Formal Specification of Electronic Ballot Transmission
Protocols in the Applied Pi-Calculus

Danny F. Wuysang
dfwuysang@up.edu.ph

Henry N. Adorna
hnadorna@dcs.upd.edu.ph

Algorithms and Complexity Laboratory
Department of Computer Science
University of the Philippines Diliman
Quezon City, Philippines

ABSTRACT

In this paper, we present our recent work on formally spec-
ifying transmission protocols used in electronic voting. We
use the applied pi-calculus, a formal language for concur-
rent and communicating processes with extensions that are
particularly advantageous in modelling cryptographic proto-
cols. We checked for standard secrecy based on reachability
using the tool, ProVerif. The output showed that the keys
and some results are secure, while others were proven to be
vulnerable. We also found that the case of corrupt adminis-
trator exist in one of the schemes, which we proceed to show
formally.

Categories and Subject Descriptors

C.2.2 [Computer-Communication Networks|: Network
Protocols—protocol verification; D.2.4 [Software Engi-
neering]: Software/Program Verification—jformal methods;
F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs—mechanical
verification, specification techniques

General Terms
Design, Languages, Security, Theory, Verification

Keywords
electronic voting, applied pi-calculus, transmission, crypto-
graphic protocols, reachability, secrecy properties

1. INTRODUCTION

For almost three decades®, researchers have been working
on electronic voting (e-voting). However, reception in the
form of large scale deployment (e.g. national election) is

!The first reference to the notion of e-voting in computer
science literature is in [6]. Although not a complete system
or protocol description, in 1981, Chaum mentioned about
using his anonymity scheme in e-voting.

still a mix of positives and negatives. Several states have
opted for e-voting systems (Brazil [24], India [28]), but some
turned out to be unsuccessful experiments. Discovery of
some irregularities led many to doubt, even some to abandon
e-voting (Ireland [19, 13], Netherlands [18]). The main issue
of e-voting now is trust. Can we trust an electronic voting
system to handle such a critical process in our democracy?
Or should we go back to our “trusted” way of doing it, the
conventional way?

Surely, e-voting has advantages over conventional voting.
The most notable property that manual schemes could not
provide is verifiability. That is, voters can verify that their
choice(s) was recorded and counted as they intended. This
is one of the main goals of e-voting systems. Another signifi-
cant improvement is efficiency with respect to time. By em-
ploying e-voting systems, we profit from the inherent speed
of computers and its network. [17] contains a list of more
functional requirements of e-voting, including the two men-
tioned above.

Efficiency of computers is particularly beneficial during the
tallying phase, which takes up most of the election time.
We could significantly reduce tallying time by employing
computers to tally ballots and prepare reports, after which
we utilize the network for fast transmission between lev-
els of election officials. But this stage is a critical phase.
Preliminary results are vulnerable to attacks when in trans-
mission. Furthermore, during the tallying process, when the
results are exposed, authorized entities with malicious inten-
tion could tamper with the reports, swinging the outcome
to their favored candidate. In our opinion, the electronic
ballots are at the most risk when in this stage.

To gain trust, researchers scrutinize deployed e-voting sys-
tems and verify their security properties. This is mainly
done by reviewing the source code of the voting machines
[14, 12, 27, 5, 22]. However, analyzing hundreds and even
thousands of lines of code is a daunting task that requires
significant amount of resources. Other researchers choose
formal verification techniques to analyze e-voting schemes
[16, 8, 7, 9, 15, 2, 26]. These schemes are formally specified,
after which analysis is done on the logic of the schemes.
Working with the formal representation will show the be-
haviour of the scheme when deployed, while verification in
high-level representation will make it easier to discover faults
and address them. The challenge is in modelling the schemes

precisely in order to verify them accurately.

In this paper, we proceed with a similar framework pre-
sented in [16, 8], that is we formally model and analyze
e-voting protocols in the applied pi-calculus [1]. Instead of
the voting process, we focus on the transmission phase of e-
voting. This paper presents the formal specification of two
electronic ballot transmission protocols in the applied pi-
calculus. We also discuss standard secrecy property of the
protocols, which was verified using the tool, ProVerif [3].

The paper is structured as follows. In Section 2, we describe
the two schemes that are to be analyzed. Section 3 discusses
the formal technique that we choose to utilize. We present
the formal models in Section 4. Finally, a discussion on the
results of analysis in Section 5.

2. TWO ELECTRONIC BALLOT TRANS-

MISSION SCHEMES
2.1 Schemel

Consider the first electronic ballot transmission scheme that
we will call Schemel, given in Figure 1, where 0,...,n are
election authorities from different governmental levels, DC
is the data center to store and publish preliminary results.
We generalize election authorities to 4 levels with different
tasks described below. Connection refers to Internet connec-
tion using any available means, e.g. Cable, DSL, 3G, GPRS,
etc.

\

_ e N Y W > 3 —

Figure 1: Ballot transmission scheme 1.

2.1.1 Informal description

Level 0 Polling place level, where authorities tally the votes
manually then describe the results in paper reports.
We assume that there is no connection in this level,
so reports are transported to the next level using the
conventional means, represented by the dotted line in
Figure 1.

Level 1 This level is responsible for encoding the reports
gathered from Level 0’s in its vicinity. We assume that
there should be connection starting at this level. After
uploading Level 0 data, authorities tally the votes then
forward the result to the next level, and upload it to
the Data Center.

