Verifying Privacy-Type Properties of an Electronic Voting
Protocol that uses Identity Based Cryptography

Audrey C. Garais!, Gabrielle Ira M. Tan?
Danny F. Wuysang?, Henry N. Adorna*

Algorithms and Complexity Laboratory

Department of Computer Science
College of Engineering
University of the Philippines - Diliman
lgaraisaudreyc@gmail.com, 2gabrielleira.tan@gmail.com,
sdfwuysang@up.edu.ph, ‘ha@dcs.upd.edu.ph

ABSTRACT

The Philippines carried out their national elections last 2010
using electronic voting. One of the concerns for the election
was the security of computerized elections. It is important
that not only the technology is taken into consideration but
also the protocol by which the voting is done. Securing the
protocol secures that the votes are properly counted with-
out any anomaly, just as it would be done manually in an
ideal setting. In this paper, we verify the properties of an
electronic voting protocol in applied pi calculus, as this field
is an active research with its growing significance in society.

1. INTRODUCTION

Electronic voting has been introduced in numerous coun-
tries because it promises fast, convenient and secure voting.
Many protocols have been developed specifically for elec-
tronic voting. A few examples are the FOO 92 scheme[6],
Lee et al. protocol [11] and Juels et al. protocol[8]. Three
main kinds of protocols can be found in the literature, these
are classified according to the mechanism they employ. In
blind signature schemes, an administrator blindly signs a
message sent to the voter, the token. This token proves the
voter’s eligibility to vote. In schemes that use homomorphic
encryption [4], the voter cooperates with the administrator
in order to construct an encryption of her vote. The admin-
istrator then exploits homomorphic properties of the encryp-
tion algorithm to compute the encrypted tally directly from
the encrypted votes. The third kind of scheme uses ran-
domisation to remove the link between the voter and her
vote. All of which have their own set of satisfied properties
significant to secure the voting process. Some properties
that security protocols may satisfy are: eligibility, fairness,
individual verifiability, universal verifiability, vote-privacy,
receipt-freeness and coercion - resistance. Of these proper-
ties, the last three [4] are broadly privacy-type properties

since they guarantee that the link between the voter and
her vote is not revealed by the protocol.

The research focuses on electronic voting using identity
based cryptography [7] devised by Gallegos et al. The proto-
col can be summarized into four phases: Set-Up, Authenti-
cation, Voting and Counting. The Set-Up phase is generally
for generating the private and public keys for the election.
The Authentication phase ensures that a voter is a registered
voter and is therefore allowed to participate in the election.
Voting includes choosing a vote, blinding the vote and sign-
ing of the vote by the authorized election Entity and the
voter, and verifying the said signatures. Lastly, the votes are
counted during the Counting phase by a combining entity,
and the tally is published. The authors of the protocol have
claimed that the following properties are satisfied by the
protocol: Privacy, Eligibility and Uniqueness, Uncoercibil-
ity, Transparency, Accuracy and Robustness. Among those,
Privacy and Uncoercibility are the privacy-type properties
that the researchers will verify using the applied pi-calculus.

The applied pi calculus and the formalisation of the pri-
vacy type properties only deal with the activities of the voter
process and its interactions with other entities and the co-
ercer. The method of proving involves the protocol and not
any of its possible implementations. The paper will be focus-
ing on the formal specification of the IBC protocol and ver-
ification of the privacy - type properties the authors claim.

The applied pi calculus is defined as a language for de-
scribing and analysing security protocols [12]. It provides an
intuitive process syntax for detailing the actions of the par-
ticipants in a protocol, emphasising their communication.
It has been used in formalising and analyzing various secu-
rity protocols in various areas. It is based on pi calculus
but is easier to use. The applied pi calculus allows one to
define less usual primitives (often used in electronic voting
protocols) by means of an equational theory [4]. Using this,
together with the semantics and equivalences of the calculus,
protocols can be modeled and analysed formally.

The properties mentioned above have been formalised
and verified for some protocols in the work of Delaune et al
[4] using applied pi calculus. The literature gives a formal-
isation of the privacy-type properties that a cryptographic



protocol may possess and in effect, it provides the method
of deriving the proof for the said properties. Vote-privacy,
the weakest of the three, states that the way the voter voted
is not revealed to anyone else. Receipt-freeness states that
the voter does not receive a receipt to prove to an attacker
that she voted in a certain way. Coercion-resistance states
that an attacker cannot establish the connection between
a voter and her vote even if the voter willingly cooperates
with the attacker. Receipt-freeness implies vote-privacy and
coercion-resistance implies receipt-freeness as shown in [3].
We now use the same method as in the literature to verify
the properties of the protocol due to Gallegos-Garcia et al.

We first discuss the identity-based cryptography (IBC)
protocol due to Gallegos-Garcia et al in Section 2, followed
by a discussion of the applied pi-calculus in Section 3. We
present to you our formalization of the IBC protocol in Sec-
tion 4. Section 5 summarizes our verification and analysis.
Lastly, we compare our results with the properties claimed
by the authors of the IBC and layout further plans for our
research in Section 6.

2. IDENTITY BASED CRYPTOGRAPHY
PROTOCOL

The protocol involves voters, an authentication author-
ity who verifies if the voters are eligible to vote, a combining
entity who counts and publishes the votes, a storage device,
and entities who may or may not be one of the aforemen-
tioned election officials. Entities sign the votes to encrypt
them and decrypt portions of all votes to retrieve the plain-
text after the voting phase. It relies on bilinear mappings
and hash functions for security. Voters do not need pub-
lic and private keys for encryption as this protocol involves
identity based cryptography.

In the first phase the keys are generated and shared between
all entities.

e A PKG sets up g1, go, the private key of the protocol
s1, and the public key of the protocol P.p..

e Each Entity F sends the PKG their ID;. The PKG
computes their public key and a share of the private
key s; and sends these to the entities.

e PKG sets up a signing private key s and a signing
public key P.;,. Signing public and private keys are

computed using the entities’” /D2 and are sent to the
respective entities.

The second phase is the authentication phase.
e Voter V shows an identity card to the authentication
authority to prove that he is a legitimate voter.
e V then selects a random I D of any entity, this entity

will be the one to sign her vote.

The third phase is the actual voting phase.

e V selects a vote v and a random number 71 to compute
< U, W > = <mul(ri, pointgen), zor(v, Ha(exp(é
(encpubkey, Epubkey), r1))) > where mul is multipli-
cation, pointgen is a point generator available to the
public, € is a bilinear mapping, encpubkey and Epub-
key are the public key of the entity and the public
signing key respectively. This is the encrypted vote.

e Entity F chooses a random number r2, and computes
X = mul(r2, p) where p is the point generator. He
sends this to V' as a commitment.

e V chooses numbers a and b and computes
¢ = add(Hzs(ev, add(add(mul(b, Esignkey), mul(a, p)),
x), esigpkey),b). This c is then sent to E. Esignkey
is the public signing key of the entity and esigpkey is
the public signing key of the protocol.

e E computes S = add(mul(c, aprivsignkey) where
aprivsignkey is his private signing key. He sends this
StoV.

e V computes (5, ") = (add(S, mul(a, esigpkey)), sub(c,b)).

