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ABSTRACT

Sevilla Carpets are useful tools for analyzing time and
space complexity of computations over P systems. In
this paper, we explore the role of Sevilla Carpets, this
time, in analyzing communication resources. In par-
ticular, we relate dynamical parameters for commu-
nication complexity, defined in a previous literature,
in terms of Sevilla Carpets. The use of these carpets
are evaluated by investigating computations over EC
P systems with Energy solving problems.

1. INTRODUCTION

In theoretical computer science, Membrane Comput-
ing [7] is an unconventional computing paradigm which
aims to provide a framework for designing compart-
mentalized computations inspired by the architecture
of living cells. The models used for this paradigm are
called P systems, introduced by Gheorghe Piun in
1998 [3]. The main ingredient of P systems is a col-
lection of membranes that function as delimiters and
passageways of objects. Over the years, different types
of P systems have been proposed and evaluation of the
time [5] and space [6] complexity of computations over
these models are being standardized.

However, despite P systems being massively parallel
and distributed computing devices, the development
of a framework for analyzing communication complex-
ity in this domain has not yet been attained. In 2003,
this issue has been one of the open problems men-
tioned in [4]. As a preliminary work on this direction,
[1] has provided definition of dynamical parameters
that can be used to measure communication complex-
ity. These measures were investigated in a new variant
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called EC P systems with Energy (ECPe) and is also
expected to be extended to other variants of P sys-
tems. The parameters enumerated involves counting
the number of communication steps, the number of
communication rules and the total amount of energy
utilized per communication.

In order to study the communication complexity of
computations solving a problem, [1] also define an
ECPe that solves the equality problem. The equal-
ity problem involves comparing a set of values, and
checking if the values are all equal. Authors of the pa-
per conjecture that for a successful computation, the
maximum number of communication steps is directly
proportional to the number of values being compared.
Such claim is asked to be further evaluated by con-
sidering the number of communication rules. Sevilla
Carpets have been mentioned as an aid in validating
these claim.

Sevilla Carpets, as introduced in [2], are means to
measure descriptional complexity of computations over
P systems. They are inspired by the Szilard Language
employed for evaluating time and space resources used
for types of grammars mentioned in the Chomsky Hi-
erarchy. Sevilla Carpet also serves as a tool for vi-
sualizing (as in [12]) computations in P systems. By
calculating information as in weight, surface, height
and average weight, quantitative information can be
deduced giving insights on the resources used for the
computation.

There are several types of Sevilla Carpets depending
on the objective of its user. In this paper, we would
like to address the issue mentioned in [1] which in-
volves establishing connection between dynamical pa-
rameters for communication and Sevilla Carpets in or-
der to evaluate goodness of communication over ECPe.
We shall explore the communication effort for the ex-
ample ECPe of the paper, used to solve the equality
problem. Furthermore, we look at two ECPe solutions
solving the same problem and, using Sevilla Carpets,
compare the quality of communication in both solu-
tions.

The outline of this paper proceeds as follows: in Sec-
tion 2, we establish basic notations and define EC P



systems with Energy, dynamical measures for com-
munication complexity in ECPe and the solution to
the equality problem. The main work is presented in
Section 3. Conclusions are drawn out in Section 4.

2. DEFINITION

Before we define ECPe, we first give a brief overview of
how we compute using P systems. We refer to [8] for
a more detailed description of the basics of membrane
computing.

As mentioned in Section 1, P systems have a set of
membranes. The regions delimited by these mem-
branes serve as placeholders of a multiset of objects.
Aside from being transported (through transport rules)
these objects may evolve through multiset-rewriting
rules called evolution rules. When an object is in-
volved in an evolution rule, we say that this object is
‘consumed’. Rules in P systems are usually applied
in a nondeterministic and maximally parallel manner.
The nondeterminism is manifested when several rules
can be applied to a single object. Since there can only
be one rule consuming this object, the system picks
out one among all applicable rules and evolves the ob-
ject through this chosen one. Maximal parallelism, on
the other hand, is a property of rule application since,
at a single unit of time, everything that can evolve
should evolve.

