A Nomenclature Scheme for Permutations of the Set of
Natural Numbers

Michael Daniel V. Samson
Division of Mathematical Sciences
School of Physical and Mathematical Sciences
College of Science
Nanyang Technical University

michael.daniel.samson@gmail.com

ABSTRACT

The set of nonnegative integers W can be mapped bijec-
tively to the finitary permutation group S, on the set of
natural numbers, as shown using the factoradic expansion
of an integer and, broadly interpreting Knuth, any exhaus-
tive permutation-generation algorithm. One such mapping
using minimal composition of transpositions is presented,
and this mapping is used to define a nomenclature scheme.
This scheme is used with regard to representation and ap-
plication of permutations within the structure of common
computer-scientific uses, while determining other computa-
tional uses. The mapping can also be extended to determine
a nomenclature scheme for the entire permutation group S
on the set of natural numbers.

1. OVERVIEW

This paper clarifies and continues work done in an ear-
lier paper [9] concerning the GBS exhaustive permutation-
generation algorithm (similar to an algorithm described in
[8]) and the nomenclature scheme encouraged from factorad-
ic expansion (cited as Cantor expansion previously, from [5],
though the latter is synonymous with general multi-radix
number systems) and by Knuth’s general permutation-ge-
neration algorithm using Sims tables in [4]. Definitions and
a summary of properties of GBS nomenclature are in Sec-
tions 2 and 3; some computer-scientific applications of GBS
nomenclature are discussed in Section 4; finally, further ap-
plications of GBS nomenclature are given in Section 5.

2. DEFINITIONS

To avoid potential confusion, this paper uses the term whole
number (n € W) to denote a nonnegative integer, and the
term natural number (n € N) to denote a positive integer,
ie. 0€W,0¢N.

A notation for permutation composition:

Convention 2.1.

n

Hai = 0102 - -0y, where o; € S, a permutation group,
=1

which for this text is evaluated from left-to-right.

The definition given in [5] for a factoradic expansion can be
modified thus:

Definition 2.2. The nth-order factoradic set is F,, =
112 _,Zm and the (infinite) factoradic set is Foo = F =

m=2

I1os_; Zm. Their elements are integer sequences {a;} where

0<a;<i.

Note 2.3. F,, is embedded in F,, m <n as such:

{a1,...,am-1} €Fp, — {a1,...,am-1,0,...,0} €F,
— {ai,...,am-1,0,...} €F

Definition 2.4. The factoradic expansion of © € Z is
®(z), where

n—1
O Ly —Fnoand ®(2) = {a:} <=z = a;-il.
i=1

Knuth [3] shows that is a bijection, and that the extension
® :'W — F is an injection; ®(W) contains only sequences
with a finite number of nonzero terms.

According to Knuth [4], if A represents an exhaustive permu-
tation-generation algorithm (usually applied to a string of

length n), the use of the Sims table specific to A induces
a mapping A : F,, — S,,. Without ambiguity in notation,
pre-compose ¢ to this mapping to define the mapping A :
Zny — Sy, where A(z) = A(®(x)):

Example 2.5. A(7) = A(®(7)) = A({1,0,1})

The composition A(z), x € W is the mapping in use every-
where in this text except in Section 5.

Using the Sims table defined in [9],

Definition 2.6. The GBS algorithm induces the mapping

1<i<n
GBS : F,, — S,, where GBS({a;}) = H (a; i+1).

a;>0
Likewise, GBS(x) is defined for x € Zy.
Example 2.7. GBS(17) = (1 2)(2 3)(2 4)=(1 3 4 2).
Example 2.8. GBS(153) = [[°_,(1 i) =(1 2 3 4 5 6).

A family of mappings ¢ : Z, — S, that can be extended
to ¢ : W — S can be described as having the following

property:

Definition 2.9. The mappings ¢ : Zn1 — S, telescope
if, for x € W, for all n such that x < n!, ¢(x) remains the
same.

Note 2.10. GBS telescopes; Lehmer codes [6], which uses
factoradic expansion as an inversion table, do not telescope,
but this formulation does not follow Knuth’s.

