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ABSTRACT

At present, developers hand code their touch screen applications to
recognize and react to unconventional touch gestures for special
needs. In this paper, we present a Hidden Markov Model toolkit
for gesture recognition designed to save developers time and effort
in developing gesture-based applications for handheld devices.
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1. INTRODUCTION

Gestural interaction has been identified as an important component
of modern multi-modal interfaces because a collection of simple
2D gestures can represent myriads of various actions. Developers
at present are required to hand code haptic gesture recognition into
their touch screen applications, making development more difficult
since various factors, including but not limited to finger offsets,
incidence angles, etc. have to be considered. The toolkit to be
described herewith was designed to recognize gestures from
examples and integrate trained gestures into touch screen
applications for handheld devices.

This paper will include a discussion of related works, the machine
learning technique utilized in our design, an initial prototype, as
well as results from experiments done on the prototype. The
gesture recognition engine was designed to run on the Apple
iPhone and to recognize both single-stroke and multi-touch
gestures. A multi-touch haptic gesture is defined in this study as a
continuous finger-based touch gesture that begins with the onset of
the first finger on the touch surface and ends with the lift-off of all
fingers. As illustrated in Figure 1, the engine developed can
differentiate such gestures in terms of position (i.e. a gesture made
at the top of the touch surface is different from a similar gesture
made at the bottom of the surface), rotation (i.e. a top-to-bottom
“X” gesture is different from a left-to-right “X” gesture), and scale
(i.e. a big “X” gesture across the touch surface is not the same as a
small “X” gesture at the center of the display).
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Figure 1 Different Locations, Orientations, and Scales

2. RELATED WORK
2.1 Machine Learning (ML) Algorithms

The most common algorithms used in the recognition of various
modes of human-computer interaction are Artificial Neural
Networks (ANN), Support Vector Machines (SVM), and Hidden
Markov Models (HMM). These algorithms are often chosen for
recognition systems primarily because of their learning capability
and accuracy. These algorithms are dependent on the quality of
extracted motion features which reflect the non-linear nature of
human motions [6].

2.1.1 Artificial Neural Networks (ANN)

ANNSs are mathematical models inspired by biological neural
networks whose information processing uses a connectionist
approach. Different ANN algorithms have been used in the study
of recognition systems. Some examples are (1) Murakami and
Taguchi’s recurrent neural network for recognizing symbols from
Japanese sign language gestures [15], and (2) Modler and Myatt’s
time-delay neural networks (TDNN) for recognizing hand gestures
as patterns. As such, both studies utilized neural networks since
neural networks are known for pattern recognition. Though the two
studies implemented different ANN algorithms, both still rely on
the basic principles of using multiple inputs for sampling to
achieve a set of user-defined desired outputs. Both studies
observed recognition rates that imply better accuracy given more
training patterns.

2.1.2 Support Vector Machines (SVM)

SVMs are supervised, non-probabilistic binary linear classifiers.
SVM algorithms are mainly used in human recognition systems
(e.g. face recognition and detection). Li, et al. studied multi-view
face detection and recognition using SVM and claims that SVMs
address the problem of rotation out of the image plane that ANN-
based systems have not [12]. They showed that using their system
on ten subjects, implementing SVM yielded 93% recognition
accuracy. A recent study by Dongwei, et al. cites multiple reasons
for their choice of SVMs:

(1) Effectiveness in terms of image classification as proven
in a study by Scholkopf, et al.

(2) Simplicity of process in extracting the set of data for
classification, which is done automatically or implicitly
through SVM

(3) School of thought is similar to ANN, but addresses a
limitation of ANNs. SVMs optimally divide a data set
into two categories for classification and make use of the
one-versus-the-rest strategy [6], which provides room for
flexibility in terms of recognizing unknown or undefined
data.



