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ABSTRACT

This study extends previous work on the space-averaged
salinity of a gravity current evolving under an assumed sinu-
soidal shear-flow with noise in the boundary. The shear flow
produces an oscillatory salinity profile for the current, and
this was previously observed to have high-amplitude oscilla-
tions for high-frequency shear-flows, regardless of the noise,
with or without noise. One finding in this extended study is
that it happens even for low-frequency shear flows, and var-
ious frequencies are being studied. These oscillations attain
several relative maxima when plotted against the frequency,
suggesting resonance.

Experiments with the variance of the noise (interpreted
as its strength) affects most the salinity profile of currents
evolving under Lévy colored noise,and results suggest de-
creasing transport as noise strength increases, and the re-
lationship is linear. All oscillations were observed to get
damped as the experiments progress, but Lévy colored noise
tends to hasten this damping as noise strength increases.

A new metric to measure the effect of boundary noise is
also being developed, wherein we normalize the effects of
the noise by subtracting the averaged salinity from the non-
homogenous, deterministic base case, giving a 'noise effect’.
Wiener white and colored noises, as well Lévy white noise,
help the transport process, resulting in an increased ’signal’
or average salinity. Uniquely, Lévy colored noise initially
helps the signal, but pretty soon ’eats’ the signal, suggesting
decreased transport.
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Figure 1: Gravity current with Neumann boundary
conditions at time 6375 seconds

Gravity or density currents are the flow of one fluid within
another caused by the temperature or density difference be-
tween the fluids [1], e.g., the more dense and salty Mediter-
ranean waters flowing into the relatively fresh waters of the
North Atlantic through the Strait of Gibraltar. They are an
important component of the thermohaline circulation [2],
which in turn is important in climate and weather studies.
Figure 1 shows the temperature distribution of a simulated
gravity current, from a previous experimental set-up used in
[3]. The color-density plot ranges from red (coldest) to blue
(warmest). The horizontal distance is ten kilometers, and
the depth of the water column ranges from 400 meters on
the left (inlet), and one kilometer on the right (outlet), over
a constant slope. In this paper, however, the passive scalar
is salinity, instead of temperature.

In a previous paper, [4], we investigated the effects of
boundary noise in the inlet conditions of the scalar trans-
port equation driven by an assumed sinusoidal shear-flow.
This was motivated by several observations, like the sea-
sonal variability of the Red Sea overflow (a source of salty,
dense water flowing into the Gulf of Aden), [5]. Taking a
slightly different approach, we modeled this observed vari-
ability by the addition of a noise term in the flux boundary
conditions at the inlet.

In this study, we investigate the effects of the frequency
of the oscillating shear flow %, the strength of the noise (o),
and the distribution which produced the noise (o). Wiener
white and colored (time-correlated) noises were used, the
latter being closer to what is observed in nature [6]. We
also made use of a more general class of processes, Lévy
processes, which are generally non-Gaussian in distribution,
and may have infinitely many jumps in finite time, subject
to the integrability condition.

Following McNamara and Wiesendfeld’s [7] approach to
the system as a 'blackbox’, we define the inputs to the sys-



tem as the triple (o, T, o), respectively: the stability index
for the Lévy processes (), the frequency of the sinusoidal
shear-flow (f = %, where 7 is the period) and the scale pa-
rameter (o), which is usually called standard deviation for
processes with a Gaussian distribution, and which we take
here to be the strength of the noise. This noise strength
features in the boundary condition 22 = F(z) + €. The
‘output’ or signal we are observing is the salinity at time ¢,
or S(x,z,t), which we average over the spatial domain. We
will interchangeably refer to this as the space-averaged or
simply averaged salinity.

In the case of non-homogenous Neumann, ¢, = 0. In the
experiments, ¢, may be Wiener or Lévy, white or colored.

2. SCALAR TRANSPORT EQUATION WITH

RANDOM BOUNDARY FLUXES

Young et al. [8] modeled advection-diffusion in the oscilla-
tory, sheared-velocity field of an internal wave, by assuming
u = [tcos(T * ), or a variant with sinusoidal vertical struc-
ture, u = ug cos(mz) cos(7 *t). We likewise assume a known
velocity field in the scalar transport equation.

We consider a passive scalar (also called tracer) S =
S(x,z,t), where S may be taken to be temperature, salinity
or concentration of a chemical specie. Assuming the velocity
field u(z, 2, t) is known from the fluid momentum equations
(u is divergence-free and no-slip on boundary),

Se+u-VS =kAS, (z,2) € D (1

where D = [0,1] x [0,1], and k > 0 is the salute diffusivity.
We supplement this linear transport equation with the
following boundary conditions

a5
E F(z) + noise, on inlet boundary , x=0 (2)
oS5
—— = 0 on rest of boundary (3)
on
where F'(z) is the mean tracer or passive scalar flux. In the
case of Wiener white noise, % = F(z) + W,, where W, is a

Brownian motion defined in a probability space.