3. GBS NOMENCLATURE FOR s,

The notation for finitary permutations over the set of natu-
ral numbers (in the parlance of [1]; in that text denoted as
FS(N)) given by an exhaustive permutation-generation al-
gorithm through the use of factoradic expansion—outlined
in [4] and described for the GBS algorithm in [9]—allows
for a compact reference to the action of permutation over
a sequence of unique elements. Such alternative nomencla-
ture has the computational advatages of compression and
exhaustiveness over more commonly-used notation, such as
two-line—that is, a factoradic expansion will always corre-
spond to a permutation, while an array of numbers within
a range must be verified to each have a unique value before
it can be validated as a permutation.

As proven in [9]:

Theorem 3.1. Forn € N, GBS : Zn1 — S, is bijective.

Lemma 3.2. Let z,y € W such that GBS(z) and GBS(y)
are disjoint. Then the composition of GBS(z) and GBS(y) is
GBS(z +).

Theorem 3.3. Fork € W, the minimum number of trans-
positions that can compose GBS(k) is the number of nonzero
terms of ®(k).

Theorem 3.4. The average number of minimum trans-
positions composing a permutation in S, isn — H, =n —

1

In the computational implementation found in [9], {C;} €
F, is stored in a numeric array a[1...n] such that a[i+ 1]
stores the value of C; and a[1] is set to zero. This numeric
array also determines an ordered tree as such:

Definition 3.5. Let k € Zn and ®(k) = {C;} stored in
numeric array all...n]. The tree determined by k, T(k),
has n + 1 nodes numbered 0, 1, ., m, and each node
numbered j has a link pointing to its parent node, alj1, with
all siblings ordered left-to-right in increasing order and O as

the root.

N — = — O
B — O

D

3 5

e

Figure 1: Trees determined by 17 and 153

Remark 3.6. This directed graph can be treated as a for-
., n, and if alj] stores
the value 0, the node numbered 7 is the root of an ordered
tree in that forest.

est of n nodes numbered 1, 2,

As shown in [9]:

Theorem 3.7. For k € W, the postorder traversals of
each of the subtrees of T(k) rooted in the children of O rep-
resent and indicate the order of the elements within the dis-
joint cycles of GBS(k).

This bijection between such ordered trees and the disjoint-
cycle notation of permutations indicates a direct method
to generate one from the other; reversing the operation of
Theorem 3.7 to determine the ordered tree (and GBS nomen-
clature) of a permutation in disjoint-cycle notation follows:

Proposition 3.8. To determine the nth term of {C;} =
®(k) of a permutation o = GBS(k) given in disjoint-cycle
notation, which determines the transposition (C, n + 1)
that is part of the composition of o, consider:

If n + 1 is the least element of its disjoint cycle, C, = 0,
otherwise the least element of the disjoint cycle containing
n+1 i m, m < n. In the latter case, after arranging
the disjoint cycle so that m is the rightmost element in the
sequence, as the root of the tree formed in the forest described
in Remark 3.6:

1. Set a marker X at the rightmost element of the se-
quence.

2. Set a marker L at the leftmost element of the sequence.

3. Set a marker R at the smallest-numbered element of the
sequence other than element marked by X that is at or
to the right of the element marked by L.

4. If R marks n + 1, then set a[R] to X—that is, Cy, is
equal to the rightmost element of this sequence—and
this operation ends.

5. If L and R do not mark the same element, (recur-
stvely) apply this operation on the subsequence in be-
tween these markers, inclusive.

6. Mark with L the element to the right of the element
marked by R; go to step 3.

Applying Proposition 3.8 to all n+ 1 moved by o determines
D(k).

Theorem 3.9. If, for all n € N, ¢ : Zp — S, is a
bijection, and ¢ is a telescoping mapping, the mapping p :
W — S, is a bijection.

Corollary 3.10. GBS : W — S, is a bijection.

4. GBSNOMENCLATURE COMPUTATIONS

The following computer-scientific results have been compu-
tationally determined.