This is now the signature.

e Vsends < U W >, (8,c) and the id of the entity
who signed the vote to the storage device.

e V receives a hash with a timestamp from the storage
device as a receipt.

The fourth phase is the counting phase.

e Combining Entity C verifies the signatures from the
votes obtained from the storage device. If they are
correct, U from < U, W > are sent to all entities F.

e Every E computes a decryption share for each vote
é(U, encskeyshare) where encskeyshare is a share of
s2. Shares are sent back to C'.

e C recovers the plaintext v from the shares and pub-
lishes these along with the receipts.

The first and second phase must be completed before
the voting phase. A synchronization between all election
parties is needed. This ensures that all entities receive their
respective keys before voters ask for their commitment to the
votes. Another synchronization is needed after the voting
phase and before the counting phase. This is to make sure
that no partial results are released.

3. APPLIED PI CALCULUS

3.1 Syntax
L MN, T, UV ::= terms
a,b,c,....k,m,n,....s name
T,Y, 2 variable
g(Ma, ..., M) function application

To create a process in the calculus, a set of names, a set
of variables and a signature 3 must be defined. Names may
be identifiers of communication channels or other atomic



data. X consists of all function symbols which will be used
to define terms. Typical function symbols deal with crypto-
graphic primitives such as encrypt, decrypt and hash. Terms
may be names, variables and function symbols applied to
other terms. An equational theory (E) defines the relations
between the functions. Equivalence is denoted by =g. A
typical example of an equational theory E used in crypto-
graphic protocols is dec(enc(z, k), k) = z. T1 = enc(n, k)
and T = dec(enc(enc(n, k),1),1) are equal, T1 =g Tb.

Plain processes and extended processes are used in the

calculus. An extended process may be a plain process or
several plain processes running in parallel.

The grammar for a plain process is as follows:

P,Q,R ::= plain process
0 null process
P|Q parallel composition
P replication
vn.P name restriction
if M = N then P else Q conditional
u(z).P message input
a(z).P message output

The null process does nothing. P | Q is process P
and @ running in parallel. This is used to represent par-
ticipants in a protocol running in parallel. !P is an infinite
number of process P’s running in parallel, used to simulate
an unbounded number of sessions. vn.P binds n to P, this
is used for random numbers, keys and private channels. If
N = M then P else Q is standard, but the equivalence used
is equivalence under an equational theory rather than strict
algebraic equivalence.

The grammar for an extended process is:

A,B,C == extended processes
P plain process
A|B parallel composition
vn.A name restriction
vx.A variable restriction
™M/} active substitution

Active substitutions generalise “let” statements. {*/,}
is a substitution that replaces the variable x with the term
M whenever it is found in the process. Variables and names
have scopes, fv(A), bv(A), fn(A) and bn(A) are the free
variables, bound variables, free names and bound names of
the process A, respectively. An extended process is closed if
all its variables are either bound or in an active substitution.

The frame of process A (¢(A)) is obtained from A by
replacing every process in A by a null process. It is the
set of all active substitutions in A. The domain of a frame
1, denoted by dom(%)), is the set of variables for which %
defines a substitution (those variables x for which 1 contains
a substitution {* /,} not under a restriction on z).

3.2 Semantics

CoMmm a(z).P|a(z)Q — P|Q
THEN if M = N then Pelse @ — P
ELse  if M = N then Pelse @ — Q

for ground terms M, N where M #gr N

Processes in the applied pi calculus have operational se-
mantics that follow the structural rules that define two rela-
tions. One is structural equivalence which was explained in
the Syntax discussion, and the other is the internal reduc-
tion, noted —. Internal reduction — allows the transforma-
tion of a process such that the functions and primitives that
were executed during the reduction may now be removed
from the process, following the reduction rules above.

IN a(z).P 2205 pra/a)
Out-ATOM a(u).P 2 p
AL, g u#a

OPEN-ATOM T

pu A 2 A

AL A u does not occur in «

SCOPE ~

vu.A — vu. A’
PAR AL A bw(a)Nfu(B)=bn(a)Nfn(B)=0

A|B% A | B

A=B B3 B B = A

STRUCT

A5 A
Labelled reduction extends the operational semantics
where the relation = reduces the process where « is either
an input or the output of a channel name or a variable of
base type. This shows the interaction of the process with its
environment, justifying the reductions done.

Static equivalence =5 and labelled bisimilarity =, are im-
portant equivalence relations to be established between pro-
cesses. Two extended processes A and B are said to be stat-
ically equivalent, denoted by A ~, B if ¢(A) ~s ¢(B).The
largest symmetric relation on closed extended processes is
labelled bisimilarity, which also implies static equivalence.
Its definition is similar to the definition of bisimilarity, only
that it requires static equivalence of the processes at each
step of the reduction. Being the largest relation, it is crucial
and helpful in formalising security properties.

3.3 Privacy-type Properties in
Applied Pi Calculus

Voting protocols are modeled as closed plain processes
using the applied pi calculus. The privacy-type properties
are defined as well in terms of applied pi calculus as follows:

3.3.1 Vote-privacy
Definition 1:

SIVa{®/u} | Va{"/o}] me SVa{"/u} | Ve{"/u}]

As defined in [4], a voting protocol respects vote-privacy
if the relation above holds for all possible votes a and b. This



means that if the voters swap their votes and the attacker
is unable to identify that the swap occurred, then generally
the attacker cannot possibly find out how each of the voters
voted. If a protocol is said to be vote-private, then this
relation should still hold even if the number of voters are
increased and the votes are permuted.

3.3.2  Receipt-freeness
Definition 2:

° V/\uut(<:h<:,~) ~ VA{u/w},

o S[VA{C/’U}ChC | VB{a/v}] ~7 S[V/ | VB{C/U}]

Other definitions needed to arrive at the above rela-
tions can be found in [4]. Consider the case where the voter
willingly cooperates with the coercer (attacker), who would
want the voter to vote in a certain way. Receipt-freeness
means that whether or not a voter cooperates with the co-
ercer, the voter will not be able to prove to the coercer that
she voted in a certain way through a receipt.

3.3.3 Coercion-resistance
Definition 3:

° V//\out(chc,~) ~ VA{a/v},

o SVa{*/u}" | VB{"/u}] e SV | VB{/u}]

A protocol is coercion - resistant if a voter cannot coop-
erate with the coercer (attacker) to vote a certain way. It
is very similar to the definition of receipt - freeness. The
difference is, even if the attacker can send messages to the
voter and receive messages from the voter, the voter still
cannot prove that she voted in a certain way. This will be
further explained in the verification section.

4. FORMAL SPECIFICATION

‘We model the protocol formally in applied pi so that we
may be able to perfom formal verification on its properties.
Using the syntax and semantics described in the previous
section, we include in the model the functions and compu-
tations that are performed in the protocol. After modelling
the protocol, a proof of correctness is done to show that the
protocol was indeed modeled in applied pi calculus and still
performs accordingly.

4.1 The Protocol in Applied Pi Calculus

PKG = vgi. vga. vpg. vs1.
{mul(sl,pg)/Penc} | {computeshare(pg,l)/Pl } |

out(Ch, (917 92, pY, Pen(:y Pe}nc) ) Zn(Chl’ EZdl)
(OB g, } | omruieshere@uant) |
out(ch2, (Qide, Dia1)). in(ch3, Eiaz). vs2.