2.1 EC P systems with Energy (ECPe)

EC P systems, as introduced in [9], are combinations
of two variants of P systems called Transition P sys-
tems [7] and P systems with Symport and Antiport
[10]. A new variant of these model have been in-
troduced in [1] to evaluate communication that are
dependent on some energy produced from evolution
rules. To do this, a special object e is introduced to
the system to represent a quantum of energy. How-
ever, in the construct definition shown below, object
e is not part of the alphabet of objects, because it has
a different role in the system.

We use the definition for EC P system with Energy
(ECPe) from [1], as follows,

DEFINITION 1. An EC P system with Energy is a

construct of the form
M= (O,e,,u,wl, sy W, R17R17 s 7R’VYL7R'/,n7i()ut)

where:

(i) m pertains to the total number of membranes;
(ii) O is the alphabet of objects;

(iii) p is the membrane structure which can be de-
noted by a set of paired square brackets with
labels;

(iv) wi, ..., wn, are strings from O* denoting the mul-
tiset of objects present in the regions bounded
by membranes;

I

(v) Ri,..., R are a set of evolution rules associated
with each region of membranes in u;

e An evolution rule is of the form a — v
where a € O, v € (OU {e})*. In the event
that this type of rule is applied, the ob-
ject a transforms into a multiset of objects
v, in the next time step. Through evolu-
tion rules, object e can be produced, but e
should never be in the initial configuration
and object e is not allowed to evolve.

%, ..., R, are sets of communication rules asso-
ciated with each membrane in p; A communica-
tion rule can either be a symport or an antiport
rule:

(vi)

e A symport rule can be of the form (ae’,in),
(ae*, out), where a € O,i > 1. By using
this rule, ¢ copy of e objects are consumed
to transport object a inside (denoted by
in) or outside (denoted by out) the mem-
brane where the rule is defined. To con-
sume copies of object e means that upon
the completion of the transportation of ob-
ject involved in the rule, the occurrences of
e are lost, they do not pass from a region
to another one. We say that ¢ is the energy
of this rule.

e An antiport rule is of the form (ae’,out;
be’,in) where a,b € O and i,j > 1; By
using this rule, we know that there exist an
object a in the region immediately outside
the membrane where the rule is declared,
and an object b inside the region bounded
by the membrane. In the application of this
rule, we swap object a and object b using
i and j copies of object e in the different
regions, respectively. We, then, say that
the number i + j is the energy of this rule.

Note that no communication can be applied with-
out the utilization of object e.

(vil) iout € {0,1,...,m} is the output membrane. If
iout = 0, this means the environment shall be
the placeholder of the output.

A computation is successful when there exists a set of
valid transitions from the initial configuration leading
to a halting state; this occurs when the system reaches
a configuration wherein none of the rules can be ap-
plied. If there is no halting configuration—that is, if
the system does not halt—computation fails, because
the system did not produce any output. Output can
either be in the form of objects sent outside the skin
or objects sent into an output membrane.

2.1.1 Dynamical Communication Complexity
Measures for ECPe

A computation is a set of transitions, denoted: 0 :
Co — C1 — ... — C,, where C; denotes the configura-
tion at the i*" step, i.e. the membrane structure and



objects of each membrane in the i*" step. The nota-
tion C; — C;y1 represents a transition where a set of
rules is used in order to transform configuration of a P
system at step ¢ to another configuration at step ¢+ 1.
Based on [1], the dynamical communication complex-
ity parameters associated with a given computation
for ECPe are:

1 if a communication
rule is used in this
transition,

0 otherwise

ComN(CZ — Ci+1) =

ComR(C; => Cj11) = the number of communi-
cation rules used in this
transition,

ComW (C; = Cij41) = the total energy of the

communication rules used

in this transition.