4.1 Group-Theoretic Applications

As an isomorphism, GBS : W — S, induces a group ta-
ble on W that mirrors that of S, — that is, in the group
table for W, T : W x W — W, T(z,y) = z if and only
if GBS(z)GBS(y) = GBS(z). For computational purposes, it
is ideal to find some analytic function f : W x W — W
describing the group table on W that would perform per-
mutation composition under the isomorphism: such a func-
tion would run at asymptotically constant time @(1), or
as much as asymptotically linear time ©(n) in the case a
constant number of passes over the corresponding factorial
expansions, while using negligible additional space, as much
as a constant number of linear arrays @ (n). The following
theorem gives a restriction:

Theorem 4.1. Let o : W — S, be a telescoping isomor-
phism and f: W x W — W be the group operation on W
implied by ¢, i.e. for x,y € W, o(f(z,y)) = @(x)p(y).
Then f cannot be described by a rational function.

With regard to GBS nomenclature, permutation composition
can be staggered into a succession of transposition post-
compositions, decomposing the post-composing permutation
into its component transpositions.

An enumerative nomenclature scheme used to represent the
permutations of S, allows the group table itself to be used
as a look-up table to speed up the processing of permutation
computation into constant time @ (1), at the cost of storing
the table in memory as a n! x n! two-dimensional array.
Both the speed of processing permutation composition and
the amount of memory used by the process determine the
viability of studying larger symmetric groups in the detail
exhibited herein.

GBS nomenclature further allows the look-up table to only
store results when the post-composing permutation is a trans-
position, at the cost of looking up as many times as the (min-
imal) number of transpositions in the decomposition of the
post-composing permutation. The overall effect is changing
a constant-time ©(1) operation to a linear-time ©(n) op-
eration, but drastically reducing the size of the array from
n! xn! to n! times the number of transpositions in S,,, which
is @, changing space usage from ©(n!-n!) to @(n?-n!).
An enumerative nomenclature scheme used to represent the
permutations of S,,, such as GBS nomenclature, is useful in
the implementation of the author’s algorithm to generate the
subgroups of S,,.> This task was undertaken with the hope

LA general form of this algorithm was provided by the au-
thor as a solution to Problem D of the 2003 ACM ICPC
Regional Finals (Manila), “Finding the Subgroups of a Fi-
nite Group”.

that any family of subgroups of S, or at least restricted
to S,, can be determined analytically with the use of GBS
nomenclature. Only one such analytic function has been
determined:

Theorem 4.2. The signature function sgn can be defined
recursively:

1 k=0

sgn(GBS(k)) = { —sgn(GBS(k mod n!)) n! <k < (n+1)!

Remark 4.3. o € A, the alternating group, are deter-
mined by sgn(o) = 1. Mantaci and Rakotondrajao [8] have
a different definition for o € A,,.

4.2 Permutation-Generation Algorithmsas S, -
Walks

Current permutation-generating algorithms generate permu-
tations of a string in sequence one permutation at a time—
barring quantum computing—prescribed by the algorithm’s
mechanisms. When the set of permutations being gener-
ated is treated as a set of nodes, and consecutively-generated
permutations indicate edges, the algorithm, through its se-
quence of generated permutations, can be treated as a walk
over that set.

Knuth [4] notes that most efficient exhaustive permutation-
generation algorithms start with the string and uses, at each
step, only a single transposition to generate the next per-
mutation. A naive procedure undertaken to determine the
uniqueness, or at least the smallness in number, of efficient
exhaustive permutation-generation algorithms was devised:
find all Hamiltonian paths over S,,, starting from the iden-
tity, two permutations forming an edge connected by a post-
composed transposition.

GBS nomenclature is not particularly efficient in generating
the consequent permutations—operating in linear time in-
stead of constant time—but, as a telescoping mapping, is ef-
ficient in determining whether or not a transposition compo-
sition still maintains the Hamiltonian path—the check can
be performed in constant time over a (binary) flag array of
size n!, instead of, say, an n x n! array, with quadratic-time
checking, or a hash array of size n! with linear-time checking.

Embarking on this method shows a fairly surprising result:
for Ss, there are 8 such distinct paths; and, for S4, there are
more than 100,000 paths.

Question 4.4. It can be concluded that there are fast-
growing number of arbitrary Hamiltonian paths; is this also
the case for restricted Hamiltonian paths?