A form for the solution is known, using a theorem of Da
Prato and Zabczyk [9]. If we let A be the linear (in S)
operator

A=—-u-V—-gKA, (z,2)€D (4)
then the equation has the form
S; = AS (5)

and we write the boundary conditions as a vector Y

Y:<5(Z)+Wt>, ()

we may let operator 7 define the boundary conditions as:
1S =Y. (7)

Here, we will just assume that A generates a Co semigroup
of operators X(t), t > 0. A proper proof will require verifi-
cation of the requirements of the Lumer-Philipps theorem.

If we designate as

N(Y)=4¢ (8)

where
AA—9)=0 )

that is, NV is the solution operator of the above eigenvalue
problem, then we write the solution as:

S = X(t)So(z,2) + (A — A) /t X(t—s)N(Y)ds  (10)

2.1 The Numerical Model and Simulations

‘We made use of a finite-element diffusion-convection-reaction

solver developed at Clemson University by Prof. Vince Ervin.

The domain is a 16216 triangularization of the square [0, 1]z[0, 1].

This solves the transport equation for a tracer S(z, z,t) on
a rectangular domain, under flux (Neumann) boundary con-
dition.

Sy +v-VS+qS=V(k-VS), (11)

where k > 0 is the salute diffusivity, and v is a given function
for velocity of the bulk flow. For our problem, ¢ is zero (no
reaction term).

Here, the diffusivity constant x = .01 was assumed con-
stant throughout the domain, chosen to ‘slow-down’ the dif-
fusion process and allow the gravity current to evolve during
our simulation time.

Young et al. [8] assumed velocity fields like u = Bt cos(T
t) or u = wg cos(mz) cos(t x t). In this study, we likewise
assumed an oscillatory shear flow v in the x (downstream)
direction, zero in the vertical (z) direction, The x-component
has the form

v =.5x%z xcos(T % t) % scaling, (12)

where scaling (presently = 75) is used to control the speed
of the current.

Time-stepping was by the backward-Euler method.

In the simulations following, we assumed F = 1 in the
boundary condition F'(z)+noise. Thus, the comparison case
is a non-homogenous Neumann boundary condition, which
could represent the average flux for the tracer, which we
later perturb with noise.

At each time-step, the tracer was averaged as

ftriangle Sdzdz

Average = —————
area of triangle

(13)
where the integral is over each triangle in the spatial dis-
cretization. The values from all triangles in the domain were
then averaged, giving the average value for the entire current
at time =t.

The initial conditions for the salinity are shown in Figure
2. We might imagine a high-salinity body of water enters
the domain at the origin, and will flow along the positive
x-axis. The starting salinity profile is highest at the bottom
of the current, and decreases along the y-axis.

Figure 3 shows the salinity distribution at ¢ = 400, which
shows a quick diffusion over the domain, as the current
evolves.

Figure 4 plots the averaged scalar value for the entire do-
main at time ¢, i.e., S(z, z,t), for a current evolving with the
constant flux /' = 1. A close inspection of the graph shows
this happens in an oscillatory manner,due to the oscillatory
shear flow. This is how all the salinity distributions behave,
with or without noise in the boundary. Figure 5 shows a
’close-up’ view.
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Figure 2: Initial salinity distribution
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Figure 3: Initial salinity distribution
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Figure 4: space-averaged salinity without noise
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Figure 5: Close-up
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2.2 Summary of Noise Processes

We now summarize the more detailed discussion on noises
given in [4].

Wiener White Noise:

Wiener white noise W;(u) is the formal derivative of a
Brownian motion W;, and may be regarded as a solution of
the simplest linear stochastic differential equation

Wy
dt

Usually called Gaussian white noise, we will refer to it
here as Wiener white noise, to distinguish it from the noise
from an a-stable Lévy processes could also include white
noise with a Gaussian distribution (when a = 2).

Lévy White Noise:

There is a more general class of noises which may also be
taken to be ‘white’ in the sense they are uncorrelated in time,
but their distribution need not be Gaussian. A Lévy process
L, (t > 0) taking values in R is a stochastic process having
stationary and independent increments, and we assume that
Lo = 0 almost everywhere.

Lévy processes L; are defined in terms of their character-
istic function, viz:

]E(ei,(u,Lt)) — etg(u) (15)

Wt (’lL) =

(14)

where

g(u) =i(b,u) — %(u, au) + (16)
/ (" =1 —i(u, y)xo< <1 (v))mldy).  (17)
Rd_{0}

This is the Lévy -Khintchine formula, and from here we see
that Lévy processes encompass familiar processes, e.g., if
a =m = 0, we have L; = bt which is deterministic motion
in a straight line, where b is the velocity of motion, or the
drift. Similarly, if a # 0, m = 0, then L; is a Brownian mo-
tion with drift, since the formula gives us the characteristic
function of a Gaussian random variable with mean tb and
covariant matrix ta.

