rules to R:

o (s;,e1/\, 8i41), if II; generates ac pairs
e (si,\/en,sit1), if II; generates bd pairs

d (s%a€1/6n>s%+1)

We add the rules for the # membrane of the central com-
ponents:

For 11z, (3, 3)

o (en,in)

o (z,in;#en,out), 2 € {0ac, lac, 1oc}

For Iz 1, (5 +1,3)

* (e1,in)

o (z,in;#e1,out), z € {Ovd, Lo, Lpg}

5.2 Algorithm for » is odd

We have constructed the rules for n-components for n is
even. For n is odd, the middle component would make the
one assumption result into a false accepting computation.
This assumption is when we formed our form-count objects.
Taking into example the ac components. 1,. means that
there is an extra a in a component substring, and 1, is for
an extra c. But since the middle component would have
to generate both ac and bd pairs, the length difference of
the ac substrings of the non-middle component with the ac
substring of the middle component would be more than one,
hence comparison of the equality of the number of ac’s and
bd’s would become difficult.

If we let the middle component generate only one set of pairs,
either ac’s or bd’s only, to make sure that each component
have an equal number of pairs, all components would have
to use a counting object representing the number ac pairs
and bd pairs. These would result into a ComX as a linear
function of s. So for an odd numbered component, we also
force the middle component to generate only even length,
similar to the case in the 3-component dP automaton in
section 4.

We connect the components to form a linear array. The
intercomponent communication rules would only have the
following form, (s;,z/y,si+1) for 1 <i<n-—1, z,y € O".

Let w € L, w = wiws...w,. We partition w such that I1;, for
1 <4< [%] -1 would generate only ac pairs. Iz would
generate ac and bd. II;, for [§] + 1 < i < n, generates the
bd pairs.

We restrict the partition so that the middle component,
H[g] or simply Il,,;4, would always generate an even length
string. In section 5.1, ¢ indicates the number of components
that generates an extra symbol. We make it so that when
q is odd, II,,;4 is included in those components generating
an extra symbol. The half of the ¢ — 1 components would
generate ac’s and the other half will be bd’s. If ¢ is even,
I1,,:4 would not be included in those ¢ components.

We have to satisfy two conditions to consider an accepting
computations, similar to section 4. One is that there should

be that num(a) +num(c) = num(b) + num(d). The second
is similar to the even n-component dP automaton that we
can pair off the correct combination of form-count objects.
This is all done in the middle component. We assign IL,,iq
as the central component, where unlike in an even numbered
component dP automaton, we have two. The conditions are
enough for an n-component dP automaton to recognize L,
n is odd, but other valid partitions of w are not considered
as correct computations.

The construct of I1,,;4 is similar to Ils in section 4. II,,:q
has four components. (mid,4) is the # membrane. (mid, 3)
is used for collecting the proper combination of form-count
objects.

To ensure that I1,,;4 generates an even length string contain-
ing an equal number of ac’s and bd’s, during the string input
stage, whenever an a enters the skin membrane, an object
2, representing the number of ac’s enters the skin membrane
at the same time. When a b enters the skin membrane, an
object x, representing the number of bd’s enters the skin
membrane at the same time.

If winig, the 11,4 substring, starts with ’c’, we add an extra
z, and it should end with a ’b’. If it started with an ’a’, it
should end with ’d’ but we do not add an extra x, or xs.
If it starts and ends in other combinations, it would result
into an odd length string or an uneven number of z,’s and
Tp's.

(mid, 3) uses the antiport rule, (z,zs,%n) to consume the
Zo’s and xp’s from the skin membrane. If after the string in-
put stage there still exists at least one x4 or s, then (mid, 4)
would consume that symbol and release the trap object #,
causing a non-halting computation.

The next is the checking of the combination of form-count
objects. Similar to section 5.1, we pass on towards the cen-
tral component all form-count objects. At the same time,
the II; and II,, also passes e; and e,. We add the following
rules to R:

For Il;, 1 <i<[2] -1

8«;70ac//\,8i+1)

(
(5i7]-ac//\; 3i+1)
(
(

Siy 1:10//\7 8i+1)

5i,€1/>\,8i+1)
ForIL;, [§]1 <i<n—1

® (55, A\/Ova, Sit1)

o (5i, M 1pa,Si41)

hd (57;7 A/]';)dv 8i+1)

o (si,\/en,8i+1)

(mid, 3) would use the following antiport rules to check cor-
rect form-count combinations:

b (laclfzclbd llbda Zn)

o (Oacobd)

Notice the similarity between these antiport rules and the
intercomponent communication rules used by the central
components in section 5.1. We also give the same reason
for these combinations.

