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ABSTRACT

In the study of symmetrical structures, colorings have played
an important role, often revealing properties of the structure
that may not be immediately apparent. Although a lot of
work has been done in relation to colorings there has always
been a need for a systematic approach to colorings. In this
paper, a symmetry group G which acts on a set X is written
as the product of two subgroups A and B of G where B =
Stabc(z), is the stabilizer in G of some element x € X.
Transitive colorings of the edges, faces and vertices of the
Platonic solids are then obtained using the subgroup A.

1. INTRODUCTION

In the study of a symmetrical structure X and its colorings,
it is often assumed that the symmetry group G of X acts
regularly on X, i.e., the action of G on X is transitive and
the stabilizer of every element of X in G is trivial. This facil-
itates the study of X and its colorings because a one-to-one
correspondence exists between G and X. This correspon-
dence is arrived at by taking a fixed element x € X and
using the assignment g — gx. Because of transitivity, X is
the G-orbit Gz = {gz : g € G}, of z. If G does not act regu-
larly on X, either G is not transitive on X or G is transitive
on X but Stabe(x) is not trivial. When G is not transitive
on X, the standard approach is to work on the distinct G-
orbits individually since G acts transitively on each G-orbit.
In this paper, we propose an approach in studying X and
its colorings when G acts transitively on X but Staba(x) is
not trivial. The idea is to write G as the product of sub-
groups A and B where B = Staba(x) and Staba(z) = ANB
is minimal, i.e., AN B is as close as possible to being the
trivial group. Using this idea, a method for determining up
to equivalence all transitive colorings of X where the color
group acts transitively on X is provided. In particular, all
transitive colorings (up to equivalence) of the set X where
X is either the set E of edges or the set F' of faces or the
set V' of vertices of a Platonic solid are listed.

The Platonic solids were chosen to illustrate transitive color-
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ings because they are fundamental geometric structures and
quite interesting to study. Plato himself showed his great in-
terest by associating the Platonic solids to the elements: the
cube to the earth; the tetrahedron to fire; the octahedron to
air and the icosahedron to water. Since there are only four
elements, Plato associated the dodecahedron to the heavens.

[1]

If a coloring is transitive, the associated color group H acts
transitively on the set of colors C, that is the H-orbit of each
color in C is C. However, there are two possible cases if a
coloring is transitive: H is either transitive on the set X or
H is not transitive on X. The case where H is not transitive
on X may be dealt with using a general framework which
was first presented by R. P. Felix in a talk in 1994 and sub-
sequently used by De Las Pefas, Felix and Laigo in [3] to
obtain perfect colorings of hyperbolic plane crystallographic
patterns. Perfect colorings were used by De las Pefias, Felix
and Provido in [4] to determine index 2 subgroups of hy-
perbolic groups. A continuation of that study, making use
of transitive colorings was done by De Las Penas, Felix and
Decena in [2] to determine index 3 and 4 subgroups of hy-
perbolic symmetry groups. The contribution of this study
is to present an easier way of obtaining transitive colorings.

2. PRELIMINARIES

Let X be a symmetrical structure and G its symmetry group.
If C ={ci,c2,...,cn} is a set of n colors, an onto function
c¢: X — Cis called a n-coloring of X. To each x € X is
assigned a color in C. The coloring determines a partition
P ={P,P,,...,P,} of X, where P; is the set of elements
of X assigned color ¢;. Equivalently, we may think of the
coloring as a partition of the set X. For a given coloring
of X, we obtain a colored structure C(X). The elements of
G which induce a permutation of the colors in the colored
structure C(X), form a subgroup H of G which we will refer
to as the color group determined by the coloring. If h € H
and ¢;,c; € C, we write he; = ¢; when each € X colored
¢; is sent to an element colored ¢;. This defines an action
of H on C which induces a homomorphism f from H to
the group of permutations of the set C. The kernel of f is
K, a normal subgroup of H and f(H) is isomorphic to the
quotient group H/K.

