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ABSTRACT
This paper used the improved cluster validity index, known
as iDnc, of an existing cluster validity index Dnc. It is im-
plemented to determine which data signature construction
generates the optimal cluster models for periodic time series
density data set. Furthermore, we proved the effectiveness
of iDnc to show that the said cluster validity index is indeed
improved from Dnc. Among the candidate data signatures
identified in previous literature, the 4D data signature was
found to be the most effective in generating the optimal clus-
ter models for traffic density data set based on iDnc compu-
tations. We showed the robustness of the 4D data signature
construction by implementing these computations and the
Kruskal-Wallis Test on multiple segments of the North Lu-
zon Expressway (NLEX). With the resulting optimal cluster
model for density, traffic analysis using the data signature
visualization technique data image was done on 4 different
NLEX segments.

Key words: Data Signatures, Traffic Density Analysis,
North Luzon Expressway, Data Image, Cluster Validity In-
dex

1. INTRODUCTION
A recent study dealt with density analysis for studying traf-
fic behavior[1]. If we are to consider traffic congestion, den-
sity is an accurate indicator. Density considers the occupied
space of the road and the speed of the vehicles and it can
give a better estimate of the real behavior of the traffic flow
through time. However, the optimal data signature-based
cluster model for traffic behavior studies is only defined in
volume[2]. With the recent traffic behavioral studies focus-
ing on density analysis in NLEX, its optimal cluster model
must also be established.

In order to generate optimal cluster models, we will use the
improved cluster validity index iDnc introduced in [2]. This
is the improved index of the Dunn-like index Dnc in litera-
ture. In this paper, we will present the formal proof of the
effectiveness of iDnc over Dnc in generating optimal cluster
models.

Traffic data set can be efficiently and precisely analyzed us-
ing Fourier-based data signatures. Papers on volume iden-
tified the candidate optimal data signatures for volume in
both clustering[2] and visualization[3] by virtue of the data
set characteristics, i.e. periodic. The same holds for density,
therefore, the data signature-based method will be used for
density data sets. Then we will select the data signature that
will produce the optimal cluster model for density among
the candidates. These data signatures will be clustered and
visualized using data image. Analysis will be done on the
generated data images of the NLEX segments.

The data set recorded and provided by National Center for
Transportation Studies (NCTS) is in time mean speed. The
data set, therefore, will be preprocessed to produce and rep-
resent realistic characterizations of traffic flow in NLEX.

Section 1.1 discusses the definitions, concepts, and nota-
tions used in this paper. Section 2 discusses the formal
proof of the effectiveness of iDnc as a cluster validity index.
Section 3 shows the steps conducted to build the density
models of the NLEX segments. It also includes the steps
in representing the density models as data signatures which
are to be clustered and visualized using data image. The
resulting iDnc computation and data signature-based visu-
alization models are explained in Section 4. Finally, the con-
clusions and recommendations for this study are discussed
in Section 5.

1.1 Definitions
1.1.1 The Data Sets

The data sets provided by NCTS in this study on the NLEX
Balintawak (Blk), Bocaue (Boc), Meycauayan (Mcy), and
Marilao (Mrl) segments in the year 2006 are periodic. These
data sets contain hourly time mean speed and mean volume
of each of the four segments. The hourly data set is sufficient
for analysis as it has been validated to be accurate in a
previous study[1].



The data sets are preprocessed in a previous study in which
average time mean speeds must meet the minimum speed
requirement of 40 kph. Eleven weeks, five weeks, twenty-
six weeks, and seven weeks are eliminated for the Blk, Boc,
Mcy, and Mrl data sets, leaving us with 41 weeks, 47 weeks,
26 weeks, and 45 weeks, respectively.

From these data sets, we produce traffic density data sets
that are also per segment, with each density data set cover-
ing all four lanes of each segment.

1.1.2 Major Traffic Variables
1. Volume q. Volume is the hourly mean of the number

of vehicles per lane.

2. Time Mean Speed ut. Time mean speed is the mean
of the speeds ui of the n vehicles passing through a
specific point within a given interval of time.

ut =

Pn
i=1 ui

n

3. Space Mean Speed us. Space mean speed is the
speed based on the average travel time of n vehicles in
the stream within a given section of road.

us =
nPn
i=1

1
ui

4. Density k. Density k is the number of vehicles over
a certain length of a road.

k =
q

us

Space mean speed is used in estimating the density
because it considers the space between the vehicles.

1.1.3 Estimation of Space Mean Speed from Time
Mean Speed

Since the data set provided contains only the time mean
speed and space mean speed is required in determining den-
sity, we estimate the space mean speed from the time mean
speed using Rakha-Wang equation[4] to get us, where us ≈
ut− σ2

t
ut

There will be a 0 to 1 percent margin of error in the
estimation.