Level 2 Authorities retrieve Level 1 data from the Data
Center and check if they match directly forwarded re-
ports, then tally of Level 1 results is performed. We

assume that there are final results starting this level,
so the authorities report it to the national level. The
remaining results will be forwarded and uploaded.

Level 3 Authorities in this level performs tallying based
on reports from the previous level, which have been
matched to the information from the Data Center,
then they report the final result and the remaining
result to the national level.

Level n National level, where authorities receive reports
from Level 3’s, match them to the Data Center, then
perform tally. Finally, the national authority will de-
clare all final results, which includes the Level 2 final
result forwarded earlier and the Level 3 final result.

2.1.2 Security considerations

We address three basic security properties with standard
cryptographic solutions for Schemel. Confidentiality is ad-
dressed by implementing asymmetric encryption. Integrity
and Authentication are addressed by employing digital sig-
nature. We generalize these cryptographic solutions used
by not specifying particular schemes, instead we only de-
fine representing functions. Any suitable scheme could be
employed on implementation as long as it is an asymmetric
encryption scheme that supports digital signatures, such as
RSA [23] or ElGamal [11].

In this scheme, we could consider two types of communi-
cation: Authority-Authority and Authority-Data Center.
Since information in the Data Center is used only for stor-
age and verification, we only perform encryption on the data
being communicated. Any anomalies could be discovered
when the data is verified by authorities after which it could
be corrected accordingly. We handle Authority-Authority
communication with more caution, that is we secure it us-
ing encryption and digital signature because data received
through this communication line is considered the official
result.

2.1.3 The protocol

Applying the cryptographic protocols and considering the
communication types, we get the following ballot transmis-
sion protocol. R; and F; are respectively preliminary and
final result from level i. pk, and sk, are respectively public
and private key of entity x. enc(m,k) and sign(m, k) are
respectively functions to encrypt and sign message m using
key k.

1 — DC : enc(Ro,pkpc)

1 — 2: enc(sign(Ru1, sk1), pks)
1 — DC : enc(R1,pkpc)

DC — 2 : enc(R1,pka)

2 — 3 : enc(sign(Rs, sk2), pks)
2 — DC : enc(R2,pkpc)

2 — n: enc(sign(Fs, sk2), pkn)
DC — 3: enc(Ra2,pks)

3 — n : enc(sign((Rs, F3), sks), pk»)
10. 3 — DC' : enc(Rs,pkpc)

11. DC — n : enc(Rs,pky)

12. n— (%, F5R,)

PN O W=

©

2.2 Scheme2

The second electronic ballot transmission scheme, which we
will call Scheme2, is given in Figure 2, where 1,...,n are
authorities, C'S and AS are the central and auxiliary servers,
respectively. C'S acts as a data storage that is accessible to
the election officials, while AS is accessible to other entities
that are involved in the election.

0
/]
a2 N W 3

Figure 2: Ballot transmission scheme 2.

2.2.1 Informal description
Entities in this scheme proceed in a similar way to Schemel,
except for the following cases.

e Voting machines are deployed in Level 1, which is the
polling place level in this scheme, to tally the votes and
are capable of transmitting the reports. It forwards the
results to the next level and the two servers.

e Level 2 and 3 updates CS only.

e Level 2 to n does not retrieve data from any server.

2.2.2 Security considerations

Scheme2 emphasizes on Integrity and Authentication by em-
ploying one-way hash function and digital signature. Any
hash function could be employed as long as it is compatible
for use with digital signature, such as SHA [21].

Similar to the previous scheme, there are two different types
of communication in this scheme: Authority-Authority and
Authority-Server. Authority-Authority communication that
conveys the official result is secured using hash function and
digital signature. For experimental purposes, we use en-
cryption only on the Authority-Server communication. In
implementation, both types should be encrypted.

2.2.3 The protocol

The protocol for Scheme2 is given below. R; and F; are
respectively preliminary and final result from level i. pk,
and sk, are respectively public and private key of entity
z. enc(m,k) and sign(k,m) are respectively functions to
encrypt and sign message m using key k. h(m) is the one-
way hash function applied to message m.

1—2: (Rl, sign(h(Rl), Skl))

1 — CS : enc(R1,pkcs)

1 — AS :enc(R1,pkas)

2—>n: (FQ,Sign(h(Fz),Skz))

2—3: (RQ, Sign(h(RQ), Sk‘z))

2 — CS : enc(Ra, pkcs)

3—=n: ((Fg,Rg,), Sign(h((Fg, Rg)),skg))
3 — CS : enc(R3,pkcs)

n— (FQ,F3,Rn)

3. APPLIED PI-CALCULUS

The applied pi-calculus [1] is a language to model communi-
cation and concurrency of processes. It builds on pi-calculus
[20] but introduce new semantics to facilitate the study of
security protocols. The calculus allows messages to be con-
structed from names and functions, which gives us means to
model cryptographic protocols appropriately. This section
provides a basic review of the calculus’ syntax and opera-
tional semantics.

© PN Ot WD

3.1 Syntax

In applied pi-calculus, we define terms L, M, N,T,U,V from
a set of names a, b,c,...,k,...,m,n,...,s, aset of variables
x,y, 2, and function symbols in a signature X. Function
symbols are of form f(M;, ..., M;), where I corresponds to
the arity of function f. When considering cryptographic
primitives, we can have the function symbol enc to model
the process of encryption, which returns an encrypted mes-
sage with the message and a key as its parameters. We
could also have a corresponding dec function that returns
the message, given an encrypted message and the key. The
signature Y. has an equational theory FE, that defines the
equality of terms denoted by =pg. If we model symmetric
encryption with the two functions mentioned above, we can
have the equational theory dec(enc(zx,k),k) = =z, then we
can say that dec(enc(dec(enc(m, k2), k2),k1),k1) =g m.