If S < G such that [G : S] = n and {g1,92,...,9n} is
a complete set of left coset representatives of S in G and
C = {ci,c2,...,¢cn} is a set of m colors, the assignment
g:St — ¢; is a perfect n-coloring of X. The set C of



Figure 1: A perfect coloring of the edges of the tetra-
hedron.

colors form a single orbit under the action of G on C' and
the coloring is transitive, i.e., for any two colors ¢; and ¢;
there is an element g € G such that gc; = ¢;. A trivial
transitive coloring is a coloring where either all elements
of X are assigned a single color or each element of X is
assigned a different color. Two colorings of the same sym-
metrical structure X are said to be equivalent if one can
be derived from the other by:[5]

(1) an isometry in G,

(2) abijection from C; to Ca (where Cy and Cs are the sets
of colors in the first and second colorings, respectively)
and

(3) a combination of (1) and (2).

In terms of partitions P and @ of X, the corresponding
colorings are said to be equivalent if there exists g € G such
that Q = gP.

In this work, the focus is on the situation where G acts
transitively on X but Stabg(z) is not trivial. The idea is to
write G as a product AB where B = Staba(z) and A is a
subgroup of G such that Staba(x) = AN B is minimal, i.e.,
as close as possible to being the trivial group. In particular,
given the factorization G = AB, all transitive colorings of X
where the color group H is transitive on X are determined.
More specifically, all transitive colorings of X where X is
either the set F of edges, or the set F' of faces, or the set V'
of vertices of a Platonic solid are listed.

As an illustration of perfect colorings, consider a regular
tetrahedron and take X to be the set F of its edges. The
symmetry group G of X is a group of type 43m = S;. A
perfect coloring of E is shown in Figure 1. This is an example
of a transitive coloring.

3. METHOD OF OBTAINING COLORINGS

In this section, we will provide a method for obtaining all
transitive colorings of X where the color group associated
with the coloring acts transitively on X. In the process of
obtaining such colorings, the perfect colorings may be ex-
tracted since these are just the transitive colorings where
H = G. The method presented will be based on the theo-
rems that follow.

THEOREM 1. Let H be a group which acts transitively on
a set X and x € X. Let H act transitively on a partition
P of X. Then P = {hSz : h € H} for some S such that
Staby (z) < S < H.

Proof :

Since H acts transitively on X, there is no loss of generality
in taking z € X and then fixing . Let P = {Xi, Xo,
..., Xn} be a partition of X and assume z € Xi. Let
S = Stabg(X1) ={h € H : hX; = X1}. Weshow X; = Sz,
i.e., X1 is the S-orbit {sz : s € S} of z. Now s € S and
z € X1 imply sz € sX; = X; and hence Sz C X;. On
the other hand, if y € X1, there is an element h € H such
that y = hx since H acts transitively on X. This implies
X1 =hX; and so h € S and X; C Sz. Equality of Sz and
X follows.

For each i = 1,...,n, the transitivity of the action of H on
P implies there exists h; € H such that X; = h; X7 = h;Sx.
It follows that P = {hSz : h € H}.

The fact that Stabm(z) < S is a consequence of the fact
that if h € H and hx = x, then hX; = X; and h € S. |

Assume now that the symmetry group G of X acts transi-
tively on X. Pick an element z € X and let B = Staba(z).
Write G as a product AB where A is a subgroup of G such
that Staba(x) = AN B is minimal, i.e., AN B is as close
as possible to the trivial group. Then the transitive col-
orings of X for which the color group acts transitively on
X are given by the partitions P = {aSz : a € A} where
Staba(xz) < S < A or partitions of the form {hS1z: h € H}
where S is a subgroup of G such that

(U a;S)r = S1x

iel
and H is the color group associated with the coloring corre-
sponding to the partition. In effect this result says that it
is enough to work inside the subgroup A. This follows from
the following two facts:

(1) A is transitive on X since X = Gz = ABz = Ax.