H Knuth [4] cites Heap’s algorithm to be an example
of the most efficient type of exhaustive permutation-
generation algorithm. What is notable about Heap’s
algorithm is that it is recursive, like the algorithm gen-
erating a Gray code. The initial process was modified:
to simulate a recursive algorithm, such as Heap’s al-
gorithm, we restrict the transpositions such that the
ith transposition is (a; b;), where a; < b; and b; is
one more than the index of the first nonzero term
of ®(i). Additionally, the transpositions chosen were
symmetric—the nth transposition used is the nth-from-
the-last transposition used—as was the case with Heap’s
algorithm.

Under these conditions, the following results have been
determined: for Ss, there are two paths, with both
even-numbered transpositions either (1 3), for Heap’s
algorithm, or (2 3); for Sy, there are 96 such paths,
shown in [9].

JT Levitin [7] cites the Johnson-Trotter algorithm (also
with Steinhaus) to be an example of the most efficient
type of exhaustive permutation-generation algorithm.
What is notable about the Johnson-Trotter algorithm
is that it is only swaps adjacent elements. The ini-
tial process was modified: only transpositions that in-
volve adjacent elements can be used. Additionally, the
transpositions chosen were symmetric, as was the case
with the Johnson-Trotter algorithm, at least for the
cases when the length of the permutations does not
exceed four.

Under these conditions, the following results have been
determined: for Ss, there are two paths, alternating
starting with (2 3), for the Johnson-Trotter algorithm,
or its “mirror image”; for S4, there are six paths with
their “mirror images”, given in Table 5, with the path
generated by the Johnson-Trotter algorithm denoted
by an asterisk (*).

The process takes too long on contemporary household hard-
ware for Ss: there are approzimately 7.22 x 10*2 possible
paths for recursive algorithms, with 100,000 confirmed rea-
sonably quickly; and, there are approzimately 5.09 x 10%°
possible paths for adjacent-transposition algorithms, none
of the confirmed paths generated reasonably quickly.

While it is possible that none of the other paths deter-
mined for Sy can be defined by an algorithm, it should be
worthwhile to formulate efficient exhaustive permutation-
generation algorithms that can generate any of the other
100 paths, and then test them for veracity.

5. GBS NOMENCLATURE FOR THE SYM-
METRIC GROUP OF THE NATURALS
Seo

Terminology found in Dixon and Mortimer [2] are used to

define some concepts.

Dixon and Mortimer introduce a caveat for ¢ € S, (as Sx
where X is infinite) in an exercise:

...7 may have infinite cycles and may also have
infinitely many cycles. In the latter case, the
product as disjoint cycles has to be interpreted
suitably.

A demonstration of why caution is advised in defining dis-
joint cycles for the infinite case will be seen later; for now, a
point of contention can be raised, whose resolution concerns
the validity of Theorem 5.9:

It seems reasonable to assume that o € So, has well-defined
disjoint cycles, which partition N unambiguously—however,
no reference has assured that this, in fact, is the case; Dixon
and Mortimer comment that the product of disjoint cycles
for Sx where X is infinite is “merely formal”. Thus:

Conjecture 5.1. The disjoint cycles of 0 € Soc are well-
defined—it is always possible to assert whether or not m,n €
N are in the same disjoint cycle of o.

Consider the mapping GBS : F — S..: evidently,
GBS(IF \ (W)) C S \ S..

Example 5.2. For a = {a; | a; = 1} € F, GBS(«) =
(1 2)(1 3)(1 4)---=[[,(1 i) ¢ S.. Note that GBS(«)
does not have finite order.

F,

Example 5.3. For 3 = {b; | by = i(imod 2)} €
)¢S,

GBS(B) = (1 2)(3 4)(5 6)--- =][2,(20 -1 2
Note that GBS(/3) has order 2.

Here is the deferred demonstration illustrating Dixon and
Mortimer’s point of caution regarding disjoint cycles: dis-
joint cycles of 0 € So, cannot be defined in the same way
that disjoint cycles for finite permutations are defined—
where a disjoint cycle containing m would contain o(m),
a?(m),...; the ellipses implicitly indicate that each other
term is o’(m) for some i € N. However:

Counterexample 5.4. Lety={c; |c1 =1 else c; =i—
1}. That is, GBS(7y) = (1 2)[[;24(i—2). It is evident that

GBS(7) is a cycle that moves every element of N. However,
there is no such n € N for which [GBS(y)]" (1) = 2.