The grammar of processes are given in Table 1. Plain pro-
cesses are similar to processes of pi-calculus. Extended pro-
cesses are the novelty of applied pi-calculus.

The calculus includes active substitution {M/x} that re-
places variable x with term M. To control its scope, we write
ve.({M/x} | P) that corresponds exactly tolet z = M in P.
Names and variables have scopes. We write fn(A) and
bn(A) for the set of free and bound names of A, fv(A) and
bu(A) for the set of free and bound variables of A.

The notation in(u, =M) is used to check if the input on
channel u is equal to term M. The equality considered is
with respect to E.

Given an extended process A, if we replace all plain process
with 0, we obtain the frame of A, ¢(A). A frame is an ex-
tended process built from 0 and active substitutions only by
parallel composition and restriction. The frame of A rep-
resent the static knowledge A exposes to the environment.
The domain of a frame, dom(y), is the set of variables that
the frame exports through substitution.

A context, written C[], is defined as an extended process
with a hole. An evaluation context is a context whose hole

Table 1: Applied pi-calculus grammar.

P,Q,R:= plain processes A, B,C = extended processes
0 null process P plain process
PlQ parallel composition A|B parallel composition
P replication vn. A name restriction
vn.P name restriction vx.A variable restriction
u(z).P message input {M/z} active substitution
a(M).P message output
if M = N then P else Q conditional
is not under a replication, a conditional, an input, or an ing rules:
output.
I a(z).P 220, pra/az)
o _ alu)
UT-ATOM a(u).P — P
AT, g u#a
3.2 Semantics OPEN-ATOM T
The operational semantics of applied pi-calculus consist of vu.A Al
the three relations that are described below. a4 .
SCOPE A— A u does not occur in «
Structural equivalence = is the smallest equivalence relation vu.A S vu A
on extended processes that is closed by a-conversion on both o .
names and variables and application of evaluation contexts PAR A= A" bu(a)nfy(B)=bn(@)Nfn(B)=0
such that: A|B% A | B
A=B BB B =4
STRUCT ~
PAR-0 A= Ao A=A
PAr-A Al(B|C) = (A|B)|C
Par-C A|lB = B|A 3.3 Equivalences
REPL P = PJ|IP In analysis of security protocols, some properties are for-
mally proven by showing equivalence of processes. We often
NEw-0 vn0 = 0 use the notion of observational equivalence, that is processes
NeEw-C vuvv.A = vovu.A cannot be distinguished by any context. We briefly describe
NEW-PAR AlvuB = vu.(A|B) several equivalences in applied pi-calculus.
if ué¢ fo(A)U fn(A)
Static equivalence = relates frames that cannot be distin-
ALIAS ve{M/z} = 0 guished, and processes with respect to the static knowledge
SUBST {M/z} | A = {M/z} | A{M/x} they expose to the environment.
REWRITE {M/z} ={ N/xz}
if M =g N Labelled bisimilarity ~; relates extended processes that can-

Internal reduction — is the smallest relation closed by struc-
tural equivalence and application of evaluation contexts such
that:

CoMM a(z).P | a(z).Q — P|Q
THEN if M = N then Pelse @ — P
ErLse if M = N then Pelse Q — Q

for ground terms M, N where M #gr N

Labelled reduction = extends internal reduction, allowing
processes to interact with the environment using the follow-

not be distinguished in terms of labelled transitions.

It has been shown that labelled bisimilarity and observa-
tional equivalence in applied pi-calculus coincides. We refer
interested readers to [1] for more deliberation on this re-
lation. Readers will also find the formal definitions of the
equivalences mentioned above.

4. MODELLING TRANSMISSION PROTO-
COLS IN APPLIED PI-CALCULUS

In this section, we present the transmission schemes in Sec-
tion 2 modelled in the applied pi-calculus. We annotate the
correspondence between the protocols® and the models with
comments®. A comment is placed before the output process
corresponding to the step in the protocol.

2Sections 2.1.3 and 2.2.3
3presented in (* *)

4.1 Schemel

4.1.1 Signature and equational theory

We start modelling the protocol of Schemel by defining its
signature ¥ = {pk, enc, dec, sign, checksign}. These func-
tions build the equational theory E:

dec(enc(z,pk(y)),y) =z
checksign(pk(y), sign(z,y)) = =

We model asymmetric encryption with two functions, a con-
structor enc and the corresponding destructor dec. To en-
crypt, let the message x and the public key of the destination
entity, produced by performing the one-way function pk on
secret key y, be parameters to function enc. The output,
namely the encrypted message, is decrypted using function
dec, also 2-tuple, with the secret key as the second argu-
ment. We proceed in a similar way for digital signature,
modelled by functions sign and checksign for, respectively,
signing and extracting a message.

4.1.2 Main process

The main process declares the private channels, mostly for
key distribution, and all other processes in parallel. We
model the numerous Level 1, 2, and 3’s by replicating their
processes.