(2) If H is the color group and Staby(xz) < S < H then
an element hsx in hSx where h € H may be written
hsr = apbpasbsx where ap, as € A and by, bs € B.
Since G = AB = BA, byas = a'b’ for some a’ € A,
b € B. Then hsx = ana’b'bsx = apa’z where aj, and
a € A.

We summarize the above discussion in the following theo-
rem.

THEOREM 2. If G is a group which acts transitively on
a set X, B = Staba(x) is not trivial and G = AB where
A < G such that AN B is minimal then

(i) The subgroup A is transitive on X.



(i) The transitive partitions of X correspond to partitions
of the form {aSz : a € A} or {hS1z : h € H}, where
Stabe(x) < S < A, 51 is a subgroup of G such that

(U a;S)x = Six

il
and H is the color group associated with the coloring
which corresponds to the partition.

We now formulate the method for determining the transitive
colorings of X where the color group associated with the
coloring acts transitively on X, G acts transitively on X
and Stabg () is finite for z € X .

Fix z € X and write G = AB, where B = Stabgc(z) and A
is a subgroup of G such that Staba(z) = AN B is minimal.
There is always a factorization of G in this form, but it may
not be unique.

Determine all subgroups S of A such that Staba(z) C S.
For each subgroup S, form the S-orbit Sz of z. Next, get
a complete set Y of left coset representatives of S in A and
for each representative a € A, get the image aSxz of Sz
under a. Assign one color to each aSz, assigning distinct
colors to distinct images a1 St and a2Sz. To exhaust all
transitive colorings corresponding to partitions {aSz : a €
A}, let ' € A and form the orbit S(a’z). If S(a’z) is not
congruent to Sz, then get the images of S(a’z) under the
elements of Y and assign distinct colors to distinct images of
S(a'z). (Two S-orbits are congruent, if there is a one-to-
one correspondence of their elements and there is an element
of G which sends one orbit to the other.)

To determine the transitive colorings corresponding to the
partitions of the form {hSiz : h € H}, where S; is a sub-
group of G such that

(U a;S)x = Six,
iel

we assign a unique color to Siz. The images h;Siz and
hoS1x are assigned the same color if and only if h1.S1x =
thlx.

The color group of the transitive colorings derived above
contains the subgroup A, so it is transitive on the set X.

To illustrate the method, we determine up to equivalence all
transitive colorings of the set E of edges, the set F' of faces
and the set V' of vertices of a Platonic solid where the color
group H is transitive on E, F' and V.

For the tetrahedron, its symmetry group is G' = 43m = S,
the symmetric group on 4 letters.

(1) If e € E, then B = Stabc(e) is of type mm2.
(2) If f € F, then B = Staba(f) is of type 3m.

(3) If v € V, then B = Staba(v) is of type 3m.

We have the following factorizations for G:
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Figure 2: Transitive colorings of the edges and ver-
tices of the tetrahedron.

For (1), G = AB, where A is of type 23 & A4 and is
the group of rotations in G.

For (2) and (3), G = AB, where A is of type 222 2V
and is the Klein-4 group.

The stabilizer of an edge e in A Staba(e) is of type (2), thus
the possible subgroups S are S = 23, S = 222 and S = 2.
The subgroups S = 23 and S = 2 will give rise to trivial
colorings, so we only consider S = 222. If we choose e to be
the edge indicated in Figure 2.1, Se is the set of black edges
in Figure 2.2. A complete set of left coset representatives
of of S in 23 is {1,3,37'} thus applying the indicated 3-
fold rotation on Se gives us the coloring in Figure 2.3. This
coloring of the edges of the tetrahedron is perfect, i.e., the
color group is G, which is transitive on the set of edges.