This leads to proposing a specialized definition for disjoint
cycles:

Definition 5.5. The disjoint cycles of o = [[(ai—1 i) €
GBS(F) partition N as such: m,n € N are in the same dis-
joint cycle of o if there exists p € N and two (monotone
decreasing) sequences m = mo,my,...,m; = p and n =
Nno,N1,...,Nk = P Such that M1 = Gm,—1 for 0 < i < j
and niy1 = an;—1 for 0 <i < k.

Note 5.6. The order of elements in a cycle is not affected
by Definition 5.5: b comes right after a in a disjoint cycle
of 0 € Seo if and only if o(a) = 0.

It cannot be assumed that two permutations can be dis-
tinguished by their respective applications to the set they
permute:

Counterexample 5.7. Let 6 = {d; | d; = i — 1} =
{0,1,2,...}. Thatis, GBS(d) =[[24(¢—2 i). When GBS(v)
from Counterexample 5.4 and GBS(0) are applied to N as a
sequence, both produce sequences 3,4,5,6,... with the same
n leading terms, for any n € N. However, GBS(d) has two
disjoint cycles, whereas GBS(7) is a cycle.

Theorem 5.8. The mapping GBS : F — S is injective.

Consider the construction outlined in the proof for The-
orem 3.7: the tree determined for £k € W is constructed
by adding nodes parallel to enumerating ®(k). A tree can
be determined from a € F through similar construction,
although requiring a countably infinite number of added
nodes. The proof allows Theorem 3.7 to hold for T(a);
Definition 5.5 is consistent with and implied by this con-
struction.

Proposition 3.8 can determine the nth term of the a =
{a;} € F, where 0 = GBS(«), in a finite number of steps,
for any n € N, hinging on N being well-ordered. It follows
that the algorithm implementing the reversal of Theorem 3.7
holds for o = GBS(a): even if o cannot be completely de-
termined after a finite number of steps, for § = {b;} € F
where a # f—am # b for some m € N—o # GBS(f3) can
be verfied after a finite number of steps.

Theorem 5.9. The mapping GBS : F — S, is a bijec-
tion.

6. REFERENCES
[1] P.J. Cameron, Permutation Groups, London
Mathematical Society Student Texts 45, Cambridge
University Texts, 1999.

[2] J.D. Dixon and B. Mortimer, Permutation Groups,
Graduate Texts in Mathematics 163, Springer-Verlag,
New York, 1996.

[3] D.H. Knuth, Seminumeral Algorithms, The Art of
Computer Programming Vol. 2, 3rd ed,
Addison-Wesley, Massachusetts, 1997.

[4] D.H. Knuth, Generating All Tuples and Permutations,
The Art of Computer Programming Vol. 4, Fascicle 2,
Addison-Wesley, Massachusetts, 2005.

[5] E.L. Lady, The Cantor Expansion of a Number, Some
Materials for Discrete Mathematics,
http://www.math.hawaii.edu/"lee/discrete/, 2004.

[6] D.H. Lehmer, Teaching combinatorial tricks to a
computer, Proc. Sympos. Appl. Math. 10 (1960),
179-193.

[7] A. Levitin, Introduction to the Design & Analysis of
Algorithms, Pearson Education, Inc. Addison-Wesley,
2004.

[8] R. Mantaci and F. Rakotondrajao, A permutation
representation that knows what ”FEulerian” means,
Disc. Math. and Theo. Comp. Sci. Vol. 4 No. 2 (2001),
101-108.

[9] M.D. Samson, Cantor Ezpansion and Permutation Gener-

ation Using Transpositions, 2nd Sympos. on Math. Asp. of
Comp. Sci. Preproc. (2004), 87-98.

Appendix: Selected Proofs

PROOF FOR LEMMA 3.2. Let ®(z) = {X;}, ®(y) = {Yi}
and ®(z +y) = {Z;}, such that

Gs(z) = [] & i+,
esy) = [[O i+,
s(z+y) =]2 k+1).