{mul(sz, Pg)/P } | out(ch, Psiq). {H1(Eid2)/Qid8} |

sig

{mul(deSa 52)/52_(15} | out(ch4, (Qids, Sids)). synchl

E; = vidi. vida. in(ch, msgE). out(chl,idi). in(ch2,ml).

msgE
{ /(a,b,p,en(:pk:ey,enukeysh,w‘e)} |

{ml/(pubkey,encskeyshare)} | {é(enckeyshare,pubkey)/l} |

{epeneskeyshare) y 414 ¢(1 = 1) then out(ch3, ids).
in(ch, sigpkey). in(ch4, m2). synchl

in(che, id). vra. {™2P) [ itment } |

out(chb5, commitment). in(ch6, cmsg).

2
{m /(apubsz'gnkey,aprivsignkey)} |
add(mul(cmsg, aprivsignkey), mul(re, sigpkey))
{ [smsg} |

out(ch7, smsg). synch2. in(che, wvote).

{é(u'uote, enaskeyshara)/share} | OUt(Ch, share).

synch3

VViq. in(ch, msgV). in(ch, esigpkey). synchl.
out(cha, Viq). in(cha, entityid). vry.

{7nsgV/ ) } |
(d, f, pointgen, encpubkey, enckeysharel)

{mul(rl, pointgen)/u} | {Hz(e:vp(é(encpubkey, Epubkey), rl))/h} |

{For®m) 1 V| {5 > oy} out(che, entityid).

in(ch5, entitym). va. vb. {enmym/(m, Esignkey) ) |

{add(mul(b, Esignkey), mul(a, p))/pl} |

{add(Ha(ev, add(p1, z), esigpkey), b)/(‘} |

out(ch6, c). in(ch7, s). {4 mulla. esigpkev)) /. 1|

sub(c, b sprime, cprime
{ ( )/ }|{(P P )/

cprime signatu'r‘e} |

{(ev, signature, entityid)/ . } |
storagemsg

out(chs, storagemsg). in(chs, receipt). synch2

SynCh]-' in(0h37 m3) {mB/(encvote,sig,Evidg)} |
{stamp( m3 )/timestamp} | {H4(encvote, sig, timestump)/Tcpt} |
out(chs, rept). synch2. {7 P/} |

{(encwote, sp, cp, Evida, 7*(:pt,)/ } |
msgtoc

out(chs, msgtoc). synch3

in(ch, pubparameters). in(ch, spk) . synchl.
synch2. in(chs, m).

pubparameters
{ /(CQrm, cgrp2, pgen, epk, elc31)} |

{m/(encryptedvote, sigs, sigc, ide, token)} | {Hl(ide)/pulmk:ey} |

{e:r,;n(Hg(enm‘yptedwote, mul(é(sigs, pgen), é(pubskey, spk))), .s'?'g(:)/k} |

if (sige = k) then {<cTvPtedvole /Y|
out(che, u). in(ch, shares).

{combine(shares)/q} | {a:or(w, HQ(g))/'uotetzt} |

synch3. out(ch, (votetxt, token)).



A = v voterList . in(ch, msgA). synchl.

let(lookup(voterid, voterList) = true) in in(cha, voterid)

if (lookup(voterid, voterList) = true)
then out(cha, rdmeids).

let(lookup(voterid, voterList) = false) in synch2

Main =v chl. v ch2 .v ch3 .v chd.vchs.vche.vcha.

( processK | !processE | processC
| processA | IprocesssS |

({Vida / Vid } [ {*"** / chs } [ {"° ) cno } |
{7 ) enz Y [{* /v } | processV) |

({Vidb / Vid } [ {" /) cns } [{"® / cne } |
{"" Jen 31 {" /v } | processV )

In the model, equations and functions used are sim-
plified. The correspondence between entities is highlighted
and given the most importance. Another crucial factor that
affects the privacy of the protocol is the information that is
known by every entity. All information broadcasted to the
public channel ch may be used by everyone. Everything else
is only known by the entity which uses it or to which it is
bound and the entity to whom this information is sent to.

Equational Theory

zor(zor(z,y),y) ==
add(sub(z,y),y) =z
mul(z,y)
exp(z, exp(z,y)) = exp(exp(z,y), )
computeshare(p, 1)
é(aP, bQ) = exp(é(P, Q), mul(a,b))
é(add(P,Q),R) = mul(e(P R),é(Q,R))
é(P,add(Q, R)) = mul(é(P, Q), é(Q, R))
Hl(CL‘)
Hg(w)
Hs(z,y)
H4(-'L‘7yv Z)
combine(shares)

The equational theory is the set of all functions used
in the formalisation and their relationships with one an-
other. These functions are abstracted for simplicity. Being
a protocol based on identity based cryptography, almost all
functions used are asymmetric and cannot be easily decon-
structed. Hi,...,H4 are hash functions. The bilinear map-
ping is represented by é. The shares of the keys are com-
puted by means of the function computeshare. Other func-
tions used, like add, mul and sub, are arithmetic in nature.
As mentioned in the description, there is a synchronization
between entities after the set - up phase, after the voting
phase and lastly, after the counting phase before the release
of results.

4.2 Proof of Correctness
For the proof of correctness, it is enough to use one
instantiation of each process to run in parallel as described

in the main process. We perform labelled reductions on the
main process (substituting the respective processes in the
terms) and arrive at the frame below. No function or process

-remain, thus, the protocol model in applied pi calculus is

correct and will still function as it was described.

¢R" = vchl.vch2.vch3.vchd.vchs.vche.vcha.
VG1m-VG2m -VDGm -VSim Vidig.Vidog.vvoter List A.
vVidy .vsak .vriv .vrag.vay .vby .

{(ylm 192m5Pgm mul(sly,pgm),
computeshare(pgm,,

{7 /a3 |

{(Hl (Eid1m),computeshare(Hy(Eidym,),1)) / } |
z2

{28 /a5} |

{mul(52x »pgm)/“} |

D) /publicparam} |

{(H1(Eidzm)mml(Hl(E??d2m),S2K))/zr } |

{7 e}
{rdmeidg /1;7} |
{entityidv /ms} |
[ )|

{add(H3(<mul(r1V,pointgen),a:or(v,Hz(ezp(é(encpubkey,
Epubkey),r1v)))>,add(add(mul(by ,Esignkey),
mul(ay ,pointgen)),x),esigpkey),by )

[#10} |

add(mul(cmsgg,aprivsignkey),mul(rog,sigpkeyg))

{ 211} |
{(<mul(r1v, pointgen),
zor(v, Ha(exp(é(encpubkey, Epubkey), r1v)))>,
(add(s,,mul(ay csigpkey)),subladd(Hs (<mul(riy pointgen),

zor(v, Ho(exp(é(encpubkey,Epubkey), riv)))>,

add(add(mul(by , Esignkey), mul(ay, pointgen)), z), esigpkey),

by ), bv)),entityid)/r 2} |
1

{H4(enc’uote,sig,stamp(mBS))/ } |
13

{9 Jz1a} |
{"/a1s} |

{é(uvoteE,encskeyshare)/ } |
16

{out((:h ,:r,or(uv,Hg(co’mb?’ne(shuresE))),toke'n,)/ } |
17

{Sigpkeyv /esigpkez/} |

{re(:eiptv /re(:ez'pt}

5.  VERIFICATION

Now that we have a formalisation of the protocol in ap-
plied pi calculus, we can proceed with the verification of its
privacy-type properties: vote-privacy, receipt-freeness and
coercion-resistance.