We have similar situations for V' and F' so let us consider
only the derivation of transitive colorings of V. Staba(v) =
1 for v € V, thus the possible subgroups S of A = 222 that
we can use are S =222, S =2 and S = 1. Again, S = 222
and S = 1 will give us trivial colorings, so we will only
consider S = 2. If we choose v to be the vertex indicated
in Figure 2.4, the orbit Sv is the set of black vertices. A
complete set of left coset representatives of S in A = 222 are
{1,2}. Thus applying the indicated half-turn on Sv gives us
the coloring in Figure 2.5. The color group of this particular
coloring is the A = 222 which is transitive on V.

For the set E of edges, the set V' of vertices and the set I’
of faces of the cube, the symmetry group G is of type m3m
which is isomorphic to Sy x Ca.

(1) If e € E, then B = Staba(e) is of type mm2.

(2) If v € V, then B = Stabg(v) is of type 3m.

(3) If f € F, then B = Staba/(f) is of type 4m.

We have the following factorizations:



For (1), G = AB where A is of type 23 and is isomor-
phic to A4, the alternating group on 4 letters.

For (2), G = AB where A is of type 42 and is isomor-
phic to Dy, the dihedral group with 8 elements.

For (3), G = AB where A is of type 32 and is isomor-
phic to Ds, the dihedral group with 6 elements.

For the set E of edges, the set V' of vertices and the set F' of
faces of the dodecahedron, the symmetry group G is of type
53m = ‘45 X 02.

(1) If e € E, then B = Staba(e) is of type mm2.
(2) If v € V, then B = Staba(v) is of type 3m.
(3) If f € F, then B = Staba(f) is of type bm.

We have the following factorizations:

For (1), G = AB where A is of type 532 and is isomor-
phic to As, the alternating group on 5 letters.

For (2), G = AB where A is of type 532 and is isomor-
phic to As.

For (3), G = AB where A is of type 23 and is isomor-
phic to Ays.

The transitive colorings derived for the cube and the do-
decahedron will be presented in tables. The faces, vertices
and edges of the cube and the octahedron were numbered
as in Figure 3, Figure 4 and Figure 5 respectively, so the ta-
bles will contain the subgroup S used, the partition P and
whether the corresponding coloring is perfect. By duality of
the cube and the octahedron, corresponding colorings of the
octahedron may be derived from the colorings of the cube.
The duality of these two solids is very useful because the
one-to-one correspondence of the vertices and faces of these
solids would mean that we only need to color one of the two
sets and we can get the coloring of the other set. For the set
of edges, there is also a one-to-one correspondence from the
set of edges of the cube to the set of edges of the octahedron.

Similarly, because the dodecahedron and the icosahedron
are duals, corresponding colorings of the icosahedron may
be derived from the colorings of the dodecahedron. The
labeling of the faces, vertices and edges of the dodecahedron
and icosahedron are given in Figure 6, Figure 7 and Figure 8
respectively.

For the edges of the cube, we get the following non-trivial
transitive colorings/partitions of X:

S Partition P Color Group

222 {1,2,3,4},{5,7,9,11} {6,8,10,12} m3m
3 {1,9,10},{2,6,7},{3,11,12},{4,5,8} 13m
3 {1,811}, {2,5,12}, {3,6,9},{4,7,10} 432
2 {1,4},{2,3},{5,7},{6,10} { 8,12},{9,11} m3
2 {1,3},{2,4},{5,11},{6,12},{7,9},{8,10} m3m
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Figure 3: The labeling of the vertices of the cube
and the faces of the octahedron where {1,2,3,4} are
on top and {5,6,7,8} are at the bottom.
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Figure 4: The labeling of the edges of the cube and
octahedron where {1,4,5,9} are in front, {6,8,10,12}
are at the sides and {2,3,7,11} are at the back.

For the vertices of the cube, we get the following non-trivial
transitive colorings/partitions of X:

S Partition P Color Group
4 {1,2,3,4},{5,6,7,8} 4/mmm
222 {1,3,6,8},{2,4,5,7} m3m
222 {1,3,5,7},{2,4,6,8} 4/mmm
2 {1,3},{2,4},{5,7},{6,8} 4/mmm
> {USH{26L{37}44, 8} 4/mmm
2 {1,7},{2,8},{3,5},{4, 6} m3m
is
INRE =\
21 i 4 1
;" 6

Figure 5: The labeling of the faces of the cube and
the vertices of the octahedron where {1} is in front,
{2} is on the left, {3} is at the back, {4} is on the
right, {5} is on top and {6} is at the bottom.