2.1.3 Hidden Markov Models (HMM)

HMMs were originally developed for speech recognition, but have
later become popular in researches concerning gesture recognition.
Chen et al. conducted a research for hand gesture recognition
involving an HMM using a real-time tracking method. They
collected 60 (20 people, 3 times each) different image sequences
for each of 20 pre-defined gestures and used these for their data.
Their system made use of Fourier descriptors to extract hand
gestures, enabling characterization of spatial features and motion
analysis on the videos. Their experiment yielded a recognition rate
of 97% using the training data for testing and 90.5% using separate
testing data, which increased to 98.5% and 93.5% respectively
when motion vectors were added to the use of Fourier descriptors.
Another study by Webel, et al. cites that HMM provides a
probabilistic framework that can account for time-varying and
dynamic gestures [22]. This study covers multi-touch gestural
interaction on a table-top display where gestures by both
experienced and novice users can be made. The training phase of
the study involved eight individuals performing a gesture 20 times
to account for possible differences. The research yielded 97.5%
recognition accuracy.

Table 1. Table of Comparison for ML Algorithms

and HMM (Baum-Welch algorithm) to learn hand gestures by
example [8]. It also has a recognition stage for which 40 different
gestures were defined to demonstrate and test the subtleties of
finger movements. The said system averaged a recognition rate of
91.5% on large multi-touch screens which makes it reasonable for
practical use. Similarly, Webel et al. made a gesture recognition
module with a filtering phase prior to a training/learning phase
employing k-means clustering and HMM, and a recognition phase.
Training data were collected on a touch table and testing was done
on both a computer’s desktop (via mouse) and the touch table. The
accuracy of recognition of this study are relatively higher than
those of Damaraju and Kerne’s system.

Another interesting work is the Stroke Shortcuts Toolkit by Appert
and Zhai [2]. This toolkit is a Java Swing extension to simplify
addition of stroke shortcuts to Swing applications. It has a
structured yet open environment where designers and/or
developers define strokes through a design space. New strokes can
be defined simply by transforming and/or combining strokes in a
predefined dictionary. This dictionary eliminates the need for a
training phase for its recognition engine, but it also limits the
number of possible gestures to an extent. The strokes are collected
from pen- and mouse-based inputs, and the error rates of the
system for both are relatively insignificant and almost negligible.

The following table provides a summary and a comparison of these

Criterion ANN SVM HMM
Technique Multiple in- | Multiple inputs | Uses probability
puts mapped | mapped to a to output models
to a single single user- and takes into
user defined | defined output | consideration
output but divides data | time-varying and
set into two dynamic inputs
categories for
classification
Adaptability | Outcome is Flexible Very Flexible
always fixed | (undefined data | (Data is de-fined
(no room for | can be accepted | based on
dynamic if similar to probabi-listic
variations) defined data) inputs)
Recognition |71 4 _ggg, 90— 95% 90.5 - 98.5%
Accuracy
Common Gesture or Face recog- Originally
Applications | motion recog- | nition and developed for
nition (mostly | detection (also |speech recogni-
video-based | covers motion |tion (now widely
inputs) recognition) used for gesture
recognition
researches)

HMM was chosen for this study primarily due to its recognition
accuracy as seen in relevant previous studies as well as flexibility
in terms of application as can be seen in Table 1.

2.2 Related Systems and Toolkits

Carnegie Mellon University’s Landay and Myers have extended
the Garnet User Interface Development Environment to support
pen-based and mouse-input gestures in applications for desktop
workstations [10]. They created Garnet gesture interactors from
classifiers made based on distinguishing features extracted
statistically from examples. Their study concluded that gestures
should be considered as a basic input type and suggested
improvements in terms of context-dependency as well as explicit
declaration of gestures being size- and/or orientation-independent.

The Gesture Learning and Recognition System by Damaraju and
Kerne has a learning stage which makes use of k-means clustering

systems.
Table 2. Table of Comparison for
Related Systems and Toolkits
System Input Technique Limitation
Landay Pen and Statistical Context-dependency,
and Myers | mouse extraction of | independence from
distinguishing | size and orientation
features
Damaraju | Multi-touch | K-means clus- | Tested on large
and Kerne |hand tering, HMM, | multi-touch displays
Baum-Welch |only, data/ feature set
algorithm in video format
Webel Hand and | K-means Tested on touch
mouse clustering, tables (hand) and
HMM computer desktops
(mouse)
Appert and | Pen and Modification | Strokes limited to
Zhai mouse of pre-defined | pre-defined
strokes dictionary