These parameters are related in that ComN < ComR <
ComW . They can be extended in the natural way to
results of computations, systems, and sets of numbers.
We let N(II) be the set of numbers computed by the
system. For ComX € {ComN,ComR, ComW}, the
following is defined:

h—1
ComX(8) = Y ComX(Ci== Ciy1),
=0
f01'5:00:01:...ﬁ0h
is a halting computation,
ComX(n,II) = min{ComX(9) |
60:Co—=0C = ...—= ()
in IT with the result n},
ComX(Il) = max{ComX(n,II) | n € N(II)},
ComX(Q) = min{ComX(II)|Q = N(II)}.

2.1.2 A Solution to the Equality Problem in
ECPe

The Equality Problem

The equality problem, denoted Qeqx, is a decision
problem that can be represented by the pair (Igeq,,
OQeq,) Where Igeq, C N* corresponding to an in-
stance of Qeq and ©qeq, is a total boolean function
over Igeq,. Given Igeq, = (n1,n2,..., k),

OQeq, (Igeq,) = true iff ny =ne = ... =ny

The equality problem is solved in [1] using ECPe with
input membrane, denoted II(k). The input membrane
refers to the membrane to where the coded input in-
stance is placed. We define first the ECPe that solves
the problem. Afterwards, we give the representation
(or encoding), denoted cod(Iqeq, ), of each instance of
the problem to be placed in an input membrane.

H(k) = ({a17a27 ceey Ay d» #}7 €, [1 [2]2]17
d? >\a R1>®7 RQ, Rl?)
where
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Figure 1: Graphical representation of II(k)
solving Qeqy. Adapted from [1].

Ry —{a1—>a()ea<)—>a(7+1)e}f0r1<j<k—1
U{ai —aVe,a?” —a ™y for1<j<i—2
2<i<k
U{al ™ = #,# - #}for2<i<k
Ry ={d— d}
Ry = {(a; Ve in), (de,in)} for 2 <i <k

Given instance Iqgeq,, cod(Igeq,) = {ai as? ... ap*}.
Shown in Figure 1 is the graphical illustration for
TI(k). A successful computation proceeds as follows:
In the initial step, all object a; evolves through rules
a; — a(l) 2<i<k). Simultaneously, object a; are
evolved through rules a1 — a Je. The objects e pro-
duced in the evolution will be used in the next step
in order to transport objects a( ) in region 2. While
copies of object a( )

left in region 1 evolves through rules aj
@ _ (J+1)

to transport a( ). At the same time, new e objects
are produced in region 1. The computation goes on
until all aW“I> objects are transported to region 2,
2 <3 < k Notice that we are actually compar-
ing ni1 to all other n;s. Thus, in every communica-
tion step, all object e must be consumed using rules
(aﬁfle, in). Otherwise, object d will be communicated
to region 2 leading the system to a nonhalting com-
. . . (i—1)
putation. Moreover, in case any object a; was not
transferred, this object will produce a trap symbol #
through rules a(’ RN # that will lead the system to
a nonhalting state.

are being transported, objects
(J) §j+1) e

and a; . The new copies of e will be used

A computation will only halt if ©qeq, (Igeq,,) = true.
Otherwise, the system computes forever. It can be
observed that given k compared values, the system
needs k — 1 communication steps in order to attain a
successful computation. Formally, if we denote the
family of languages computed using k& communica-
tion steps as FComN(k), the conjecture states that
Qeqr € FComN(k — 1). Paper [1] conjectures that
for ECPe, the minimum number of steps needed to
compute for k is k — 1, i.e. there doesn’t exist an



ECPe solution that uses k — 2 communication steps in
solving an instance of Qeqy.

2.2 Sevilla Carpets

Sevilla Carpets are tables that keep track of informa-
tion for a halting computation over a P system. Each
of its column correspond to a time step, while the rows
represent either membrane or rules depending on the
type of carpet used. In [2], several types of Sevilla
Carpets have been specified:

(i) Tables where cell values indicate, in each time
unit and for each membrane, whether at least
one rule was used in its region or not.