For the faces of the cube, we get the following non-trivial
transitive colorings/partitions of X:

Partition P Color Group
{1,5,4}, {2,3,6} 3m
{1,3},{2,4},{5, 6} m3m
{1,2}, {3,5},{4,6} 32
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.
(]

[V ]
N
=
th

Figure 6: The labeling of the faces of the dodecahe-
dron and the vertices of the icosahedron where {11}
is on top, {1,2,3,4,5} are on the layer next to the
top, {6,7,8,9,10} are on the layer before the bottom
and {12} is at the bottom.

For the faces of the dodecahedron, we get the following non-
trivial transitive colorings/partitions of X:

S Partition Color Group

222 {1,9,11,12},{2,5,8,10},{3,4,6,7} m3
3 {1,5,6},{2,3,11},{4,9,10},{7,8,12} 23

3 {1,4,8},{2,6,9}.{3,5,12},{7,10,11} 23

2 {1,12},{2,5},{3,10},{4,6},{7,9}.{8,11} 23

2 {1,9},{2.10},{3,6},{4,7}.{5.8},{11,12} 53m
2 {172}7{37]-]-}7{475}7{6712}7{778}7{97]-0} m3

Figure 7: The labeling of the vertices of the do-
decahedron and the faces of the icosahedron where
{1,2,3,4,5} are on top, {6,7,8,9,10,11,12,13,14, 15} are
in the middle and {16, 17,18, 19,20} are at the bottom.

For the vertices of the dodecahedron, we get the following
non-trivial transitive colorings/partitions of X:

S Partition

23 {1,11,14,17},{2,6,13,18},{3,8,15,19}
{4,7,10,20},{5,9,12,16} 532

32 {1,20},{2,16},{3,17},{4,18},{5,19}
{6,11},{7,12},{8,13},{9,14},{10,15} 53m

Color Group

For the edges of the dodecahedron, we get the following non-
trivial transitive colorings/partitions:
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Figure 8: The labeling of the edges of the do-
decahedron and the icosahedron where {1,2 3,4,5}
are on top, {6,7,8,9,10} on the layer next to the
top, {11,12,13,14,15,16,17,18,19,20} are in the mid-
dle, {21,22,23,24,25} are at the layer before the bot-
tom and {26,27,28,29,30} are at the bottom.

S Partition P

23 {1,9,11,16,23,26},{2,10,13,18,24,27},
{3,6,15,20,25,28} {4,7,12,17,21,29},
{5,8,14,19,22,30} 53m

52 {1,8,12,2527}, {2,9,14,21,28},
{3,10,16,22,29},{4,6,18,23,30},
{5,7,20,24,26},{11,13,15,17,19} 532

32 {1,19,29}, {2,11,30},{3,13,26}, {4,15,27},
{5,17,28},{6,16,21},{7,18,22},
{8,20,23}, {9,12,24}, {10,14,25} 532

222 {126}, {2.27}, {3,28}, {4,290}, {5,30},
{6,25},{7,21},{8,22},{9,23},{10,24},
{11,16},{12,17},{13,18},{14,19},{15,20}  B3m

4. COMMENTS ON THE LITERATURE

Ce®Ce
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Figure 9: Transitive colorings of the faces of the
pyritohedron.

An enumeration of all perfect colorings of the face-transitive
polyhedra (a class which includes the simple crystal forms)
can be found in [8]. For example, the pyritohedron has one
3-coloring (S = mmm) and three 6-colorings (two with S =
mm?2 and one with S = 2/m). The 12-coloring (S = m) is
a trivial coloring since the pyritohedron has twelve faces.