1.1.4 Data Signature
A data signature, as defined in [5] is a mathematical data
vector that captures the essence of a large data set in a
small fraction of its original size. These signatures allow us
to conduct analysis in a higher level of abstraction and yet
still reflect the intended results as if we are using the original
data.

Various Power Spectrum-based data signatures[3, 6] had
been employed to generate cluster and visualization models
to represent periodic time series data. Fourier descriptors
such as Power Spectrums rely on the fact that any signal can
be decomposed into a series of frequency components via
Fourier Transforms. By treating each nD weekly partitions
in the NLEX BLK-NB time-series traffic volume data set[6]
as discrete signals, we can obtain their Power Spectrums
through the Discrete Fourier Transform(DFT) decomposi-
tion.

Power Spectrum is the distribution of power values as a func-
tion of frequency. For every frequency component, power
can be measured by summing the squares of the coefficients
ak and bk of the corresponding sine-cosine pair of the decom-
position and then getting its square root, where the variable
k = 0, 1, . . . , n− 1. The Power Spectrum Ak of the signal is

given by, Ak =
p
ak2 + bk

2. Studies on NLEX traffic vol-
ume have shown that the set {A0, A7, A14, A21} is an opti-
mal data signature for both visualization[3] and clustering
[2]. Methods in [2] validate the optimality of the 4D data
signature by showing an improved Dunn-like index. The
4D data signature used for clustering achieved statistical
competence among all other data signatures. The study
achieved ≈ 97.6% original data reduction for production of
an optimal cluster model for Dunn-like variables.

1.1.5 Data Visualization via Data Image
In this study, we make use of data images to visualize the
data set. A data image is a graphical representation that
transforms the given multidimensional data set into a color
range image. Observations are made through the colors’
given characteristics and respective magnitudes. In our given
data set, weeks are represented by the y-axis arranged by
their cluster membership and days by the x-axis (with 1 as
Sunday, 2 as Monday, and so on). The weeks are arranged
according to their clusters. Clusters are determined by us-
ing the X-Means Clustering algorithm[7] that takes the 4D
data signatures of the weeks in the data set as its input.

1.1.6 Cluster Validity Indices
Cluster validity indices are used to measure cluster compact-
ness and separation for cluster models (or schemes) obtained
from either fuzzy or crisp clustering algorithms without the
presence of user-defined criterion[2].

1. Dunn-like index Dnc
A Minimum Spanning Tree(MST)-based Dunn-like in-
dex is defined as follows:

Let a cluster ci and the complete graph Gi whose ver-
tices correspond to the vectors of ci. The weight we of
an edge e of this graph equals the distance between its
two end points q, r. Let EMST

i be the set of edges of
the MST of the graph Gi and eMST

i the edge in EMST
i

with the maximum weight. Then the diameter of Gi,
denoted as diamMST

i , is defined as the weight of eMST
i .

Then the Dunn-like index is given by the equation,

Dnc = min
i=1,...,nc


min

j=i+1,...,nc

„
d(ci, cj)

maxk=1,...,nc diamMST
k

«ff
,

where d(ci, cj) = minq∈cj ,r∈cj d(q, r), is the dissimi-
larity function between two clusters ci and cj . For
brevity, we denote d(ci, cj) with z.

2. Improved Dunn-like index iDnc
In the computation of Dunn-like index Dnc, cluster
separation is only measured by using x ∈ ci and y ∈
cj that derives d(ci, cj). By considering that x and
y may be potential outliers[8] of their clusters, we
strengthen this measure by incorporating the informa-
tion of the relationships of both of these points to their
co-members, and more particularly, to their respective
centroids xi and xj , through A and B, where A is the



distance from x to its cluster’s centroid and B is the
distance from y to its cluster’s centroid. Addition-
ally, the inter-cluster information attributed to Y as
the distance of two centroids for ci and cj shall also
be considered in building the improved index iDnc, as
follows:

iDnc = min
i=1,...,nc


min

j=i+1,...,nc

„
d(ci, cj) + Y + 1

A+B + 1

«ff
.

Illustrated in Figure 1 are the variables used to measure Dnc
and iDnc.

Figure 1: Sample Scheme with 5 Clusters, with
Cluster Centroids with Horizontal and Vertical
Hatchings

2. PROVING THE EFFECTIVENESS OF IDNC

AS CLUSTER VALIDITY INDEX
In Figure 1, the points with darkened edges, along with their
clusters’ potential outliers give diamMST

k for any cluster ck
in the scheme. In this scheme, Cluster 1 gives the value
M = maxk=1,...,nc diam

MST
k .