3. THE MULTI-TOUCH HAPTIC
GESTURE RECOGNITION TOOLKIT

The toolkit we implemented reduces the burden of developers via
abstracting the process of hand-coding gesture recognition. It
provides developers an Application Programming Interface (API)
and other files helpful for gesture recognition, resulting to less
complex and fewer lines of code. The toolkit consists of two main
applications: (1) The data collection application installed in the
handheld device (Apple iPhone in this study) and (2) The desktop
toolkit. The handheld application serves as the medium for gesture
inputs, for collecting sample data, and connecting to the desktop
toolkit, which in turn is a platform for training and model
generation. Specifically, the desktop toolkit runs the training and
preliminary testing phases of the machine learning algorithm
(HMM).



3.1 Architectural Design

The toolkit has three modules: Collection, Training, and
Recognition. The Collection Module is where the system collects
and records sample gesture data. This module will run on the touch
screen device (iPhone). Collected gesture data are then transferred
into a gesture library/database in a desktop computer, where the
Training and Recognition modules are run. With this setup, the
user can store numerous amounts of gesture data and has the
liberty to choose which types of gestures they intend to use for
their applications, without being bound by the iPhone's memory
and processing limitations (that is, opposed to a PC). User-selected
gesture data will then serve as training examples for the Training
Module. The Training Module, which is made up primarily of a
user interface with background HMM processes, creates the
corresponding gesture model to be fed to the Recognition Module,
which tests the accuracy of gesture recognition via a naive
Bayesian classifier. Once a satisfactory recognition accuracy
(relative to the user's objective measure) is met, the user can opt to
use the trained HMM gesture models as input to the API file or
object for a recognition application in the iPhone which will
perform recognition when a touch event is passed onto it.
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Figure 2 Architectural Design of the Toolkit
3.2 Collection Module

This module aids in collecting data from sample gestures. Its main
component is a Gesture Input Application (GIA) that stores into a
text file a series of Cartesian coordinates corresponding to the
touch points collected at a rate of 60 sets per second. These text
files can then be transferred to the training module (in the desktop
toolkit application) via SyncDocs, a GNU-licensed application for
transferring files through the Bonjour discovery protocol of Apple.

library/
database

For this study, sample gesture data were collected from 20
randomly chosen individuals, some of whom are experienced
iPhone users. Each user provided at least 5 samples of each of the
gestures used in the study.

3.3 Training Module
3.3.1 Data Preprocessing

Prior to training, collected gesture data must be pre-processed into
observation vectors. This can be done through feature extraction
and vector quantization.

Feature selection and extraction are used to reduce bandwidth of
input data, to remove redundant or irrelevant information, or to

provide a relevant set of features for the classifier [21]. The
features most used for gesture recognition are templates, global
transformations, zones, and geometric features [23]. For this study,
the set of features utilized includes: (1) the set of point coordinates,
(2) the location, (3) the direction, and (4) the velocity at which the
gesture is performed. These are done via converting to polar

coordinates (in the form (y/(Ax)? +(Ay)2,arctan(i—z)) the

transition between every pair of corresponding Cartesian
coordinates, taking note of the first point of contact, and collecting
points at a uniform rate. The generated polar coordinates are then
converted into finite symbols through vector quantization (VQ).

Vector
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Feature Extraction
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Figure 3 Preprocessing of raw inputs for training

VQ is the process of encoding of a p-dimensional vector x as a
value from a set codebook of g vectors, zi,..., z,, termed as the
code vectors or the codewords [21]. In this study, k-means
clustering is used to generate the codebook, ensuring the code
vectors to be specific to the set of sample gestures intended for
training and recognition. Once the codebook is complete, separate
text files are created to store the corresponding code vectors for the
pre-processed gesture data.