P £ upkChl.upkCh2.vpkCh3.vpkChn.vpkChDC.
vskChl.vskCh2.vskCh3.vskChn.vskChDC.
(K |1A1 | 1Az | 1As | An | DC)

4.1.3 Key Administration process

We follow the notion in [9] to include a key distribution pro-
cess that acts like a PKI*. First, we create fresh private keys,
then apply the pk function to get the public keys. Next, all
keys are distributed through private channels so an attacker
cannot intercept or inject bogus keys. Our assumption is in
an election setting, only authorities know about the keys, so
we modelled this by using private channels®.

K £ vsky.vsks.vsks.vsk,.vskpe.
{pk(sk1)/pki} | pkCh1(pk:) |
{pk(sk2)/pka} | pkCh2(pks) |
{pk(sks)/pks} | pkCh3(pks) |
{pk(skn)/pkn} | PKChn(pkn) |
{pk(skpc)/pkpc} | pkChDC(pkpc) |
skChl(sk1) | skCh2(sks) | skCh3(sks) |
skChn(skn) | skChDC(skpc)

4.1.4 Authority processes

We define a dedicated process for each level authority. The
processes starts with obtaining required keys from the PKI.
We model results from Level 0’s by declaring a new vari-
able Ry inside process Aj. Intuitively, this represents Re-
sult O freshly encoded (electronically created) by Authority

4Public Key Infrastructure
5In some of our analysis, we assume public channels for dis-
tributing public keys, most notably in Section 5.3

1. Other procedures in the processes are receiving results
from previous levels, decryption and signature verification,
matching received result to the server data, and creating
new variables representing the level’s report. Finally, the
reports are sent to the required entities. Notice that for sig-
nature verification, along with the signature, we send the
public key of the source src, pk(sksrc), to prove their iden-
tity. The destination entity will first check if the sent public
key match the one published by the PKI. To end the proto-
col, the national authority, A, , publishes the results, which
represents declaring the official outcome of the election.

A1 2 skChl(ski).
pkCh2(pks) pkChDC(pkpc).
VRo.
(* Step 1 *)
¢(enc(Ro, pkpc)).
vresultl.
(* Step 2 *)
¢(enc((pk(sk1), sign(resultl, sk1)),pks)).
(* Step 3 *)
¢(enc(resultl, pkpc))

As & skCh2(sk2).pkChl(pki).
pkCh3(pks).pkChn(pk,).pkChDC(pkpc).
le(ml).le(t1).

{dec(mu, sk2)/(pubkeyl, signedl)} |

if pubkeyl = pki then
{checksign(signedl, pubkeyl)/R1} |
{dec(t1, ske)/D1} |

if Ri = D1 then

vresult2.v final2.

(*x Step 5 *)

¢(enc((pk(sk2), sign(result2, sk2)), pks)).
(*x Step 6 *)

¢({enc(result2, pkpc)).

(*x Step 7 *)

¢(enc((pk(skz), sign(final2, sk2)),pkn))

(1>

As skCh3(sks).
pkCh2(pk2).pkChn(pk,).pkChDC (pkpc).
le(m2).1e(12).
{dec(m2, sks)/(pubkey2, signed2)} |
if pubkey2 = pks then
{checksign(signed2, pubkey2)/Ra} |
{dec(t2, sk3)/D2} |
if Ry = D2 then
vresult3.v final3.
(* Step 9 *)
¢(enc((pk(sks),

sign((result3, final3), pks)), pkn)).

(* Step 10 *)
¢({enc(result3, pkpc))

A, = skChn(sk,).
pkCh2(pks2).pkCh3(pks).
le(m2).le(m3).1c(¢3).

{dec(m2, sky)/(pubkey2, signed2)} |
if pubkey2 = pks then
{checksign(signed2, pubkey2)/F2} |
{dec(m3, skn)/(pubkey3, signed3)} |
if pubkey3 = pks then
{checksign(signed3, pubkey3)/(Rs, F3)} |
{dec(3, skn)/D3} |

if Rs = D3 then

vR,.

(* Step 12 *)

E((FQ: F3, Rn))

4.1.5 Data Center process

This process also starts by obtaining keys from the PKI,
then accepts results for storage and sends stored results for
verification. Result 0 does not need to be sent out, since
Authority 1 have it and can perform the required processes
on it. We consider the raw Result 0’s, handled by Authority
1, as the most trusted data and the stored form to be the
most trusted electronic reference.

1>

DC skChDC(skpc).
pkCh2(pks).pkCh3(pks).pkChn(pky,).
¢(m0).c(ml).

(* Step 4 *)
¢(enc(dec(ml, skpc),pka)).
c(m2).

(* Step 8 *)
¢(enc(dec(m2, skpc), pks)).
c¢(m3).

(* Step 11 *)
¢(enc(dec(m3, skpc), pkn))

4.2 Scheme2

For brevity, we do not describe the main process and the key
administration process on this model of Scheme2. These
processes are similar to those found in Sections 4.1.2 and
4.1.3.

4.2.1 Signature and equational theory

The model of Scheme2 in applied pi-calculus has the signa-
ture ¥ = {h, pk, enc,dec, sign, checksign}. These functions
build the equational theory E:

dec(enc(x, pk(y)), y) =
checksign(pk(y), sign(h(z),y)) = h(z)

The functions work in the same way as those in Section
4.1.1, except we can extract a hash of the message x from
the digital signature.