We add the following antiport rules to (mid,4) so that it can
go to a non-halting computation if one of the two conditions
are not satisfied.

(fmid—lfrnid+1, i’fl), where Hmid—l and Hmid+1 are the
components on the left and right of I1,,;4 respectively.

(e1€n,in)

(Ta, 1 # fmid—1 fmid+1), and (e, 0; # fmid—1 fmid+1)

(sznv #€1€n, OUt)v X E {011!37 1aC7 1:1c7 0bd7 1bd7 12)(1}

We now have a construction of an n-component dP automa-
ton. All that is left is to show the time and communication
complexity of the system.

LEMMA 2. Let L = {(ac)’(bd)’|s > 0}. The language
L is (n,m)-weakly ComX parallelizable for all n > 2, (m,
ComX) € {(O(n?), ComN), (O(n?), ComR), (O(n?), ComW)}

Proof:

Let w € L, w = wiws...w,. Let A, be an n-component
dP automaton, n > 2. A,’s components are labeled as
114, I, ..., I1,,, and let IL,,;4 be the central component, mid =

(51

From the construction of A, for a component IT;, if 1 <7 <
mid, then form-count objects produced in II; are commu-
nicated to component ¢ + 1 and propagated towards Il,,;q4.
If mid < 7 < n, the form-count objects in II; are commu-
nicated to component ¢ — 1 and propagated towards II,,;q4.
Since, the central component is in the middle, a form-count
object will pass at most n/2 components. Specifically, a
form-count object originating from component ¢ will pass
through |i — mid| components. n components would pro-
duce n form-count objects.

The total number of communication needed for all form-
count objects to reach the central component is,

©l3

n .
2(1+2+...+§)=221

3

So, ComN = 22? 7= ”TQ + 3. ComR and ComW is only
a factor plus some constants of ComN. Using Big-O nota-
tion ComX = O(n?), ComX € {ComN,ComR,ComW}.
Therefore, L is (n,m)-weakly ComX parallelizable, m €
O(n?), for all ComX € {ComN,ComR,ComW}. Note
that n, the number of components is not a factor of the
length of the input 4s and therefore can be considered con-
stant with respect to s. Q.E.D.

LEMMA 3. Given L = {(ac)’(bd)®|s > 0}, an n-component
dP Automaton A, and a P automaton I1, such that L(A,) =
L(II) = L. Then,

Timep(z)

Timea,, () -

lzmxeL,\:c\—wo

Proof:

Notice that from the construction of our n-component in
section 5.1 and 5.2, the running time is mainly dependent
on the string input stage. Since we partition w in an almost
balanced partition, the difference of the string input stage
of each component would only be by one computation step.
The string input stage would last for ‘f—f steps.

For the central components to complete the checking of the
form-count object combinations, it would take at most %
steps for e; and e, to arrive at the central components.
Therefore, the total running time of A,, is 4—; + 3.

Taking the limit of the ratio between the running time of a
single component P automaton II and the running time of
An:

limeL,\zM—»oo As

This means that A,, is n times faster than II. Q.E.D.

Using Lemma 2 and Lemma 3, we can prove the following
theorem.

THEOREM 2. Let L = {(ac)®(bd)’|s > 0}. The language
L is (n, m, k)-efficiently ComX parallelizable for all n-component
dP automaton A, L(A,) = L,n > 2, m € O(n?), ComX €
{ComN,ComR,ComW}, k <n.

By Lemma 2, we know that L is (n,m)-weakly ComX par-
allelizable for n > 2, and m € O(n?) for all ComX €

{ComN,ComR,ComW}. By Lemma 3, we know that the
speed up ratio is n. Since the condition for k is k > 2, then
any value of £ < n can satisfy the limit of ratio speed up
inequality. Therefore, the language L is (n, m, k)-efficiently
ComX parallelizable for all n-component dP automaton A,,,
L(A,) =L, n > 2, me O(n?), ComX € {ComN, ComR,
ComW}, k<n. QE.D.

Using Definition 4, we arrive at the following Corollary,

COROLLARY 1. L is efficiently parallelizable for all n-component

dP automaton, n > 2.