With a choice of measure m, and jump sizes h; (which
may be variable), we may generate Poisson processes, aside
from Brownian motion which may have drift.

For our numerical simulations, we use a-stable Lévy mo-
tions defined in Janicki and Weron [10]. See also [11].

Taking a particular form of the Lévy -Khintchine formula,
let L; be a stochastic process having independent incre-
ments, and we also assume that Lo = 0 with probability
of one. Now, we assume L; — L, ~ Go((t — s)%,ﬁ, 0) for
any 0 < s <t < o0.

Gqo(0o, B, ) is the general symbol for an a-stable random
variable is, whose characteristic function is given by

log #(0) = —0™|0|* (1 — iBsgn(0) tan(an/2)) + iud (18)

where o € (0,1) |J(1,2] is the index of stability; 8 € [—1,2]
is the skewness; 0 € Rio is the scale parameter (simply
standard deviation when o = 2); and g € R is the shift
(mean) of the distribution, .

‘We transcribed the computer simulation provided by Jan-
icki and Weron for the class of processes G4 (1,0,0). When «
is 2, the resulting motion is Brownian, and the distribution

is in fact Gaussian. Away from o = 2, the distribution goes
away from being Gaussian, providing a very interesting class
of motions which include Cauchy motion (when a = 1), and
Lévy motion when a is any other number in (0,2).

Colored Noises:

A colored noise n:(u) is a solution of a linear Ornstein-
Uhlenbeck stochastic equation
an _ dW;

o~ onteg

where %ﬁ = W, is Wiener white noise. 7;(u) has time-
correlated covariance, and is thus used as a model for colored
noise. This was solved via Milstein’s Method, see [6].
We model Lévy colored noise similarly, except that the

term % replaced by Lévy white noise %t, S0

6” st

— = —b — 20

TR T (20)
Janicki and Weron generalized the Milstein method to in-
clude Lévy processes in Chapters 6 and 8 of [10].

(19)

2.3 Review of Previous Results

In [4], comparisons were made among currents evolving
under deterministic boundary conditions (non-homogenous
Neumann) and with a stochastic term added to the bound-
ary, viz: Wiener white and colored noises and Lévy white
and colored noises.

Both Wiener noises (white and colored), and white Lévy
noise all had the effect of enhancing the transport process,
producing a current that was considerably more saline. These
three boundary conditions gave a higher average value for
the tracer, S = .08, compared to .06 for the deterministic
base case. Colored Lévy noise, gave the same ending aver-
aged value as the deterministic case, S = .06.

However, it was Lévy colored noise which showed sensi-
tivity to the stability parameter «, as this determines the
actual nature of the distribution, with a = 2 being Gaus-
sian, o = 1 being Cauchy, all others, we call Lévy.

Another finding is that uncorrelated (white) noises act
very similarly, i.e., white Wiener noise had similar effects
on the current as white Lévy noises, suggesting that time-
correlation is more important in distinguishing the effects
of noise, rather than the distribution of the processes that
produced the noise.

In the experiments on the frequency of the velocity of the
shear flow, a higher-frequency flow f = % showed noticeable
increases in the amplitude of the oscillations or variability
of the averaged scalar values, with the biggest increase seen
with colored Lévy noise (almost doubled). However, this
increase in transport is only local, and oscillatory, hence did
not affect the average values for the tracer.

2.4 Results and Discussion

In this paper, we extend the previous experiments by vary-
ing the stability index « (or varying the distribution of the
noise), the frequency of the sinusoidal shear-flow <, and the
scale parameter o, the strength of the noise.

2.4.1 Varying the frequency of the shear-flow, f = 1

Recall the x-component of the velocity vector for our shear
flow: v = .5 % z % cos(7T = t) * scaling, with the y-component
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of the sinusoidal flow red (f=1) yellow (f=2) green
(£=1)

being zero. We take 7 = 1 as the ‘normal’ period, giving the
normal frequency, f = 1.

Previously, the experiments with a higher-frequency shear-
flow (e.g., f = é) resulted in noticeable increases in the
amplitude of the oscillations or variability of the averaged
scalar values, with the biggest increase seen with colored
Lévy noise, about twice the normal amplitude.

Figure 6 shows the increasing amplitudes of the oscilla-
tions as we go to higher frequencies, i.e., from f = 1 to
f = 4. This effect is observed regardless of the noise, with
or without noise. Similar effects for low-frequency shear-
flows were also observed.