Suppose we build another model S2 basing from the exist-
ing model (referred hereon as S1) in Figure 1. In this new
model, we modify the inter-cluster information of clusters 0
and 1. We can either add or subtract ε1 > 0 and ε2 > 0
from z and Y , respectively. By adding ε1 to z in S2, S2

would give a larger Dnc than S1 regardless of the fact that
cluster separation may have deteriorated by subtracting ε2
to Y . On the hand, when subtracting ε1 from z in S2, S1

yields a better Dnc than S2 even when Y had been added
with ε2. It is therefore essential that we consider the gen-
eral effect of all types of modifications on cluster separation
and compactness from S1 to S2. We provide generaliza-
tions in succeeding discussions and prove that our proposed
improved index, iDnc, gives better characterization of the
inherent relationships in the scheme.

In order to ensure that the suggested improvements and the
revisions incorporated to the original cluster validity index

Dnc are observable in iDnc, the following concerns are in-
vestigated, as follows,

• the consistency of Dnc and iDnc in determining a bet-
ter cluster model between the schemes S1 and S2

• the capability of iDnc to effectively measure cluster
validity in certain configurations of S1 and S2 that
Dnc failed to do so

In the discussion that follows, cluster validity index compu-
tation shall be focused for two clusters. We fix the global
parameter that holds the maximum diameter of all the min-
imum spanning trees built for each cluster in a scheme.
We shall focus on three particular information: centroid-
to-centroid, centroid-to-potential outlier, and single-linkage
distances to describe inter-cluster and intra-cluster relation-
ships in the scheme. However, note that we maintain the
original global minimum cluster validity index iDnc to de-
scribe the entire scheme containing at least two clusters.

Let  , ∈ {>,<} and α, α = {0, 1}.

Let A and B be the intra-cluster distances measured from
centroids xi and xj of the clusters ci and cj , respectively,
where i 6= j, i, j ∈ {1, 2, . . . , nc}, to their farthest co-members
a ∈ ci and b ∈ cj for both schemes S1 and S2.

Let x ∈ ci,y ∈ cj , ||xy|| = d(ci, cj), Y be the distance from
xi to xj , and M = maxk=1,2,...,nc diam

MST
k of S1.

Let Y +(−1)α(ε2) be the distance from xi to xj in scheme S2,
where ε2 > 0, α ∈ {0, 1}. Furthermore, let ||xy||+(−1)α(ε1)
= d(ci, cj) in S2, where ε1 > 0, α ∈ {0, 1}.

Thus,

Dnc
(S1,0) =

||xy||
M

and Dnc
(S2,α) =

||xy||+ (−1)α(ε1)

M
,

iDnc
(S1,0) =

||xy||+ Y + 1

A+B + 1
and

iDnc
(S2,(α,α)) =

(||xy||+ (−1)α(ε1)) + (Y + (−1)α(ε2)) + 1

A+B + 1
.

Theorem 1. Given any two schemes S1 and S2, the fol-
lowing cases hold,

1. for α = α, iD
(S1,0)
nc  iD

(S2,(α,α))
nc iff D

(S1,0)
nc  D

(S2,α)
nc

2. for α 6= α,

(a) if D
(S1,0)
nc  D

(S2,α)
nc and (−1)αε2 + (−1)αε1 0

then iD
(S1,0)
nc  iD

(S2,(α,α))
nc , where  6=  .

(b) if D
(S1,0)
nc  D

(S2,α)
nc and (−1)αε2 + (−1)αε1 0

then iD
(S1,0)
nc  iD

(S2,(α,α))
nc , where  6=  .

(c) iD
(S1,0)
nc = iD

(S2,(α,α)
nc iff |(−1)α(ε2)| = |(−1)α(ε1)|.



Proof. Let z = ||xy||, z′ = z+(−1)αε1, Y ′ = Y +(−1)α.

For α = α, if z′ − z < 0, we know that Y ′ − Y < 0 or if
z′ − z > 0, then Y ′ − Y > 0. Thus (z + (−1)α(ε1)) and
(Y +(−1)α(ε2)) are either both larger or smaller than z and

Y , respectively, thus when z
M
 z+(−1)α(ε1)

M
, we have

z + Y + 1

A+B + 1
 
z + (−1)αε1 + Y + (−1)α + 1

A+B + 1
, ∈ {>,<}.

Conversely, when (Y + (−1)α(ε2)) > Y , we know that (z +
(−1)α(ε1)) > z, or when (Y + (−1)α(ε2)) < Y , we have (z+

(−1)α(ε1)) < z. Thus, when z+Y+1
A+B+1

 z+(−1)α(ε1)+Y+(−1)α+1
A+B+1

,
we obtain

z

M
 
z + (−1)α(ε1)

M
, ∈ {>,<}.

We formulate the following proofs to the indicated items in
item 2.