3.3.2 HMM Training

HMM is a doubly stochastic process involving sequences of states
(which are hidden and internal to the model) and of emission
symbols (which are observable) [9]. Formally, an HMM is defined
with the following parameters:

(1) N :number of states of the model

(2) M : number of observed states

(3) II: an array of initial state probabilities

4) A : an N x N matrix of state-to-state transitional
probabilities

(5) B:an N x M matrix of state output probabilities

In this study, two approaches to HMM training have been
reviewed, implemented, and analyzed. The first one makes utilizes
the well-known Baum-Welch algorithm and an ergodic (fully
connected, i.e. a state can transition to all other states) topology.
The second one uses an optimized/modified algorithm by Vesa-
Matti Mantyla [14] and a left-right (strictly uni-directional
connection, a state can only transition to a subset of the states,
which may include itself, but generally following one direction)
topology.

Ergodic Left — Right

Figure 4 Ergodic vs Left-Right Topology

The Baum-Welch algorithm is an Expectation Maximization (EM)
algorithm for re-estimating the three probabilities (7, 4, B) of an
HMM model. It is a process that iterates the following steps until a
local maximum (has been proven good enough so it is used instead
of the global maximum, computing for which is intractable) is
reached or a pre-defined number of iterations is met:



(1) Selection of initial values for A (/7, 4, B)

(2) Determination of probable sequences of states

(3) Computation of the expected number of each of the
state-to-state transition (S)

(4) Computation of the expected number of times each
symbol is emitted from a state (E)

(5) Re-estimation of A from S and E.

(6) If not converged, repeat from step 2.

Mantyla’s modified algorithm involves the same steps as the
Baum-Welch algorithm, excluding step 6. Reiteration is no longer
necessary because of slight re-estimation formula modifications
that are anchored on certain assumptions and observations
applicable to the left-right topology.

Both algorithms employ (for determination of probable state
sequences) the Forward-Backward algorithm, a smoothing
procedure for HMMs which involves three steps:

(1) Computing for forward probabilities (probability of
transitioning to a particular state given the first k
observations in a sequence)

(2) Computing for backward probabilities (probability of
observing the remaining observations given a point k)

(3) Combining the forward and backward probabilities to
compute for smoothed values.

3.4 Recognition Module

The recognition module is an intermediate step between the
training and the deployment of the HMM models. It provides users
the facility to test the accuracy of the Training Module’s output
HMMs. Recognition is done through a naive Bayesian classifier
given the respective probabilities of the models involved.

4. RESULTS AND DISCUSSION

Two ways have been designed to test the gesture recognition
accuracy. One is through the Recognition Module described above,
and another is through a prototypic iPhone casual cooking game
which utilizes the system's API containing the trained models for
the gestures designed for the application.
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Figure 5 Multi-touch gestures required for the game
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The game involves performing the gestures illustrated in Figure 5
as instructed by the player’s chosen recipe, either fried egg or
omelet. When the user performs a gesture incorrectly, the system
will display a red “X” on screen, and will only proceed to
animation and the succeeding instruction once the user is able to
perform the gestures correctly. The game ends when the user
successfully performs all the gestures necessary for his/her chosen
recipe.

The two training algorithms described in the previous section have
been tested. These two algorithms have been compared based on

speed and accuracy of both training and recognition. Table 3 is a
summary of the results.

Table 3. Comparison of HMM Algorithms

Ergodic — Left-Right —
Baum Welch | Modified Algorithm
Training Speed 6 to 30 hours 4 to 620 seconds
Training Accuracy 73% 98%
Recognition Speed 4 seconds 40 milliseconds
Recognition Accuracy 62% 80%

For each algorithm, Training Speed is shown as a range of the
mean running times for training different sets of gestures on
desktop computers while Recognition Speed is the mean running
time of recognition for a specific gesture on the iPhone. Training
Accuracy shown is a mean of the accuracy of recognition (number
of correctly identified gestures over total number of gestures fed)
of gestures chosen from the set of training data while Recognition
Accuracy is a mean of the accuracy of recognition of real-time on-
device (iPhone) gestures outside the training set. As can be seen
from Table 3, the left-right model using the modified algorithm in
[14] has a significantly better performance.