5.1 Vote-Privacy
We use Definition 1 (subsection 3.3.1) in proving vote
- privacy. We make the necessary substitutions for each



processV and S is the parallel composition of the processes.
We pay attention to the voter processes as no election entity
needs to be honest for we will look into that case with the
attacker context. To derive this equivalence, we show that

veh (Va{""" | [V {®** /), }|processK)

7,
veh. (Va{"" [, } Ve {*"" |, }|processK)

We denote the left-hand process as P and the right-hand
process as @ for readability. The protocol starts out with the
setup phase of the PKG where we see the communication
starts once the PK G broadcasts on the public channel the
public parameters to be used for the whole election.

in(ch,msgVy,) in(ch,msgVpg) %

P

P1 P2%

vz .out(cha,x . id

LR,V id . (Pa{Y " /0, })

vzg.out(cha,x . . i 2

L2 0t MR, Y id gV idp(Pa{ % Joy P fan})

Similarly,

Q

in(ch,msgVy) in(ch,msgVg)

Q1 Q2 ="
vy .out(cha,xq) VVidA.(le{VidA /Il })
LR, VY idawVidp (Qal{ M [ YT [2a})

In this context, we have to show that the scenario where
Voter A votes for a and Voter B votes for b is observation-
ally equivalent to Voter A voting for b and Voter B voting
for a. This shows privacy because a third party will be un-
able to tell what each voter really voted because they vote
at the same time, within the same phase of the election. Es-
sentially, all the computations, sending out and receiving of
messages of one voter should be matched and balanced by
the other voter.

oP" = vch.wVida.vVidg.vria.vrip.vaa.vba.vag.vbg.
{74 /a1 M
{78 /2,
{entityid/I3 )
{entityid/z4}|

{add(H3(<mul(r1A,pointgen),wor(alpha,Hz(e:cp(é(encpubkey,
Epubkey).r14)))>,add(add(mul(bg,Esignkey),mul(a,p)),x),
esigpkey),b,

gpkey) 4)/m5}|

{add(H3 (<mul(ryg,pointgen),zor(beta,Hs (exp(é(encpubkey,

Epubkey),r15)))>,add(add(mul(bp,Esignkey),mul(ap,pointgen)),

xz),esigpkey),b

),esigpkey) B)/x6}|
{(<mul('rlA,pointgen),zo'r(alpha,Hg(ezp(é(encpubkey,
Epubkey).r14)))>,(add(s,mul(a 4,esigpkey)),sub(add(Hs(
<mul(ry g,pointgen),zor(alpha,Ha(exp(é(encpubkey,Epubkey),
r14)))>,add(add(mul(bp,Esignkey),mul(a,p)),x),esigpkey),
ba),b sentityid

A):b4)) y )/”}'

{(<mul('rlB ,pointgen),zor(beta,Ha(exp(é(encpubkey, Epubkey),

rlp)))>,(add(s,mul(ap,esigpkey)),sub(add(Hs(<mul(rlpg,

pointgen),zor(beta,Ha(exp(é(encpubkey, Epubkey),r15)))>,
add(add(mul(bp.Esignkey),mul(ag,p)),x),

esigpkey),bp).bp )),e'n,tityid)/ }
z8

/ . .
0Q" = vch.wVida.vVidg.vria.vrip.vaa.vba.vag.vbg.

{7 /2, 3
{718 /2, Y]
{entityid/xaﬂ
{enm‘tym/w‘l}'

{add<H3<<muz(mA,pomtgem,zor(beta»Hz(emé(emp“bkey’
Epubkey),r1 4)))> add(add(mul (b 5, Esignkey),mul(a 4.p)).2),
esigpkey),bA)/ISH
[odd(Hs (<mul(ryp.pointgen) aor (alpha, Ha (ezp(é(encpubhey,
Epubkey),r15)))>,add(add(mul(bp,Esignkey),mul(ap,pointgen)),
:c).esz'gpkey%bB)/xSH
{(<mul(r1A«,pomtgen),mm‘(bﬁta,Hz(emp(é(em:pubkey,Epubkey),
r14)))>,(add(s,mul(as,esigpkey)),sub(add(Hz(<mul(ri a,pointgen),
zor(beta,Hs (exp(é(encpubkey, Epubkey),m1 4)))>,add(add(mul(by,
Esignkey),mul(aA,p))»m)ve”gl’kew’b“)’bA))’entityid)/r }|

7
{(<mul(r15 .pointgen),zor(alpha,Hz (exp(é(encpubkey, Epubkey),
718)))>(add(s,mul(ap esigpkey)),sub(add(Hs (<mul(ry g pointgen),
zor(alpha, Hz (exp(é(encpubkey, Epubkey),r15)))>,add(add(mul(bp,

Bsignkey) mul(a p)),0) csigpke) bp).bn)) entityid) /  y
g

The corresponding frames shown above are statically

equivalent, and even if we take a closer look at the values, an
attacker would not be able to distinguish the votes because
the functions are one-way only. To ensure vote privacy, the
keys does not need to be secret, but the decryption shares
play a big part. The synchronization is crucial because it
allows for all the moves of Voter A to be balance by the
moved of Voter B. In any case, no partial result will be
revealed before any of the voters have finished voting be-
cause they will have to synchronize first before the entities
can compute their shares and send to the Combining Entity.
Also, the tally of the votes will only be published after all
the votes have been combined and decrypted. Storage of the
votes still does not violate vote-privacy because each of the
votes are hashed with a time-stamp while in their decrypted
form.

Definition 1 requires a stronger equivalence, labelled

bisimilarity. The two processes, P and @, are closed under
labelled bisimilarity as proven by the static equivalence of
the frames. Same reductions are used for both sides, fulfill-
ing the second requirement of the equivalence. Lastly, the
free names and bound names of the frames are the same,
fulfilling the third requirement of the equivalence.

5.2 Receipt-Freeness

In proving receipt - freeness, we use Definition 2 (subsec-

tion 3.3.2). We construct a V' that will satisfy the above



conditions. V' is the same as process V with some modi-
fications. V' is made to communicate with the coercer by
sending messages to him, but not receiving messages. Also,
it is important to note that V' fakes cooperation with the
coercer by using a faking function on the values that she
uses during the election before sending out these values that
the coercer wants to know. Described below is the process
V' to be used in this context.
processV' = vche. vVid. out(che, Vid). in(ch, msgV).

in(ch, esigpkey). synchl. out(cha, Vid).

in(cha, entityid). vry.

1%
{msg /(d,f,pointgen,encpubkey,enckeyshaTel)}
| {mul(rl,pointgen)/u}

| {H2(ezp(é(encpubkeyA,Epubkey),rl))/h}

| {:l:or(ulph,a,h)/w} | {<u,m>/ev}.
{mor(gamma,h)/fw} | {<u,f'w>/fvote}
out(cnhc, yvote). out(che, entityla).
t(ch % t(ch tityid
in(ch5, entitym). va. vb.