4.2.2 Authority processes

The processes starts with obtaining required keys from the
PKI. The next processes are receiving results from previous
levels, signature and hash verification, then the authority
creates a new variable representing the level’s report. Fi-
nally, the reports are sent to the required entities.

A1 2 skChl(sky).
pkChC S(pkcs).pkChAs(pkas).
vresultl.
(* Step 1 *)
¢((resultl, (pk(ski), sign(h(resultl), ski1)))).
(* Step 2 *)
¢(enc(resultl, pkcs)).
(* Step 3 *)
¢{enc(resultl, pkas))

(1>

Az skCh2(skz).

pkChl(pk1).pkChDC (pkcs).

c¢(ml).{(R1, signl)/m1} |

{(pubkeyl, signedl)/signl} |

if pubkeyl = pki then
{hashl/checksign(signedl, pubkeyl)} |

if hashl =h(R;) then

v final2.vresult2.

(* Step 4 *)

¢((final2, (pk(sk2), sign(h(final2), sk2)))).
(* Step 5 *)

¢{(result2, (pk(sk2), sign(h(result2), sk2)))).
(* Step 6 *)

¢{enc(result2, pkcs))

>

Az skCh3(sks).
pkChl(pks).pkChDC(pkcs).
c(m2).{(R2, sign2)/m2} |
{(pubkey2, signed2)/sign2} |
if pubkey2 = pks then
{hash2/checksign(signed2, pubkey2)} |
if hash2 = h(R2) then
v final3.vresult3.
(* Step 7 *)
¢(((final3, result3),

(pk(sks), sign(h(final3, result3), sks)))).
(* Step 8 *)
¢(enc(result3, pkcs))

A, = skChn(sk,).
pkCh2(pks).pkCh3(pks).
c(m2).{(F2, sign2)/m2} |
{(pubkey?2, signed2)/sign2} |
if pubkey2 = pko then
{hash2/checksign(signed2, pubkey2)}
if hash2 = h(F>) then
c¢(m3).{(FR3,sign3)/m3} |
{(pubkey3, signed3)/sign3} |
if pubkey3 = pks then
{hash2/checksign(signed3, pubkey3)}
if hash2 = h(FR3) then
{(Fs, Ra)/FR3} |
vR,.
(* Step 9 *)
o(((Fs, Fs, Ra))

4.2.3 Server processes
These processes only receives results from authorities, then

stores it. CS receives results from A, As, and As, while
AS from A; only.

[I>

cs c(ml).c(m2).c(m3)

AS £ ¢(ml)

5. ANALYSIS AND DISCUSSION

In this section we present our analysis of the ballot transmis-
sion protocols given above in the applied pi-calculus. Most
of the properties are verified using ProVerif. Most of our
claims below are based on ProVerif verification outcomes.

5.1 ProVerif

When employing applied pi-calculus to verify security prop-
erties, we can use techniques given in [1] to perform hand
proving, and/or we can utilize the tool ProVerif by Bruno
Blanchet [3] to derive automated proofs. An advantage of
ProVerif that is useful to this research is that it is not re-
stricted to a bounded number of sessions. We utilize this
in modelling the numerous regions per administrative level
in the election system, which is done by replicating pro-
cesses corresponding to the level. Like other model check-
ers, ProVerif can perform reachability test that we can use
to verify secrecy properties. It can also be used to verify au-
thentication properties using correspondence test and some
test based on observational equivalence, which are used to
verify privacy properties.

To make the input scripts for ProVerif, the schemes’ applied
pi-calculus models in Section 4 are slightly modified. The
modifications are relatively straight forward. Each applied
pi-calculus command has its equivalent in ProVerif input
script style. A complete listing of all commands in ProVerif
and its usage can be found in the user manual [4].

Attacker. In the calculus’ setting, only honest entities are
modelled. The attacker is considered to be a part of the en-
vironment. In ProVerif, the attacker is in control of the net-
work limited by perfect cryptography, following the Dolev-
Yao model [10]. So, given a public communication channel,
an attacker can eavesdrop and intercept (passive attacker)
even modify and send messages (active attacker) through
it. In our case, we have the public channel ¢ where attacks
could be performed.

Assumptions

In this paper, our assumption is that the transmission itself
is perfect. That is the equipments, communication lines, and
other factors that might affect the transmission are working
as they are supposed to.

In the model, the data being handled are formally specified
in a high-level representation, we do not address it in its bit
representation. We assume that the equipments used are
capable of low-level error correction. The model enforces
certain formats for the messages being sent. Any ill-formed
messages will safely be ignored. We also present a technique
to check the data being sent (verification of data). If we keep
a trusted copy of the data, then we can perform verification
by comparing the transmitted data with the stored copy.
This could be seen in the model of Schemel.

5.2 Standard secrecy

We check standard secrecy based on reachability, which is
a basic feature of ProVerif. That is, we test whether a free
variable that represents a certain secret information cannot
be deduced by the attacker. We request ProVerif to verify
the secrecy of all keys and results (preliminary and final).

Confidentiality of keys. First, we request ProVerif to check
standard secrecy for all keys used in the protocols. Since the
keys are distributed through a private channel, we expect
them to be secure. ProVerif showed that all keys cannot be
derived by an attacker.

Confidentiality of results

Next, we query for the standard secrecy of all results com-
municated and processed in the protocols. For Schemel, the
output showed that all ballot transmissions are secure, while
for Scheme2, the transmitted results are derivable, in other
words they are exposed to an attacker. This is due to the ab-
sence of encryption in the latter, which we deliberately left
as an unsecured transmission. This also shows what could
happen if security features are not implemented. We could
further modify the model to not use digital signature, which
would trivially threaten the secrecy of the results transmit-
ted even more.