Various tests have also been run to gauge the accuracy of models
generated under different circumstances. A summary of the results
are as follows:

Table 4. Comparison of Accuracy Given Number of States

Different Constant
Gesture Failed | M7 1A ccurate| Failed | M5 | Accurate
cognized cognized
Bowl 0% 24% 76% 0% 22% 78%
Chopsticks | 0% 18% 82% 0% 18% 82%
Egg 0% 32% 68% 0% 0% 100%
Pan 70% 0% 30% 0% 0% 100%
Salt 27% 3% 70% 40% 0% 60%

One HMM model per gesture is generated per training run. Table 4
shows a summary of the results comparing accuracy of recognition
given that training was done with (1) different number of hidden
HMM states for each gesture in the set and (2) constant number of
hidden HMM states for all gestures in the set. It can be seen that a
constant number of hidden states for all the gestures may be more
favorable.

Table 5. Recognition Accuracy Given Samples with Noise

Gesture Failed Misrecognized Accurate
Bowl 5% 30% 65%
Chopsticks 7% 15% 78%
Egg 0% 11% 89%
Pan 29% 0% 1%
Salt 15% 27% 48%

The training module comes with a visualization panel where users
can choose a file containing the points corresponding to an
instance of a gesture. Noisy samples are defined in this study as
those gestures whose visualizations are too far away from the
respective intended gesture. Some of the first-time touch screen
device users who provided gesture samples for the study have
contributed a number of noisy samples (e.g. unfinished gestures,
incorrect finger incidence angles which contributes to faulty point
determination on the device (outside the scope of this study),
improperly positioned gestures, etc.). Table 5 and Table 6 show the




same set of gestures with and without noisy samples, respectively.
Although the system was expected to tolerate noisy data which
may be brought about by dissimilarities among the users, it can be
observed that performance is slightly better for training data
without noise.

Table 6. Recognition Accuracy Given Samples without Noise

(1) Given the sample-based codebook generation, training
the set of gestures to be distinguished from each other
are better trained together.

(2) Training roughly the same amount of samples for similar
gestures to be distinguished from each other improves
system performance.

Gesture Failed Misrecognized Accurate
Bowl 0% 33% 67%
Chopsticks 0% 1% 99%
Egg 0% 3% 97%
Pan 1% 18% 81%
Salt 8% 40% 52%

3
“

Minimization of noise in samples makes room for better
recognition accuracy and less required samples.
Assigning constant values for the number of clusters
(code vectors) and number of states for all models of
gestures in a set can slightly improve recognition
accuracy.

Four sets of ambiguous gestures have also been tested on the
system. Three of the four sets are as follows:

(1) Check mark (“\/ ”) and the 22" letter in the English
alphabet (“V”)

(2) The Arabic numeral for five (“5”) and the English
alphabet’s 19™ letter (“S™)

(3) The Arabic numeral for two (“2”) and the last letter in
the English alphabet (“Z”)

Tests ran using these gesture sets generated results which are
similar to those previously shown. Figure 6 illustrates the more
significant set of ambiguous gestures, “9”, “g”, and “q”, along with
a visualization of corresponding sample user input for each.
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Figure 6 Ambiguous Gestures and Corresponding User Input

Table 7 shows the system’s performance given the ambiguous
gestures illustrated above. It should be noted that this performance
is significantly worse than those of non-ambiguous gestures (as are
illustrated in Figures 4, 5, and 6). However, further study is
necessary to make a sound conclusion.

Table 7. Recognition Accuracy Given Ambiguous Gestures

Gesture Failed Misrecognized Accurate
g 0% 2% 98%
q 0% 100% 0%
9 0% 20% 80%

S. CONCLUSION

Based on the results of the study, the proponents would like to
conclude the feasibility of using HMM for real-time and practical
multi-touch gesture recognition. Some observations for achieving
better performance of the system include:

6. FUTURE WORK

Further study using our system can focus on finding the ideal
values for the number of clusters (i.e. size of the codebook) and
number of samples. Other studies can also be done on similar
systems using other clustering or quantization algorithms, learning
algorithms, and classifiers (for recognition). Future work can also
consider the following: (1) further analysis for the ambiguous
gestures, (2) support for non-continuous gestures (e.g. taps, double
taps, etc.), (3) the incorporation of the recognition process into the
operating system of the handheld device, so that creation of custom
gestures is more accessible to both developers and handheld touch
screen device users.
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