{1 ) (@ Baigniey) }

| {add(mul(b,Esignkey),mul(a,pointgen)) /pl}

| {udd(Hg (ev,add(pi,x),esigpkey),b) /C}

| out(ch6,c). in(ch7,s). {odd(smullaesigpken)) ) 3

| {sub(c,b)/cpm_me} | {(Spri?ne,cp”me)/Sz.gnature}

| {(e'U,sig*rm,tu're,e’n,tityid)/ . }
storagemsg

out(chs, storagemsg).
t(chs, st
{add(Hg(fvote,é(add(pl,z),esz’_qpkey)),b)/fc}

| {Sub(fc’b)/f«prime} | {(fcpime,sprime)/fqiy}

| out(che, fsig). in(chs, receipt). out(che, receipt).

synch2

We establish the first bullet point of Definition 2 using
processV’, still denoting the left-hand process as P and the
right-hand process as Q.

in(ch,msgV,
p intchmeaVa), b -

vry.out(cha,z1)
St i SN

vehz wVid, (Pol{""% /oy })

L2ty cha wVid, (Pl {97 foy Y /)

« vzo.out(ch6,z3)
%

. Vid
vehz vVid,.vay vbv .(Po{ " /2, }
entityidy add(Hsz(<mul(riy ,pointgen),zor(alpha,
K /=23
Ho(exp(é(encpubkey,Epubkey),r1y)))>,add(add(mul(by,
1V

Esignkey)ymul(av«,p)),w)yesigpkeyv),bv)/ })
w3

Similarly,

Q

in(ch,msgV) *
—S Q1 —

vehz vVidy (Qa|{V " /4y })
veha vVidy (Qs|{V "4 Juy {4 /.01

v outOT3) e wVidy vay wby (Qal{Y 4 0}

|{entityz'dv /z2}l{add(H3(<mul(r1V,pointgen),xor(alpha,

vay.out(cha,xq)

vag.out(che,za)
—>

Hy(exp(é(encpubkey, Epubkey),r1v)))>,add(add(mul(by ,

Esignkey)ﬂnul(av,p)),z).esigpkeyv),bv)/za})

The first bullet point states that if all outputs to the
coercer was ignored in process V'’ then it would be exactly
the same as process V. This was proved by getting the
frames of process V and process V’. In getting the frame
of V', whenever an active substitution running parallel with
an output to the coercer or simply an output to the coercer
is found, it is ignored and removed from the frame. This
results in exactly the same frame for process V and V’. This
can be informally verified by visually comparing V and V.
They are statically equivalent, and as before, the values will
not be distinguishable since the functions are one-way.

Proving receipt-freeness is slightly different from proving
vote-privacy because at each step we require that the terms
substituted are also equivalent, which is what we achieved.
The frames described are shown below.

oP" = vVidx. vriv. vay. vby.
{7 [} |

{entityidv /12} |

{add(Hg (<mul(rly ,pointgen),zor(alpha,Hs(exp(é(encpubkey,
Epubkey),rly)))>,add(add(mul(by ,Esignkey),mul(ay ,p)),z),
esigpkeyy ),by) s} |

{(<mul(rlv ,pointgen),zxor(alpha,Hs(exp(é(encpubkey,Epubkey),
r1v)))>,(add(sy ;mul(ay esigpkeyy)),subladd(Hs(<mul(riv,
pointgen),zor(alpha,Ho (exp(é(encpubkey, Epubkey),riv)))>,
add(add(mul(by ,Esignkey),mul(ay ,p)),z),esigpkeyy ),by ),

by )),entityidV)/ }
xrq

#Q" = vVidy,. vriv. vay. vby.
Y

{entz’t'yidv /322 } |

{add(H3(<mul(r1V,pointgen),mor(alpha,Hg(exp(é(encpubkey,
Bpubkey),r1v)))> add(add(mul(by , Esignkey),mul (ay ,p)) ),
esigpkeyv)»bv)/xa} |
{(<mul(r1v,pointgen),a:or(alpha,Hg(e:cp(é(encpubkey,Epubkey),
r1v)))>,(add(sy ,mul(ay ,esigpkeyy)),sub(add(Hz(<mul(riy,
pointgen),zor(alpha,Hs(exp(é(encpubkey, Epubkey),riy)))>,
add(add(mul(by ,Esignkey),mul(ay ,p)),x),esigpkeyy ),by ),
bv)),entityid‘r)/x4})
To prove the second bullet point, we use the same con-
text as in vote-privacy where the processes run in parallel.

With the left-hand side as P and the right-hand side as Q,
we show that

veh. (Va {92 [} |V {*'* e/, YprocessK)

veh. (V' |Ve{*"" /,}processK)



Same as the first one, we require that at each step the add(m»z),esigpkey),bA),bA))»entityi@/zg}|

terms substituted are equivalent. We perform the labelled {(<mul(rm_pomtgen),wor(alpha,@(exp(é(encpubkey_Epubkey)’

reductions on both the left and right side as follows.
r18)))>,(add(sp,mul(ap,esigpkey)),subladd(Hz(<mul(r;p,

P e magVa) 151 e magte) Py -7 pointgen),zor(alpha,Hs(exp(é(encpubkey, Epubkey),r15)))>,
M} I/ChJ/Chfr-V‘/idA'V‘/idB-(-P.’-il{vwlﬂr /zl}) add(p1 ,z),esigpkey),bB),bB)),entityid)/z }l
10
vza-outlchaza), veh.weha vVidawVidg. (Pl {" " /o, } {(subladd(Hy(<mul(ry a,pointgen) zor(gamma, Ha (exp(
™' /22 1) é(encpubkey, Epubkey),r1 4)))>,é(add(p1,2),esigpkey))ba)-ba),
w v outhTs) b peha wVidavVids.(Ps|{ "% /4, } (o g (g esignen)) gy

" /o H 7 20 3) {7 a1 })

Similarly,
Q inlehimegVa) o inlchmagVe) o > #Q" = vch.wche.vVida.vVidg.vria.vrig.vaa.vba.vap . vby.
. Vid g
vz outleh,z), veh.weha wVidawVidg (Qs|{V"% /4, }) { [a1}]

{1 /223
{12 /23 }]

vzo.out(cha,za)

veh.weha vVidavVidp. (Qa|{ "4 /4y }

K™ /a2 }) {<mul(r1A ,pointgen),zor(gamma, Hy (cxp(é(encpubkey,
* ey out(cha,va), veh.vehaz vVidavVidp. (Qa|{ " /4, } Epubkey)ria)> /)

™ o L7 [ }) (entitvid ;)
The second bullet point states that if Voter A votes {entityid e}l

for ¢ while outputting secrets to the coercer, she would go

through the same steps if she would vote for a while fooling {add(H3<<m"l(T1A»POintg@n),IOT(alpha,Hz(ewp(é(encpubkey,

the coercer to think that she voted for ¢. This should be true Epubkey),r1.4)))>,add(add(mul(b g, Esignkey),mul(a 4,p)),z),
as long as there is another voter who would counterbalance ,

the votes. This point was proved by obtaining the frames of esigpkey).ba) /|

both sides of the equation. The first requirement of labelled (A (<mul(ry g pointgen) wor(gammas Ha (eap(é(encpubey,

bisimilarity was readily observed from the frames. All corre-
sponding terms are structurally equivalent. The second and
third requirements of labelled bisimilarity are proved by ob-
taining the frames. All reductions done on the left side were
also done on the right side. The frames obtained are shown {(<mul(r1A,pointgen),zor(alpha,Hz(exp(é(encpubkey,Epubkey),
below.