The final results published by Authority n were also deriv-
able. We must perform a different technique to check its
secrecy, which could be done by segregating the model in
phases using the separation command phase. This is part
of the next task in the study.

While verifying for secrecy, we came upon the case of cor-
rupt administrator. Further discussion on this result is given
below.

5.3 Corrupt administrator

We consider the threat of corrupt authorities to be critical
in the protocol. In [16] and [8], corrupt administrators were
modelled by outputting their secret keys, so attackers can
perform actions that should have been administrator privi-
leges. This subsection describes our analysis of the protocol
with respect to the case of corrupt administrator.

On Ry of Schemel. Firstly, we assume that Ry was safely
transported to Authority 1. Since Level 0 results are in
paper form, there does not exist an electronic attack towards
them. Concerns should include physical, social engineering,
and other attacks which are well beyond the scope of this
paper. The results are at most risk when the Ro’s are with
Authority 1. Ro will be the first electronic data that will
be upload, thus if any information is modified, then indeed
the next results will be skewed. We assume that at Level
0, party representatives and other witnesses observed the
manual tally, signed the reports, and kept a hardcopy of the
results for verification. When Authority 1 uploads the Ro’s,
a participating party, for instance, could verify the published
result with their own recapitulation, consolidating records
from their Level 0 representatives. Any discrepancies could
be identified easily and reported for corrections.

Each R; in Schemel, where 0 < ¢ < n, is at risk when Au-
thorities 7 + 1 decrypt and process them. In our analysis,
when checking the secrecy of results handled by the admin-
istrators, we observe that there exist a possible attack on
the protocol. The attack is related to the corrupt adminis-
trator case. In reality, this case happens when a dishonest
authority leaks his secret key to an unauthorized person with
malicious intentions. The attacker can easily retrieve the re-
sults by decrypting using the authority’s secret key and gain
knowledge of the results before it is officially published. In
the model, we simulate this case by outputting the author-
ity’s secret key.

Note that for Scheme2, it is not necessary to formally show
the existence of the corrupt administrator case. Since the
results are derivable and no encryption is employed, an at-
tacker does not need a key to decrypt the result transmit-
ted. So, the case of corrupt administrator is not applicable
to Scheme2.

As a case study, based on process As from Section 4.1.4, we
show an attacker process wherein R; is derivable.

Asr 2 chz(al).c(pki).c(ml).
{dec(ml,al)/(pubkeyl, signedl)} |
if pubkeyl = pk; then
{checksign(signedl, pubkeyl)/R1} | ¢(R1)
The attacker has a_1, which is a handler for sks, received
through chzx, a channel between the dishonest authority and
the attacker. The public key of Authority 1 can be retrieved

publicly through channel® ¢. He also retrieves m1 from the
public channel, then proceeds to derive R;. Finally, he pub-

5The main model uses private channels to distribute public
keys. For this instance, we could modify the model to use
public channels instead. Note that distributing the public
keys through public channel will not affect the security of
the protocol.

lishes R; to signify his success.

We present this scenario formally by disproving Reachability-
based secrecy as defined in [25]. Consider process A; of
Schemel and the attacker process As, above. Let Q be
some process. We prove that context C[¢(R1).Q)] is deriv-
able. For brevity, we perform several steps in some of the
displayed transitions, all using the operational semantics of
applied pi-calculus.

Ar | Aoy
= C[skChl(ski).
pkCh2(pks).pkChDC (pkpc).
vRo.¢(enc(Ro, pkpc))-
vresultl.
¢({enc((pk(ski1), sign(resultl, ski)),pk2)).
¢({enc(resultl,pkpc))
| chx(al).c(pki).c(ml).
{dec(m1l,al)/(pubkeyl, signedl)} |
if pubkeyl = pki then
{checksign(signedl, pubkeyl)/R:1} |
o(Ry)]
% ClvRo.¢{enc(Ro, pkpc)).
vresultl.
¢(enc((pk(ski1), sign(resultl, sk1)), pkz)).
¢(enc(resultl, pkpc))
| chx(al).c(pki).c(ml).
{dec(ml,al)/(pubkeyl, signedl)} |
if pubkeyl = pki then
{checksign(signedl, pubkeyl)/R:1} |
c(Ra)]
= C[vRo,z1.(¢(z1) |{ enc(Ro,pkpc)/z1}).
vresultl.
¢(enc((pk(ski1), sign(resultl, sk1)), pkz)).
¢(enc(resultl, pkpc))
chz(al).c(pki).c(ml).
{dec(ml,al)/(pubkeyl, signedl)} |
if pubkeyl = pki then
{checksign(signedl, pubkeyl)/R:1} |
o(R1)]
— C[vRo.{enc(Ro,pkpc)/z1} |
vresultl.
¢(enc((pk(ski1),sign(resultl, ski)),pks2)).
¢(enc(resultl,pkpc))
chx(al).c(pki).c(ml).
{dec(ml,al)/(pubkeyl, signedl)} |
if pubkeyl = pki then
{checksign(signedl, pubkeyl)/R:1} |
e(Ry)]
= vRy.C[{enc(Ro,pkpc)/z1}.

vresultl, zo, z3.((¢(x2) |
{enc((pk(sk1),sign(resultl, sk1)),pk2)/z2}).
(¢(xs) | {enc(resultl,pkpc)/xs}))
| chz(al).c(pki).c(ml).
{dec(m1l,al)/(pubkeyl, signedl)} |
if pubkeyl = pk; then
{checksign(signedl, pubkeyl)/R1} |
o(Ry)]

% vRo.C{enc(Ro,pkpc)/z1}.vresultl.
({enc((pk(sk1), sign(resultl, ski)), pk2)/x2}|
{enc(resultl, pkpc)/x3})
| chz(al).c(pky).c(ml).