(ii) Tables where cell values indicate, in each time
unit and for each rule, whether it was used or
not.

(iii) Tables where cell values indicate the number of
applications of each rule in each time unit; this is
0 when the rule is not used and can be arbitrarily
large when the rules are dealing with arbitrarily
large multisets.

(iv) Tables where cell values are categorized to three
cases: a rule cannot be used, a rule can be used
but it is not because of the nondeterministic
choice and a rule is actually used.

(v) Tables for the case where there is assignment of
cost for each and cell values correspond to the
number of times a rule is used multiplied to its
cost.

As can be observed, the types of Sevilla Carpets are
itemized in increasing amount of given information.
Below are some helpful information from [2] and [11]
that are used to describe the amount of time and space
resources for each computation.

e Weight - the total number of applications of
rules along the computation, represented by the
sum of all the elements in the carpet. For Sevilla
Carpet (type v), weight measures the total cost
of the computation.

e Surface - multiplication of the number of steps
by the total number of rules used. It can be con-
sidered as the potential size of the computation.

e Height - maximum number of applications of
any rule in a step along the computation. Graph-
ically, it represents the highest point reached by
the Sevilla Carpet.

e Average Weight - value computed by dividing
the weight to the surface of the Sevilla Carpet.
This concept gives a quantitative value for evalu-
ating how massive parallelism has been exploited
on a computation.

Membrane Rules Stepl Step2 Step3
a;->a,’e n
a;’ -»a;"e - n
a; -» a.'e n - -
1 a,’ -»a,"e - ]
a3 -»ase n 4 ”
a;'-=a;"e - n
a;" -»a;""e
(de, in) - 0
(az'e, in) - n -
2 (as"e, in) 5 g n
d-=d

Figure 2: Sevilla Carpet type (iv) for a halting
computation of TI(3)

Shown in Figure 2 is the carpet for a halting computa-
tion of II(k) when k = 3. Note that, rules that lead to
a nonhalting configuration will never be applied since
Sevilla, Carpets are only defined for halting computa-
tion. Moreover, carpets only give details about behav-
iors of computations. It can not be used to compare
the efficiency of two P system models in general.

3. USING SEVILLA CARPETS FOR
COMMUNICATION COMPLEXITY
ANALYSIS

Given the description of Sevilla Carpets, we can con-
struct such carpet (of all enumerated types) for ECPe.
We let its corresponding carpet be denoted S. Given
an ECPe’s definition:

Im= (0767,“71017"’7wm7R17R/17~”7Rm7R'/m7jOUt)7

the rows of S will be the |J,; B; U R}. Given halting
computation: 0 : Cp — C; — ... — C,, where C;
denotes the configuration at the i*” step, carpet S will
have n columns, each representing these steps. The
elements of S will be denoted S[< rule >, < step >].

In order to analyze communication efforts in ECPe, we
need to define first a mapping in carpet S that cor-
responds to the dynamical communication complexity
parameters given in Section 2.1.1. Let the 7}, € R
be the {"" rule (1 <1 < |R}|) in R, we can formally
define parameters ComN and ComR as given below:
1, if 3} such that
S[rlyi+1]>0
0, otherwise

CO’TTLN(01 — CZ'+1) =

ComR(C; — Cit1) =|R'| where
R, = {7‘;1 | S[r;],Z‘F ].] > O}.

For ComN, we know that the presence of a communi-
cation rule r%; with S[r};,i+1] > 0 means that rule r,
is applied to C; leading to C;t1. Thus, the existence
of ré-l assures that at least one communication rule



is applied in the transition C; — C;y1. For ComR,
since all rules in R are applied in C; leading to C;.11,
the cardinality of the set R’ represent the number of
communication rules used in transition C; — Cjy1.