Epubkey),r13)))>,add(add(mul(bp,Esignkey),mul(ap,p)),z),

esigpkey%bs)/m }|
8

r14)))>,(add(s o,mul(a s ,esigpkey)),sub(add(Hs(<mul(ry A,
7 . .
QP = vch.vehr.vVida.vVidp.vria.vrip.vaa.vba.vap.vbp. pointgen),zor(alpha,Hs(exp(é(encpubkey, Epubkey),r14)))>,
Vida
{ /=13 add(mTz)»esiﬂpkey),bA),bA)),entityid)/ M
zg9

{*1 /22
{117 /23]

{<mul('r1A ,pointgen),zor(gamma,Hs(exp(é(encpubkey,

{(<mul(r13 .pointgen),zxor(gamma,Ho(exp(é(encpubkey,Epubkey),
r1B)))>,(add(s g,mul(ap,esigpkey)),sub(add(H3(<mul(rip,

pointgen),zor(gamma,Hq(exp(é(encpubkey,Epubkey),r15)))>,
Epubkey)«,rm))b/z M
4

{entityid/w5}|
{entztyid/w6}|

{add(Hg (<mul(ry 4 ,pointgen),zor(gamma,Hs (exp(é(encpubkey,

add(p1,z),esigpkey),bp),bp)),entityid)

/2103
{(sub(add(H3 (<mul(ry A ,pointgen),zror(gamma,Hs(exp(é(encpubkey,
Epubkey),r14)))>,é(add(p1,x),esigpkey)),ba),ba),add(sa,

mul(a 5,esigpkey
Epubkey),r14)))>,add(add(mul(ba,Esignkey),mul(a,p)),z), (@4 )))/I11}|

Esigpkey),bA)/z }| {TecmptA /:vlz}
7

As with vote - privacy, static equivalence of the frames
fulfill the first requirement of labelled bisimilarity. The same
Epubkey),r15)))>,add(add(mul(bp,Esignkey),mul(ap,p)),x), reductions are used for P and Q in both bullet points. This
fulfills the second requirement. By visually inspecting the
frames on both bullet points, the same names are bound on
{(<m“l(’“1A*Pomtgen)’“T(Qamm“ﬂ‘l(e“’(é<e”Cpubkey’EP"bkey>* P and Q. This fulfills the third requirement of the equiva-
lence.

{add(H3 (<mul(ryg,pointgen),zor(alpha,Hs(exp(é(encpubkey,

esigpkey),bp) /a:g } |

r14)))>,(add(s po,mul(a4,esigpkey)),sub(add(Hs(<mul(ry 4,

pointgen),xor(gamma,Hz (exp(é(encpubkey, Epubkey),r14)))>, 5.3 Coercion_Resistance



The third and strongest property to be proved is coer-
cion - resistance. We already modeled a plain process V' in
proving receipt - freeness. To prove coercion - resistance, we
use Definition 3 (subsection 3.3.3).

Using the derivations by Delaune et al on the second bul-
let point of Definition 3, we arrive at

SIVa{®/u}" | VB{®*/o}] me SOV | VB {/.}]

where C is the context with a hole where we model the
coercer. In context C, the coercer performs all the compu-
tations to get the values that he wishes the coerced voter to
vote for. Then, he sends these to the voter. The model of
context C' is shown below.

contextC| _ | = vchel. vehe2. (~ | (in(chel, id). in(ch, pp).

in(ch, spk). synchl. in(chcl, eid).
in(chcl,em). vrnl. {**/(; k,gp.epk,epks)} |
{mul(rnl,gp)/cu} |

{H2 (exp(é(epk,Epubkey),rnl)) /ch} |

{wor(cv,ch)/cw} | {<cu,cw>/cev} |
out(chc2, cev). vea. veb. {*™ / co keyes) t |
{add(mul((:b,keyes),mul((:a,,gp))/partl} |

{add(Hg(cev,add(pa'rtl,ca:),spk),cb)/ } |
out(chc2, cc). in(chcl,vs).
{add(vs,mul(ca,spk))/Csp} | {sub(cc,cb)/cp} |
out(chc2, (csp, cp)). in(chcl, ret). synch2))

Now that we have our context C, we must model our
process V' similar to that of receipt-freeness, wherein pro-
cess V' would fake cooperation with the coercer. This time,
V' is slightly different because the coercer can send messages
to her.

V' = v Viq. out(checr, Vig). in(ch, msgV).
in(ch, esigpkey). synchl .out(cha, Vq).
in(cha, entityid). out(chcy, entityid). v r1.
{msgv/(d, f, pointgen, encpubkey, enckeysha'r‘el)} |
{mul(rl, pointgen)/u} |
{H'z(ea:p(é(encpubkey, Epubkey), rl))/h} | {xor(v, h)/w} |
{<%%> /. }. out(che, entityid). in(ch5, entitym).
out(chei, entitym). in(chca, coerev). in(chcs, coerc).

va.v b {entitym/(x,Esignkey)} |

add(mul(b,Esignkey),mul(a,pointgen))

{ o1} |
{add(HB(ev,add(pl,z), esigpkey), b)/c} |
out(chb, c). in(chT, s). out(checi, s).
in(ChCQ, COCTS?:g)o {add(s, mul(a, esigpkey))/spTime} |
{sub(c, b)/cprime} | {(sprime, CprimE)/signature} |
{(ev, signature, entityid)/storagemsg} |
out(chs, storagemsg). in(chs, receipt).
out(chcer, receipt). synch2

Next, we must model V" that cooperates with the co-
ercer in context C. In a simpler sense, this would be a cer-

tain voter, say Voter A, who would receive messages from
the coercer and use those messages in the election proper.
This behavior of V4 is as follows:
processVa = vVid. out(chel, Vid). in(ch, msgV).
in(ch, esigpkey). synchl. out(cha, Vid).
in(cha, entityid). out(chcl, entityid).
out(che, entityid). in(ch5, entitym).
out(chcl, entitym). in(chc2, coerev).
in(chc2, coerc). out(chb, coerc).in(ch7,s).
out(chcl, s). in(chc2, coersig).
out(chs, (coerev, coersig, entityid).
in(chs, receipt). out(chcl, receipt). synch2
Taking a closer look, it seems as if the voter is just a
bridge between the coercer and the election process, which
is exactly the behavior we need for V”. We place this in the

hole in context C and proceed with establishing the equiva-
lence for the first bullet point.

P in(ch,msgVy,) P Ly

vzy.out(cha,xy)

vehel.wehe2.vVid (Po | {2, 1)

« vag.out(che,ra)
e S e LY

vchel.vehe2.vVid.vr, . (Ps |
{Vid/ml} | {entityidA/x:)})

vchel.vehe2.vVid.vry .va.vb.