{dec(m1l,al)/(pubkeyl, signedl)} |
if pubkeyl = pk; then
{checksign(signedl, pubkeyl)/R1} |
¢(Ry)]

= vRo,resultl.C[{enc(Ro, pkpc)/x1}
{enc((pk(sk1), sign(resultl, ski)), pk2)/x2}|
{enc(resultl, pkpc)/zs}
| chz(al).c(pki).c(ml).

{dec(m1l,al)/(pubkeyl, signedl)} |
if pubkeyl = pk; then
{checksign(signedl, pubkeyl)/Ri} |
¢(R1)]

% VR, resultl.C[{enc(Ro, pkpc)/z1}]
{enc((pk(sk1), sign(resultl, ski)), pk2)/x2}|
{enc(resultl, pkpc)/zs}
| {dec(ml,al)/(pubkeyl, signedl)} |

if pubkeyl = pki then
{checksign(signedl, pubkeyl)/R1} |
¢(R1)]

VR, resultl.C[{enc(Ro, pkpc)/x1}|
{enc((pk(ski), sign(resultl, ski)),pka2)/x2}|
{enc(resultl,pkpc)/xs}
| {dec(ml,al)/(pubkeyl, signedl)} |

{checksign(signedl, pubkeyl)/R:} |
o(R1)]

An attack scenario like the one given above is highly proba-
ble to happen in a real implementation. After exposing it in
Schemel, claimed to respect secrecy, we ask does there exist
a transmission protocol that is not vulnerable in the presence
of corrupt officials? Does there exist means to mitigate this
threat for protocols proven to be susceptible to it? We intend
to address these questions and tackle other issues as well as
our work progresses.

Besides corrupt administrators, another case that we could
consider is incompetent administrators. That is officials
handling some e-voting processes that does not have enough
information on how to perform them. As stated in our as-

sumptions, we consider the transmissions to be perfect, and
this includes the capability of the entities handling the pro-
cesses. However, if we receive reports of such scenarios, then
it could be part of our future work to formalize its detailed
description.

6. CONCLUSION

The transmission phase of e-voting is a critical part of the
system. Preliminary results are at risk of alteration during
this stage, which could severely impact the outcome of the
election. In this paper, we presented the formal specifica-
tion of two ballot transmission protocols in the applied pi
calculus. We then verified the standard secrecy property
by reachability tests using ProVerif. The automated proofs
showed that the secret keys used in the protocols are secure
and when properly encrypted the transmission of the results
are safe. While performing secrecy verification, we came
upon the case of corrupt administrator. We proceeded to
formally define such scenario, and show its possible existence
in Schemel. In our future work, we intend to address this
issue. We also plan to verify other secrecy properties and
investigate privacy properties (i.e. properties analyzed using
equivalences). The formal specifications presented here will
be further refined in our next analysis, and could serve as a
framework for other protocols to be studied. After analyz-
ing the case studies presented in this paper, this framework
should be capable to perform analysis of a real case, such as
the transmission protocol that have been implemented in a
national election.

7. ACKNOWLEDGEMENTS

We would like to thank Pablo Manalastas and Felix Muga
for an interesting and helpful discussion about election pro-
cedures and its challenges.

8. REFERENCES

[1] M. Abadi and C. Fournet. Mobile Values, New Names,
and Secure Communication. In Proceedings of the 28th
Annual ACM SIGPLAN - SIGACT Symposium on
Principles of Programming Languages (POPL '01),
pages 104—115, London, UK, Jan. 2001.

[2] M. Backes, C. Hritcu, and M. Maffei. Automated
Verification of Remote Electronic Voting Protocols in
the Applied Pi-Calculus. In Proceedings of 21st IEFE
Computer Security Foundations Symposium (CSF
'08), pages 195-209, Pittsburgh, PA, USA, June 2008.

[3] B. Blanchet. An Efficient Cryptographic Protocol
Verifier Based on Prolog Rules. In Proceedings of the
14th IEEE Computer Security Foundations Workshop
(CSFW ’01), pages 82-96, Cape Breton, Nova Scotia,
Canada, June 2001.

[4] B. Blanchet. ProVerif Automatic Cryptographic
Protocol Verifier User Manual, 14 Sept. 2010.

[5] California Secretary of State Debra Bowen.
“Top-to-Bottom” review of electronic voting systems
certified for use in the State of California. Technical
report, California Secretary of State, 2007. Available
at http://www.sos.ca.gov/voting-systems/
oversight/top-to-bottom-review.htm.

[6] D. Chaum. Untraceable Electronic Mail, Return
Addresses, and Digital Pseudonyms. Communications
of the ACM (CACM), 24(2):84-90, Feb. 1981.