If carpet S is of type (v) where the cost pertains to
the energy consumed in a communication rule, and
the cost of an evolution rule is zero:

ComW(CZ — C¢+1) = EVr;lS[r}lvi + ].]

This is true since only the rules rj; with S[rj;,i +
1] > 0 are applied in transition C; — Ciy1. Given
that S[r};,i + 1] denotes the total quanta of energy
upon the application of rule 'r;- 1, the summation of all
S[rj;, i+ 1] gives us the total quanta of energy upon
the application of all rules.

Inspired by the auxiliary information achieved from
carpets to measure descriptive complexity, we can fur-
ther derive values that may aid in analyzing the qual-
ity of communication over ECPe computations. Tak-
ing into account the number of communication steps
and rule applications, we can also measure

e Communication Surface - the total number
of communication steps multiplied to the total
number of communication rules. This static pa-
rameter can be regarded as the potential size of
communication, where we can think of the to-
tal number of communication rules as the size of
the communication protocol defined over a spe-
cific ECPe.

e Communication Height - pertains to the cost
of the most expensive communication step.

e Average Communication Weight - gives a
ratio between the total number of rule applica-
tion (Communication Weight) and the potential
size of the communication (Communication Sur-
face). This value refers to the average cost of a
computation taking into account the potential
size of the communication.

In the next subsection, we show how dynamical com-
munication parameters and the additional information
enumerated above can be derived using Sevilla Car-
pets. Our objective is to evaluate communication on
the ECPe solving the equality problem.

3.1 Sevilla Carpet for the Equality Prob-

lem solved in ECPe

Shown in Figure 3 are the Sevilla Carpets type (iv) for
computations solving equality problem having 2 and
3 compared values, respectively. The figures highlight
the parts considered to measure communication. We
assume here that all compared values are equal, so

Membrane Rules Stepl Step2
a, -» a,’e n
1 g ->a'e n

a:' ->a;"e - 0

(de, in) - n

2 {az'e, in)
d->d

Membrane Rules Stepl Step2 Step3
a, -ra,’e n

a->a"e - n
a; - a;'e n
1 a;, >»a’e = 0
a;-raje n

3, -ra;’e - n

2 > ae =
{de, in) - 1]
(a:'e, in) - n

(8s'"e, in) - - n
d-»d

Figure 3: Sevilla Carpet type (iv) for a halting
computation of II(2) (above) and II(3) (below).
The highlighted rules and steps are the rules
and steps considered to find ComX values and
other information

nf) ni) k)
ComN 1 2 k-1
ComR 1 2 k1
ComW n n k-Ljn
C. Surface 2 b {k-1]k
C. Height n n n
Ave.ComW nf2 nf3 n/k

Figure 4: Communication complexity parame-
ters and other communication information for
ECPe solving the equality problem.



that the system will always halt, and we let their value
be n.

It was mentioned in Section 1 that carpets are also
useful tools to achieve a visualization that represents
the behavior of a P system computation. Thus, us-
ing carpets as in Figure 3 to visualize computation
for different input values, we can observe the behavior
of communication of the previously defined ECPe for
the equality problem. From the tables alone, it can
already be shown that apart from the first step, the
succeeding steps all involves application of communi-
cation rules. Also, at each step, only one communica-
tion rule is active.

Presented in Figure 4 are the evaluation parameters
mentioned in Section 3 for the ECPe solving the equal-
ity problem. From the figure, it can be shown that
while Qeqr, € FComN (k—1), also, Qeqi, € FComR(k—
1) where FComR denotes the family of languages
solved in ECPe having ComR equal to kK — 1. This
direct proportionality with respect to the number of
compared values are also reflected on communication
weight and surface, with a decreasing average commu-
nication weight as k increases. Thus, the conjecture
over the number of communication of steps seems true
as well for other computed values. If the conjecture
on the number of communication steps is true, then
this means the value of ComR given in the table is
already optimal since ComN < ComR.