(P [ {3 1L 0} |

{add(H3(<mul(r1 ,pointgen),zor(v,Ha(

« vez.out(ch6,z3)
%

exp(é(encpubkey,Epubkey),r1)))>,
add(add(mul(b,Esignkey),mul(a,pointgen)),

z),esigpkeya).b) /x })
3
Similarly,

Q

in(ch,msg)

Q1 —"

x1.out(cha,z . i
L, W id, (Qa | {1 /o, )

« vag.out(che,za) VVida;.l/'T'lv.(QQ | {Vidm /11} |
{e'n,tityidv /xz})

. Vidg

VVidy.vr1y.vay.vby . (Q2 | { Ja1} |
{entityid,, /562} |

{uriri(Hg (<mul(riy,pointgen),ror(alpha,Ha(

« veg.out(ch6,z3)
At St I LA

ezp(é(encpubkey, Epubkey),r14)))>,
add(add(mul(by ,Esignkey),mul(ay.p)),z),

esz‘gpkeyw)’b"’)/rrg })

Ignoring all communication with the coercer (includ-
ing the channels they communicate on), we will see that
the frames (shown below) are statically equivalent. In get-
ting the frame of the left side, normal reductions are made.
The only difference is whenever an out to the coercer or
an active substitution parallel to an out to the coercer was
encountered, these steps where just removed without apply-
ing the normal reductions. This results in a frame that is



exactly the same as the frame of the right side (previously
obtained) except for the channels used to communicate with
the coercer, chcl and chc2, being bound. These were easily
removed using the reduction NEW - 0. The resulting frames
are now exactly the same.

¢P" = vchel.vehe2.vVid.vry .va.vb.

{"/a1} |

{entityidA /I2 } |

{a,dd(H3(<'m,ul(r1,poi*ntgen),a:m'(v,Hz(
exp(é(encpubkey,Epubkey),rl)))>,add(add(
mul(b,Esignkey)Jnul(a,pointgen)),z),esigpkeyA),b)/z }
3
{(<mul(r1,pointgen),mor(v,H2(e:vp(
é(encpubkey,Epubkey),r1)))>,(add(s o,mul(a,
esigpkey 4)),sub(add(Hz(<mul(ry,pointgen),xzor(v,
Hy(exp(é(encpubkey,Epubkey),r1)))>,
add(add(mul(b,Esignkey),mul(a,pointgen)),z),
esiqpkeyA),b),b)),entityidA)/ }
T4
¢Q” = vVidy.vriy.vay, . vby.
{7 o} |

{entityidv /z2} |

{a,dd(H3(<'m,ul(r1U ,pointgen),zor(alpha,Ho(
exp(é(encpubkey,Epubkey),riy)))>,add(add(
mul(by ,Esignkey),mul(ay ,p)),z),esigpkeyv),bv)/ } |
z3
{(<mul(r1v ,pointgen),zxor(alpha,Hs(exp(
é(encpubkey,Epubkey),r14)))>,(add(sy,mul(ay,
esigpkeyy)),sub(add(Hz(<mul(ry,,pointgen),zor(alpha,
Hy(exp(é(encpubkey,Epubkey),r14)))>,
add(add(mul(by,Esignkey),mul(ay,p)),z),

esiqpkeyv),bv),bv))»entityidu)/ }
T4

The first bullet point simplistically states that if all the
messages to and from the coercer is ignored, the voter V'
goes through exactly the same steps as a voter V who votes
for a certain candidate a. This would mean that V' would
make the coercer believe that she is voting what the coercer
wants her to vote, while actually voting for her own choice.

Now we are left with one more bullet point to establish.
The second requirement states that an observer doesn’t see
the difference in the steps taken by a voter who fakes coop-
eration with a coercer and a voter that sincerely cooperates
with a coercer provided there are other voters who counter-
balance the votes they cast. Again, to prove this, the usual
reductions are used to obtain the frames for the left and
right side.

in(ch,msgV, in(ch,ppe in(ch,msgV,
P—>*( QB)P1 ( )Pz ( 915’)P3

% vey.out(cha,xq)
S i SN

vch.vchel.vche2.vVida.vVidg.
(P [ {7 /2, })

« vza.out(cha,zs)
%

vch.vchel.vche2.vVida.vVidg.
(s [ {78 Loy} 1 {8 [0 })

% tn(ch,msgVpg) in(ch,msgVpy)

Q= 1o} in(ch,ppe) Qs Qs
_yx Yerout(cham), veh.vchel.vche2.vVida.vVidg.
(Pa | {7 /21 })
_y» vraout(chara) vch.vchel.vche2.vVida.vVidsg.
Vid Vid
(Ps [ {7/ {7 /a0 })

Doing the same reductions on both sides we arrive at the
frames shown below. The resulting frames obtained at the
end of the reductions are the same. All functions and values
used on one side has a corresponding function or value on
the other. One issue that was resolved to obtain this frame
was the removing of the random numbers, a, b and r1, used
by the voter in faking cooperation with the coercer. These
were bound at first then removed by the reduction NEW -
0. They need not be bound in the first place but we chose
to bind, use and then remove them to make it clear that
the voter used a set of random numbers different from the
ones used by the coercer. The random numbers are secret
anyway, and they need not be bound to the process, just like
the actual vote is not bound to the voter process.

oP" = vch.vchel.vehe2.vVida.vVidg.

vrig.vuric.vag.vbp.vac.vbe.
{7 o}

{72 2} |

{entityidA Joa} |

{entitmdB/M} |

{COETCA /1‘5 } |

{add(Hg(<mul(rlB,pointgen),wor(alpha,Hz(exp(é(encpubkey,
Epubkey),r1B)))>,add(add(mul(bp,Esignkey),mul(ap,
pointgen))»x)»esigpkeys),bs)/ M
z6

(coerev 4 ,coersig a entityid )
{ Jar} |
{(<mul(r13,pointgen),a:or(alpha,Hg(e:vp(é(encpubkey,
Epubkey),r1p)))>,add(sp,mul(apesigpkeyp)),
sub(add(Hs(<mul(ry g,pointgen),zor(alpha,
Hy(exp(é(encpubkey, Epubkey).r15)))>,
add(add(mul(bp,Esignkey),mul(ap,

pomtgen))m)»esinpkezls),bB),bB))»entityidB)/ } |
T8

{7/} |
{entityidA /u2} |

{mma Ly} |

{<mul(rlc,gp),zor(cv,H2(ewp(é(EPk,Epubkey)»T1c)))>/ M
va
{add(Ha(<mul(T1(;«,91’),107“(0%}&(ewp(é(fipk«Epubkey)ﬂ“1c)))>,

add(add(mul(bc,keyes),mul(ac,gp)),cac),spkz:),bc)/ } |
Ys

" /us} |



¢Q// —

{(add(vsc smul(ac,spkc)),subladd(Hz(<mul(ryc,9p),
zor(cv,Ha(exp(é(epk, Epubkey),r1c)))>,

add(add(mul(bc,keyes),mul(ac,gp)),cx),spkc),

) |

{TeceiptA /yg}

vch.vchel.vche2.vVida.vVidg.vrig.vric.