For every element p € N fixed by GBS(x), X,—1 = 0 and
X; # p for all i > p; for every element ¢ € N moved by
GBS(y), Yy,—1 # 0 or Y; = ¢ for some j > g. Since GBS(z)
and GBS(y) are disjoint, for every k € N, X, =0or Y, =0
so0 Zx = X + Ya.

GBS(z)GBS(y) = [[(X: ¢+ 1)[[(Y; s+ 1). Since GBS(x)
and GBS(y) are disjoint, (X; ¢+ 1) and (Y; j + 1) share

no point, for 7,7 € N where X;,Y; > 0; the transpositions
commute, and since for any k € N, X = 0 or Y = 0, the
transpositions can be rearranged such that GBS(x)GBS(y) =
[1(Z;. k+ 1), where Z; = max(Xy,Y)). Since Z;, = Zj, for
all k € N, GBS(z + y) = GBS(z)GBS(y). O

PROOF FOR THEOREM 3.3. Let suppg (k) be the number
of nonzero terms in ®(k); then, if GBS(k) has m disjoint
cycles, GBS(k1),GBS(k2),...,GBS(ky), then, by Lemma 3.2,
k= 2211 ki

most one of the corresponding terms will be nonzero, so

Among ®(k;) = {ai;}, for any index j, at

the nonzero terms of ®(k) will be partitioned among the
®(k;)—that is, suppg (k) = >_7" | suppg (k:).

Let {C;} = ®(k:) and GBS(k;) = ch>0(Cj j+1) be an
n-cycle. The minimum number of transpositions needed to
compose an n-cycle is n—1, so suppg (ki) > n—1; since each
post-composing transposition (C; i+ 1) introduces a new
point to the permutation, suppg (ki) < n — 1. So suppg (ki)
is precisely the minimum number of transpositions required
to compose GBS(k;).

The GBS(k;) are disjoint, so the minimum number of trans-
positions required to compose GBS(k) is the sum of the min-
imum number of transpositions required to compose each
GBS(k;)—otherwise, some j-cycle would be composed of less
than j — 1 transpositions—which is suppg (k). O

PROOF FOR THEOREM 3.4. Let t,, be the average num-
ber of minimum transpositions composing a permutation
in S,. S; = {GBS(0)}, thus t; = 0 = 1 — H;. Sy =
{GBS(0), (1 2)}, thus to = 3+ =2 — Ho.

Assume that ¢, = n — H,. S,,4+1 can be partitioned into S,,
and its n cosets S, (i n+ 1), for i € {1,2,...,n}. For each
of the cosets S,(¢ n + 1), the average number of minimal
transpositions composing a permutation is increased by one,
thus the total number of minimal transpositions composing
permutations in S,,41 is:

n
(n+ Dltnsr = nlty + > 0t + 1) = nlty, + nlnlt, + nl]
i=1

=m+Dn+ M+ =[(n+ 1) —n-nl|

— (n4 1) [n—Hn-f—l_(l_nil)]

— (n+1)! [(n+ 1) (Hn + L)]

n+1
= (n+Dn+1) — Hyya).

So tn+1 = (n+1)—H, 11, and the induction is complete. [

PROOF FOR THEOREM 3.9. For © € W, o(z) is a finite
permutation on N, since p(z) € S,, whenever 2 € Z,. For

any y € W, x # y, there is an n such that z,y € Z,, and
since the mapping is bijective over Z,, ¢(x) # ¢(y).

Let 0 € S,,. Then o permutes a finite number of elements
of N. If the number of elements is permuted is zero, then o
is the identity element, and p(0) = o € Si; otherwise, let
n be the largest element not fixed by o. Then o € S,,, and
since ¢ : Zn — S, is bijective, there exists © € Z, such
that p(x) = 0.