6. CONCLUSION

We have created an algorithm to construct an n-dP Au-
tomata recognizing L = {(ac)®(bd)°|s > 0}. One trivial
assumption we have with regards to the input length is that
4s > n, so that all components would be used, else a loss in
efficiently. The following table is a comparison of the time
and communication complexity of the 2-dP automaton, 3-
dP automaton, and n-dP automaton, n > 2.

dPA model | ComN | ComR | ComW | fmen
2-dPA 1 1 2 2
3-dPA 1 4 6 3
n-dPA | O(n?) | O(n%) | O n

Table 1: Results for dP Automata Accepting L =
{(ac)*(bd)*|s > O}

Based on these results, there are languages such as L that is
efficiently parallelizable for all n > 2. This implies that
there are such problems that the number of components
or processors of distributed parallel models can be scaled
up indefinitely without suffering performance loss. We de-
fine such class of languages as Embarrassingly Parallelizable
languages or problems. The definition of an embarrassingly
parallel problem is that its input set can be distributed into
multiple processors with little to no effort. One future re-
search of interest is to study such class of languages for dP
Automata, and dP Systems in general.

Acknowledgement

We would like to thank the following groups/organizations:
ERDT Scholarship Program

Algorithms and Complexity Lab, Department of Computer
Science, College of Engineering, University of the Philip-
pines Diliman.

7. REFERENCES

[1] Adorna, Henry. Piun, Gheorghe. Pérez-Jimeriez,
Mario J.; On communication complexity in
evolution-communication P Systems.; Proc. 8th
Brainstorming Week on Membrane Computing,
Sevilla, February 2010, 1-22, and Romanian J.
Inform. Sci. and Technology, 2010, in press.

[2] Ciobanu, Gabriel. Piun, Gheorghe. Pérez-Jimeriez,
Mario J.; Applications of Membrane Computing.;
Springer-Verlag Berlin Heidelberg 2006.

B3l

(4]

[5]

(6]

[7]

(8]

(9]

(10]

(11]

(12]

Csuhaj-Varjd, E.; P Automata.; In: Mauri, G.,
P&un, G., Pérez-Jiménez, Rozenberg, G., Salomaa,
A. (eds), Membrane Computing: 5th International
Workshop, WMC 2004, Milan, Italy, June, 14-16,
2004. Revised Selected and Invited Papers. Lecture
Notes in Computer Science 3365, Springer 2005,
19-35.

Csuhaj-Varji, E.; P Automata: Concept, Results,
and New Aspects. Workshop on Membrane
Computing 2009: 1-15

Csuhaj-Varjud, Erzsébet. Kelemen, Jozef.
Kelemenova, Alica. Pdun, Gheorghe. Vaszil,
Gyorgy.; Computing with Cells in Environment: P
Colonies.; Technical Report 2005/1, Theoretical
Computer Science Research Group, MTA SZTAKI,
Budapest, 2005.

Csuhaj-Varji, Erzsébet. Vaszil, Gyoérgy. Paun,
Gheorghe.; Grammar System versus Membrane
Computing: The Case of CD Grammar Systems.
Fundam. Inform. 76(3): 271-292 (2007).

Csuhaj-Varju, Erzsébet. Paun, Gheorghe. Vaszil,
Gyorgy.; Grammar System versus Membrane
Computing: The Case of PC Grammar Systems.
Fundamenta Informaticae - SPECIAL ISSUE ON
DEVELOPMENTS IN GRAMMAR SYSTEMS
Volume 76 Issue 3, March 2007.

Freund, Rudolf. Kogler, Marian. Paun, Gheorghe.
Pérez-Jiménez, Mario.; On the Power of P and dP
Automata. Analele Universitatii Din Bucuresti
(Seria Matematica-Informatica). 2009. Pag. 5-22.

Paun, G., Pérez-Jiménez, M.J.; Solving Problems in
a Distributed Way in Membrane Computing: dP
Systems. International Journal of Computers
Communications and Control, ISSN 1841-9836,
5(2):238-250, 2010.

Leighton, F.T.; Introduction to Parallel Algorithms
and Architectures: Arrays, Trees, Hypercubes;
Morgan Kaufmann Publishers. September 1991.

Hromkovic, J.; Communication Complexity and
Parallel Computing; Springer. April 1997.

The P Systems Website: www.ppage.psystems.eu.