3.2 Comparing Communication over dif-
ferent ECPe

We present in here two solutions in ECPe solving
the problem: given values n and k, 1 < n,k and
n > k, is n divisible by k? We denote this problem
as Qgivnk. For both solutions, we define the coding
cod(Ig,,, ..) = {a™,c*} and we let the input mem-
brane be the skin. Our objective is to use carpets
to gain insight on the performance of communication
over the two solutions.

The first solution is defined as:

Hl(”) k) = ({CL, c, C(l)a -~-ac(%)a #}a €, [1[2]2]17
A A, R, A, Re, RY)
where

Ri={c—cWe, e — e 1 <i< 2}

Ro {C(L’;) i #7 # - #}
Rh = {(ae,in), (c'%e,in)}

The first solution solves by repeatedly evolving copies
of object ¢ through rules ¢ — ce and ¢® — cte
(1 <i < %) and using the object e produced to con-
tinuously transfer k copies of a in membrane 2 via rule
(ae,in). If n is not divisible by k, the last transfer step
will not be able to consume all object e. These object
e will be used to communicate some object ¢ to mem-
brane 2. This will eventually lead to a production of
the trap symbol # resulting to a nonhalting state due

Solutionl | Solution2
ComN n/k 1
ComR n/k 1
ComW n n
C.Surface 2n/k 2
C.Height k n/k
Ave.ComW k/2 n/2

Figure 5: Communication Complexity parame-
ters and other communication information for
ECPe solving the divisibility problem. Solu-
tion 1 and Solution 2 corresponds to IIi(n,k)
and II2(n, k) respectively.

to the activation of rule # — #.
The second solution is defined as:

Hz(’ﬂ, k) = ({a’v ¢, d, #}7 €, [1 [2]2]17
{d}, X\, R1, \, R, RY)

Ri={a— ¢}
Ry ={d— #,# — #}
Ry = {(c(l)e%,in), (de,in)}

The second solution works by producing n copies of
object e via rule a — e. Each object ¢ will then be
communicated to membrane 2 using % copies of ob-
ject e. If n is not divisible by &, there will be extra
copies of object e which will be used to transfer object
d to membrane 2. In the event that object d is com-
municated and it evolves to the trap symbol #, the
rule # — # will always be applied, thus the system
will never halt.

Shown in Figure 5 is the computed communication in-
formation derived from the Sevilla Carpets of 111 (n, k)
and Ilz(n, k). From the table, we can see that basing
on the dynamical communication parameters, it seems
like Solution 2 is better than the first solution. This
is likely the case since it only takes one step and one
communication rule for the second solution to solve
the problem. On the other hand, the value of ComN
and ComR for the first solution are dependent on the
input values. Moreoever, if we are going to check the
average communication weight of both solutions, the
table relays that Solution 2 better capitalizes the par-
allelism inherent in P systems.

4. CONCLUSION

In this paper, we have shown that Sevilla Carpets may
be useful in evaluating the communication effort in EC
P systems with Energy. After defining the dynamical
complexity parameters in terms of Sevilla Carpets, we
have shown a sample evaluation of communication for
EC P systems with Energy solving the equality prob-
lem. While we have not yet shown that the hierarchy
conjectured in [1] can also be true for communication



rules, we have shown that Sevilla Carpets give insight
on communication which may be of help to accom-
plishing such work.

The use of Sevilla Carpet for analyzing communica-
tion provides a means to represent behavior of com-
munication visually. Moreover, given the dynamical
communication parameters and the additional com-
puted information describing the behavior of commu-
nication, carpets are promising tools to compare qual-
ity of communication of computations over different
ECPe solving the same problem.

The use of Sevilla Carpet for communication anal-
ysis may also be extended to other types of P sys-
tems. We recommend the exploration of such work to
employ Sevilla Carpets for comparing communication
over different P system models.
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