Thus ¢ : W — S, is a bijection. [

PROOF FOR THEOREM 4.1. If ¢ is a telescoping isomor-
phism, (0) is the identity permutation. Let f(z,y) be a
rational function and consider f(z,z) = F(x), which should
also be a rational function. If (k) is an involution, then
F(k) = 0. However, the number of involutions in S, is infi-
nite. Thus F(z) has an infinite number of zeros—a contra-
diction, since a rational function should have a finite number
of zeros. [

PROOF FOR THEOREM 5.8. Let a = {a;},8 = {b;} € F,
such that o # 3, i.e. a; # b; for some i € N. Let n € N such
that a; = b; for all i < n and a,, # b,. Consider if there is
a; # 0 for i < n; let

1<i<n
o= [@& i+1).

b; >0
Let o/,8 € F where o/ = {aj}, 8 = {bi}, a; =b; =0
for 1 <i <nanda, =a; and b, = b; for i > n. Then
0GBS(a’) = GBS(«) and oGBS(3') = GBS(8). Thus, it can be
assumed that a; = b, = 0 whenever ¢ < n, and the result
will hold for both cases.

Let b, # 0; there is a cycle in GBS(3) that contains both b,
and n + 1. The transpositions (a; ¢+ 1) composing GBS(«)
individually can move b, or n + 1 or neither, but not both,
since b, < n+ 1 < i+ 1; exactly one of the following is true:

e a; and n + 1 are in the same disjoint cycle of GBS(a);
e a; and b, are in the same disjoint cycle of GBS(«);

e g, is in a disjoint cycle of GBS(«) that contains neither
n + 1 nor by,.

Therefore, in GBS(«), b, and n + 1 are in disjoint cycles, so
GBS(«) # GBS() and the mapping is injective. [

PROOF FOR THEOREM 5.9. Let 0 € So. The sequence
{a;} can be determined as follows. By Conjecture 5.1, the
disjoint cycles of o are well-defined; since N is well-ordered,
for every i € N, the root r; of the disjoint cycle that contains
i+ 1 can be determined: if r; = 7 + 1, a; = 0; otherwise,

use Proposition 3.8 on the cycle rooted in r; to determine
a;. Then o = {a;} € F and GBS(«) = o.

Therefore, GBS is surjective; by Theorem 5.8, it is injective,
so it is bijective. [

Appendix: Adjacent-Transposition Hamilton-
ian Paths of s, under ¢ss Nomenclature
0-1-5-2-3-4-22-21-14-15-20-23-13
—6-10-11-7-12-16—-9 — 8 ~17-19-18—
0-1-5-23-20-2-3—-4-22-21-14-15-10
—11-7-12-16—9 — 8 — 6 —13—17-19-18—
0-1-5-23-13-6 - 8-17-19-18-16-9—7
~12-22-21-14-11-10-15-20- 2 — 3 — 4 —
0-1-5-23-13-17-19-18-16-9 -8 — 6 —10
—11-7-12-22-21-14-15-20-2 — 3 — 4 —
0-4-3-2-5-1-19-18-16-12-22-21-14
—11-7-9 -8 —17-13-23-20-15-10- 6 —
0—4—3-21-22-12-16-18-19— 1 -5 -2 -20
—23-13-17-8 -9 —7-11-14-15-10— 6 —
0-4-22-21-3-2-5-1-19-18-16-12—-7
—9—8-17-13-23-20-15-14-11-10- 6 —
0-4-22-12-16-18-19-1-5 -2 -3 -21-14
~15-20-23-13-17-8 -9 — 7 -11-10- 6 —
0-18-16-9 -8 —17-19— 1 -5 —23-13-6 —10
~15-20—-2 — 3 -21-14-11-7 -12-22— 4 —
0-18-16-9 -8 — 6 —13-17-19— 1 — 5 -23-20
—2-3-21-14-15-10-11- 7 -12-22— 4 —
0-18-16—9 — 7 -12-22— 4 — 3 -21-14-11-10
~15-20-2-5-23-13-6 -8 —17-19— 1 — *
0-18-16-12-22- 4 - 3-21-14-11-7-9-8
—6-10-15-20— 2 — 5 —23-13-17-19— 1 —

15 20 2 3 21 14 11 7 12 22 4
018 16 9 8 6 13 17 19 1 5 23 20
2321 14 15 10 11 7 12 22 4
018 16 9 7 12 22 4 3 21 14 11 10
15 20

Portable Document Formatted using TeXnicCenter under MiKTeX on June 1,

2011.