(7l

(14]

(15]

(16]

18]

(19]

S. Delaune, S. Kremer, and M. Ryan.
Coercion-Resistance and Receipt-Freeness in
Electronic Voting. In Proceedings of the 19th IEEE
Computer Security Foundations Workshop (CSFW
'06), pages 28-39, Venice, Italy, July 2006.

S. Delaune, S. Kremer, and M. Ryan. Verifying
Properties of Electronic Voting Protocols. In
Proceedings of the 2006 IAVoSS Workshop On
Trustworthy Elections (WOTE ’06), pages 45-52,
Cambridge, UK, June 2006.

S. Delaune, S. Kremer, and M. Ryan. Verifying
Privacy-type Properties of Electronic Voting
Protocols. Journal of Computer Security,
17(4):435-487, July 2009.

D. Dolev and A. C.-C. Yao. On the Security of Public
Key Protocols (Extended Abstract). In 22nd Annual
Symposium on Foundations of Computer Science
(FOCS ’81), pages 350-357, Nashville, TN, USA, Oct.
1981.

T. El Gamal. A Public Key Cryptosystem and a
Signature Scheme Based on Discrete Logarithms. In
Advances in Cryptology - Proceedings of CRYPTO '8/,
pages 10-18, Santa Barbara, CA, USA, Aug. 1984.

H. Hursti. Critical Security Issues with Diebold TSx,
May 2006.

Ireland Minister for the Environment, Heritage and
Local Government John Gormley. Minister Gormley
announces Government decision to end electronic
voting and counting project. Available at http:
//wuw.sos.state.oh.us/S0S/Text.aspx?page=4512,
23 Apr. 2009.

T. Kohno, A. Stubblefield, A. D. Rubin, and D. S.
Wallach. Analysis of an Electronic Voting System. In
Proceedings of the 2004 IEEE Symposium on Security
and Privacy (S&P ’04), pages 27—-40, Berkeley, CA,
USA, May 2004.

S. Kremer, M. Ryan, and B. Smyth. Election
Verifiability in Electronic Voting Protocols. In
Proceedings of the 15th European Symposium on
Research in Computer Security (ESORICS ’10), pages
389-404, Athens, Greece, Sept. 2010.

S. Kremer and M. D. Ryan. Analysis of an Electronic
Voting Protocol in the Applied Pi Calculus. In
Programming Languages and Systems: Proceedings of
the 14th European Symposium on Programming
(ESOP ’05), volume 3444, pages 186-200, Edinburgh,
Scotland, UK, Apr. 2005.

C. Lambrinoudakis, D. Gritzalis, V. Tsoumas,

M. Karyda, and S. Ikonomopoulos. Secure Electronic
Voting: The Current Landscape. In D. Gritzalis,
editor, Secure Electronic Voting, pages 101-122.
Kluwer Academic Publishers, 2003.

L. Loeber. E-Voting in the Netherlands; from General
Acceptance to General Doubt in Two Years. In
Proceedings of the 3rd International Conference on
Electronic Voting (EVOTE '08), pages 21-30, Castle
Hofen, Bregenz, Austria, Aug. 2008.

M. McGaley and J. P. Gibson. E-Voting: A Safety
Critical System. Undergraduate thesis
NUIM-CS-TR-2003-02, NUI Maynooth, Computer
Science Department, 2003. Available at http://www.
cs.may.ie/research/reports/2003/index.html\#02.

[20]

[21]

[22]

[25]

[26]

R. Milner. Communicating and Mobile Systems: the
w-Calculus. Cambridge University Press, Cambridge,
UK, 1999.

National Institute of Standards and Technology. FIPS
Publication 180-3: Secure Hash Standard (SHS).
United States Department of Commerce, Oct. 2008.
Ohio Secretary of State Jennifer Brunner. Evaluation
& Validation of Election-Related Equipment,
Standards & Testing (EVEREST). Technical report,
Ohio Secretary of State, 2007. Available at http:
//wuw.sos.state.oh.us/S0S/Text.aspx?page=4512.
R. L. Rivest, A. Shamir, and L. Adleman. A Method
for Obtaining Digital Signatures and Public-Key
Cryptosystems. Communications of the ACM
(CACM), 21(2):120-126, Feb. 1978.

J. Rodrigues-Filho, C. Alexander, and L. Batista.
E-Voting in Brazil - The Risks to Democracy. In
Proceedings of the 2nd International Workshop on
Electronic Voting (EVOTE ’06), pages 85-94, Castle
Hofen, Bregenz, Austria, Aug. 2006.

M. Ryan and B. Smyth. Applied Pi Calculus. In

V. Cortier and S. Kremer, editors, Formal Models and
Techniques for Analyzing Security Protocols. 10S
Press, Mar. 2011.

C. Sturton, S. Jha, S. A. Seshia, and D. Wagner. On
Voting Machine Design for Verification and
Testability. In Proceedings of the 2009 ACM
Conference on Computer and Communications
Security (CCS '09), pages 463-476, Chicago, IL, USA,
Nov. 2009.

D. Wagner, D. Jefferson, and M. Bishop. Security
Analysis of the Diebold Accubasic Interpreter, Feb.
2006.

S. Wolchok, E. Wustrow, J. A. Halderman, H. K.
Prasad, A. Kankipati, S. K. Sakhamuri, V. Yagati,
and R. Gonggrijp. Security Analysis of India’s
Electronic Voting Machines. In Proceedings of the 17th
ACM Conference on Computer and Communications
Security (CCS ’10), pages 463-476, Chicago, 1L, USA,
Oct. 2010.