Next we subtract the average salinities for normal fre-
quency from that when frequency is halved, and might refer
to this as the 'frequency effect’. Here we show results for
longer runs, 12000 time-steps. Most cases show this dif-
ference to be oscillatory, decaying with time. Interestingly,
Figure 7, for Levy colored noise, reveals decay to a small
number, then increases again.

Figure 8 graphs the average oscillation for several values
of 7, and we see relative maxima occurring at several places,
at different values.

2.4.2  Sensitivity to the noise-strength, or scale pa-

rameter o

‘We interpret the scale parameter o as the strength of the
noise, and the finding is that it affects most the current with
colored Lévy Noise. Figure 9 shows the averaged salinities
decreasing (suggesting decreased transport) as o goes from
1 (red) to 2 (cyan). No other noise process differentiates the
o values. Figure 10 show the salinities for Wiener colored
noise, and has the graphs all on top of each other, suggest-
ing robustness in the transport process with respect to the
strength of the white noises (Wiener and Lévy) and Wiener
colored noise.

An interesting result was obtained when we again calcu-
lated the frequency effect (subtract averaged salinites with a
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normal frequency from the averages for a halved frequency).
Figure 11 shows the results for Lévy colored noise, where
the difference gets damped to a small number, then in-
creases again, and increasing the strength of the noise has-
tens this damping. Repeating this experiment with other
noises shows the curves all on top of each other, i.e., the
frequency effect is not sensitive to Lévy white and Wiener
white and colored noises.

2.4.3 Measuring the Effects of boundary noise

This is a metric we developed, where we attempt to mea-
sure the effects of boundary noise as the gravity current
evolves, by subtracting the averaged salinity of a current
evolving without noise from the averaged salinity of a cur-
rent evolving with noise, and refer to this as the 'noise effect’.

Figure 12 shows the noise effect for a current evolving
with white Lévy noise; it shows a continuous, almost linear
in time, increase in salinity. We might say that white Lévy
noise 'helps the signal’, with signal being taken as the aver-
aged salinity; we have similar results for Wiener white and
colored noises.

Figure 13 shows the noise effect for colored Lévy noise, and
we see that, initially, it ’helps’ the salinity (helps the trans-
port), but pretty soon, it ’eats’ the signal (or less transport).

As with the other experiments, the noise effect was sub-
jected to varying stability parameter «, variance o and fre-
quency f = %

Effect of the distribution of Lévy noise processes
:index of stability «

The o parameter determines the distribution of the Lévy
noise processes, with a@ = 2 being Gaussian, o = 1 being
Cauchy. We calculate the noise effect, and we see this affects
more the current evolving with colored Lévy noise, as shown
in Figure 14, with the signal being ’eaten-up’ faster as we
move closer to Gaussianity in the distribution. White Lévy
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Figure 14: averaged salinity with Lévy Colored noise
- non-homogenous Neumann (base case); a=1.25 red
a = 1.5 yellow o« = 1.75 green

noise does not have this effect, and the graphs are again
all on top of each other, suggesting that the noise effect is
robust with respect to the distribution of the Lévy process
that produced the noise.

Sensitivity to the frequency of the shear flow

What happens to the noise effect is similar to Figures 12
and 13, with all noises helping the signal, except Lévy col-
ored noise, which eats the signal. Figure 15 shows the now
familiar increase in amplitude with increasing frequency. re-
gardless of the noise process used.

Varying the strength of the noise o affects most
the current with Lévy colored noise

Similar to Figure 9, Figure 16 shows the noise effect bro-
ken up by the variance, and the signal is eaten up faster
with increasing variance or strength of the noise. Compar-
isons of salinity distributions of the four noises, all at the
same variance, show results similar to Figures 12 and 13
combined.

3. CONCLUSIONS

Interpreting the space-averaged salinity as a signal in a
blackbox system, we saw that varying the period of the
shear-flow 7 suggested resonance in the salinity profile, which
we directly interpret as resonance in the transport equation,
similar to what has been observed in plasmas. An intriguing
finding is that the average salinity seemed insensitive to the
strength of Wiener white and colored noises, as well as Lévy
white noise, but Lévy colored noise is very sensitive to this
parameter.

A suggested possible explanation is that the parameter
variations done in the experiments might not have been large
enough to fully test the typical time scales that we expect
to get into play, viz., the diffusion time scale, velocity field
period and correlation time. Refinements to the experiments
could be the subject of future work.
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Finally, Wiener white and colored noises as well as Lévy
white noise on the boundary help the transport process, but
Lévy colored noise eventually suppresses the transport pro-
cess, and it does so faster as the distribution of the Lévy
process gets closer to being Gaussian. The noise effect shows
the same resonance-like behavior seen before, as we vary the
frequency of the shear flow. Not unexpectedly, the noise ef-
fect from Lévy colored noise shows the same sensitivity to
the strength of the noise, but is insensitive to all other noises.
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