VaB.VbB.Vao.Vb(r.
Vid

{7 e}

Vid

{779 Jan} |
{entityidB /a:4} |

{entityidA /9:3 } |

{add(H3(<mul(r1A ,pointgen),zor(alpha,Ho(exp(é(encpubkey,
Epubkey),r14)))>,add(add(mul(bg,Esignkey).mul(a 4 ,pointgen)),
-'v),esigpkayA),bA)/ms} |

{add(H3(<mul(rlB ,pointgen),zor(gamma,Hz (exp(é(encpubkey,
Epubkey),r1p)))>,add(add(mul(bp,Esignkey),mul(ap,pointgen)),
x)esigpkeyﬁ)«,bB)/wG} |

{(<mul(r1A ,pointgen),zor(alpha,Hs(exp(é(encpubkey,
Epubkey),r1 4)))>,(add(s 4 ,mul(ag,esigpkey a)),
sub(add(Hs(<mul(ry A,pointgen),zor(alpha,Hs(exp(é(encpubkey,
Epubkey),rlA)))>,rzdd(p1,a:),esigpkeyA),bA),bA)),e7ltityid‘4)/z7} |
{(<mul(r15,poz‘ntgen),zor(gamma,Hg(ea:p(é(encpubkey,
Epubkey),r1p)))>,(add(sp,mul(ap,esigpkeyp)),subladd(Hz(
<mul(ryg,pointgen),zor(gamma,Hs(exp(é(encpubkey, Epubkey),
r1p)))>,add(add(mul(bp,Esignkey),mul(ap,pointgen)),z),

esigpkeys)»bB),bB))A,entityidB)/ I
B

("4}
{entityz'dA /y2} |

{entitymA /yg} |

{<mul(T1<;»gp),wor(cv«,Hz(ewp(é(epk»Epubkey)mw)))>/ I
Ya
{add(H3(<mul(rlc,gp),mur(cv,Hz(ewp(é(epk,Epubksy),rlc)))>,

add(add(mul(bc,keyes),mul(ac,qp)),cz),spkc),bc)/ } |
Ys

{4 /ve} |

{(add(vscy.mul(acy.spkc)),sub(add(H3(<mul(r1c.gp),zm"(cv,
Hys(exp(é(epk,Epubkey),ric)))>,add(add(mul(bc,keyes),mul(ac,
gp)),cz),ska),bc),bc))/ 1

y7

{'receiptA /yg }

Just like the first two properties, the frames, the reduc-

e Privacy - The votes must not be decrypted by any
other entity other than the Combining Entity during
the Counting phase. This was assured in [7] by relying
on the hardness of the bilinear Diffie-Helman problem
and the hash value of the stamp on the receipt.

e Uncoercibility - The voter must be able to vote freely,
thus she must not be forced to vote in a certain way.
Again, the bilinear Diffie-Helman problem cannot be
solved in a polynomial time making the encryption of
the votes hard to break, thus hard for the coercer to
find out the value of the vote.

Our results show that these are true, having privacy
modeled to be vote-privacy while uncoercibility covers re-
ceipt - freeness and coercion-resistance. They also claimed
Eligibility and Uniqueness, Transparency, Accuracy and Ro-
bustness. As mentioned before, among the properties claimed
in [7], we formalized and verified Privacy and Uncoercibility
because these are the privacy-type properties of the proto-
col. Thus, all three privacy-type properties, vote-privacy,
receipt-freeness and coercion-resistance are satisfied by the
IBC protocol.

At first, it seems that receipt - freeness will not hold true
because of the physical receipt that the voter receives at the
end of the voting phase. But as we examine the protocol
closer, we see that a lot of factors contribute for it to be
receipt - free. Aside from the hardness of the computations,
the synchronizations make the votes undistinguishable. The
frames are statically equivalent; an observer cannot tell the
difference between a normal voter, a voter to cooperates
with the coercer and a voter who fakes votes to the coercer.
Thus, it is crucial for the Combining Entity to only reveal
the list of the votes after all the shares have been combined
and decrypted.

After obtaining the frames, we noticed that it might be
possible to remove the counterbalancing vote and the prop-
erties will still hold. This will be the basis for our future
work, as we might delve further into this to see if the prop-
erties may hold without the voter who balances the moves
of the coerced voter.

Since most concerns about the security of ID-based en-
cryption schemes are beyond the scope of this paper because
they are implementation related, we now suggest to the au-
thors of the IBC protocol to carefully design and review the
design before deployment. This is to address issues regard-
ing injected ballots and other vulnerability issues with the
entities being online.

7. REFERENCES
[1] J. Baek and Y. Zhen, Identity-Based Threshold
Decryption, In Proc. of the 7th International
Workshop on Theory and Practice in Public Key
Cryptography, LNCS 2947, Springer-Verlag,
pp-262-276, 2004.

tions and the bound names and free names in the frames

fulfill all three requirements of labelled bisimilarity. B. Blanchet, ProVerif: Automatic Cryptographic

Protocol Verifier User Manual,
<www.preverif.ens.fr /proverif-manual.ps.gz>, 2005.

6. CONCLUSION

In [7], the authors claimed:



Bl

(12]

S. Delaune, S. Kremer, and M. Ryan,
Coercion-Resistance and Receipt-Freeness in
Electronic Voting, Computer Security Foundations
Workshop, IEEE, pp. 28-42, 19th IEEE Computer
Security Foundations Workshop (CSFW’06), 2006.

S. Delaune, S. Kremer, and M. Ryan, Verifying
privacy-type properties of electronic voting protocols
Journal of Computer Security 17(4), pp. 435-487,
2009.

Y. G. Desmedt, and Y. Frankel, Threshold
cryptosystems. In Proceedings on Advances in
Cryptology (Santa Barbara, California, United
States). G. Brassard, Ed. Springer-Verlag New York,
New York, pp. 307-315, 1989.

A. Fujioka, T.Okamoto, K. Ohta, A practical secret
voting scheme for large scale elections, In J. Seberry
and Y. Zheng, editors, Advances in Cryptology
(AUSCRYPT ’92), volume 718 of Lecture Notes in
Computer Science, pp. 244-251, Springer, 1992.

G. Gallegos-Garcia, R. Gomez-Cardenas, and G. 1.
Duchen-Sanchez, Electronic Voting Using Identity
Based Cryptography, International Conference on the
Digital Society, pp. 31-36, 2010 Fourth International
Conference on Digital Society, 2010.

A. Juels, D. Catalano, and M. Jakobsson,
Coercion-resistant electronic elections, In WPES ’05:
Proc. workshop on Privacy in the electronic society,
pp. 61-70, ACM, 2005.

S. Kremer and M. Ryan, Analysis of an FElectronic
Voting Protocol in the Applied Pi Calculus, In
Proceedings of the European Symposium on
Programming (ESOP’05), Lecture Notes in Computer
Science series, volume 3444, pp. 186-200, Springer
Verlag, 2005.

S. K. Langford, Weakness in Some Threshold
Cryptosystems, In Proceedings of the 16th Annual
International Cryptology Conference on Advances in
Cryptology 1996, N. Koblitz, Ed. Lecture Notes In
Computer Science. Springer-Verlag, London, pp.
74-82, 1996.

B. Lee, C. Boyd, E. Dawson, K. Kim, J.Yang, and
S.Yoo. Providing receipt-freeness in miznet-based
voting protocols. In Proceedings of Information
Security and Cryptology (ICISC’03), volume 2971 of
LNCS, pp. 245-258, Springer, 2004.

M. Ryan and B. Smyth, Applied pi calculus, In V.
Cortier and S. Kremer, Formal Models and
Techniques for Analyzing Security Protocols, Chapter
6, IOS Press, 2010.