Using the method we have presented in the previous section,
we factor the symmetry group G of the pyritohedron. Since

Color Group



G is of type m3 = Ay x Co and B = Staba/(f) is of type m,
the group G = m3 may be factored as G = AB, where A
is of type 23 & A4 and Staba(f) = AN B = {1}. We now
consider all subgroups S of A. Setting S = A or {1} gives
trivial colorings so we only consider the normal subgroup
222, the four subgroups of type 3 (two are enough because
of conjugacy in A) and the three subgroups of type 2. The
S-orbits of the chosen face f is shown in Figures 9a (for
S = 222); cand e (for S = 3); g, i and k (for S = 3) and
Figures 9b, d, f, h, j, and 1 show the corresponding colorings.

The perfect colorings of the pyritohedron in the list in [7]
may be seen in Figures 9b, h, j and 1. Only the 4-coloring
is not perfect. To determine the color group H, note that
H contains A. Since B is of type m, the coloring will be
perfect if and only if m permutes the colors. But m does
not. Then H = A which is of type 23.

[
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Figure 10: Labels of the faces of the pyritohedron
where {1,2,3,4,5,11} are in front and {6,7,8,9, 10,12}
are at the back.

The transitive partitions of the faces of the pyritohedron are
given in the following table. The labeling of the faces of the
pyritohedron is in Figure 10.

Partition Color Group
22 {1,9,11,12},{2,5,8,10},{3,4,6,7} m3

{1,5,6},{2,3,11},{4,9,10},{7,8,12} 23

{1,4,8},{2,6,9}.{3,5,12},{7,10,11} 23

{1,11},{2,8},{3,4},{5,10},{6,7},{9,12} m3
{1,91,{2,10},{3,6,{4,7},{5,8}.{11,12} m3
{1,12},{2,5},{3,7}.,{4,6},{8,10},{9,11} m3

NN W W N W

S. CONCLUSION

In this paper, a method of obtaining transitive colorings was
introduced. In this method the transitive colorings of a sym-
metrical object X were obtained by factoring the symmetry
group G of the object as G = AB where B = Stabg(x) for
some ¢ € X such that AN B is minimal. The following are
the steps used to obtain the transitive colorings:

1. Fix ¢ € X and write G = AB where B = Staba(z)
such that AN B is minimal.

2. Determine all subgroups S of A such that Staba(x) C
S.

3. For each subgroup S do the following:

(a) Form the S-orbit Sz of x.

(b) Get a complete set Y of left coset representatives
of Sin A.

(c) For each a € Y, get the image aSz of Sz under a

(d) Assign one color to each aSz, assigning distinct
colors to distinct images a1 Sx and a2Sz.

Check if there is an element a’ € A such that S(a'z)
is not congruent to Sz. If there is, repeat steps (a) to
(d) for this S-orbit.

The color group of the transitive coloring is at least the
subgroup A.

The factorization of a group G may not be unique. For in-
stance, if we take the set V of vertices of the cube, Stabe (v) =
3m for v € V.. The following are the possible factorizations
of G =m3m:

m3m = (42)(3m)
m3m = (4/m)(3m)

m3m = (42m)(3m).

The subgroups 42, 4/m and 42m are the subgroups of m3m
of index 6 which are transitive on V.

The same situation is true for the {3,6}-tiling of the Eu-
clidean plane (See Figure 11). The symmetry group G =
p6m of the tiling may be factored in 2 ways: p6m = (p2)(3m)
and p6m = (p3m1)(3m). The groups p2 and p3ml are not
conjugates in G and for both cases, A N B is trivial.

For future work, we plan to implement a computer algorithm
based on the algorithm presented in this paper to determine
transitive colorings of 2-dimensional tilings of the Euclidean
plane. In particular, the algorithmcan be used to determine
transitive n-colorings of the (3,6)-tiling in Figure 11.

Figure 11: Transitive 2-colorings of the {3,6}-tiling
with A = p3ml.
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