(a) For α 6= α, if z′ − z < 0, we know that Y ′ − Y > 0
since α = 0. Additionally, with α = 1, we obtain
z
M
> z+(−1)α(ε1)

M
. Given that (−1)α(ε1) + (−1)α(ε2) > 0,

it is therefore true that ε2 > ε1. Let ε = (−1)α(ε1) +
(−1)α(ε2). Since ε > 0, it implies that

z + Y + 1

A+B + 1
<
z + Y + 1 + ε

A+B + 1
.

Additionally, α 6= α, if z′ − z > 0, then Y ′ − Y < 0.

With α = 0, we know that z
M
< z+(−1)α(ε1)

M
. Given

that (−1)α(ε1)+(−1)α(ε2) < 0, then ε1 > ε2. Using the
same computation of ε, where ε < 0, it is therefore true
that

z + Y + 1

A+B + 1
>
z + Y + 1 + ε

A+B + 1
.

(b) For α 6= α, if z′ − z > 0, we know that Y ′ − Y < 0
since α = 0. Additionally, with α = 0, we obtain
z
M
< z+(−1)α(ε1)

M
. Given that (−1)α(ε1) + (−1)α(ε2) >

0, it is therefore true that ε1 > ε2. Let ε = (−1)α(ε1) +
(−1)α(ε2). Since ε > 0, it implies that

z + Y + 1

A+B + 1
<
z + Y + 1 + ε

A+B + 1
.

Additionally, α 6= α, if z′−z < 0, then Y ′ − Y > 0 with

α = 1. With α = 1, we know that z
M
> z+(−1)α(ε1)

M
.

Given that (−1)α(ε1) + (−1)α(ε2) < 0, then ε1 > ε2.
Using the same computation of ε, where ε < 0, it is
therefore true that

z + Y + 1

A+B + 1
>
z + Y + 1 + ε

A+B + 1
.

(c) Given |(−1)α(ε2)| = |(−1)α(ε1)|, where α 6= α, we know
that ε1 = ε2 and (−1)α(ε2) is just an additive inverse of
(−1)α(ε1). Let ε = (−1)α(ε1) + (−1)α(ε2). Thus, ε = 0,
and

z + Y + 1

A+B + 1
=
z + Y + 1 + ε

A+B + 1
.

Conversely, z+Y+1
A+B+1

> z+Y+1+ε
A+B+1

holds when ε = (−1)α(ε1)+

(−1)α(ε2) = 0, where α 6= α, thus |(−1)α(ε2)| = |(−1)α(ε1)|.

However, both of the aforementioned relations also show
how the original index Dnc measure cluster validity dif-

ferently with the improved index iDnc, i.e. D
(S1,0)
nc = z

M

and D
(S2,α)
nc = z+(−1)α(ε1)

M
, α ∈ {0, 1}, therefore

D(S1,0)
nc 6= D(S2,α)

nc .

3. METHODOLOGY
3.1 Building Effective Density Models from

Sparse Data Points
1. From the preprocessed data set, we extract the 4 seg-

ments’ mean volume and time mean speed per hour.

2. We estimate the space mean speed from the time mean
speed by first getting the variances among the time
mean speeds of the four lanes of each segment. We ap-
ply the Rakha-Wang equation to get the space mean
speed per hour of the segments. To maintain consis-
tency, the computed space mean speeds undergo pre-
processing to eliminate values that are below 40 kph.

3. We estimate each segment’s density k values using
their corresponding given mean volume and space mean
speed per hour.

3.2 Data Signature-based Clustering and
Visualization of the Density Models

1. From the generated density data sets from the previous
section, we generate the the data signature of each
segment’s weeks.

2. Clustering is then done using the X-means clustering
algorithm [7]. The data sets’ candidate optimal in-
dex data signatures have the Power Spectrum values of
{A0, A7, A14, A21}, {A0, A7, A14, A21, A28, A35, A42},
{A0, A1, ..., An

2
}, and {A0, A1, ..., An} which are in

4D, 7D, n
2

D, and nD, respectively, as discussed in [2].

3. The iDnc values of the data sets are computed on dif-
ferent dimensions. Comparison of the iDnc values of
the different dimensions is then done to determine the
optimal cluster model for each density data set. The
non-parametric method Kruskal-Wallis Test is used to
identify which of the data signatures help generate the
optimal cluster model of density on the 4 segments.

4. We visualize the traffic density values of the time do-
main data set using data images where rows represent
the values of each week, structured contiguously based
on the clustering result determined by iDnc, and each
pixel is colored based on the actual values of the den-
sity in a time slot. Analysis is done on these data
images to pinpoint which among the segments more
frequently exhibit free flow, traffic disruptions, traffic
incidents, and road congestions.

4. RESULTS AND DISCUSSIONS
4.1 Graphs of the Segments’ Density Data Sets
From the preprocessed data, we computed the variances of
the hourly time mean speed per segment. High values of



variances are evident from the graphs because of lane con-
gestions during certain hours. With the computed variances,
hourly space mean speeds of the segments were produced.
Densities of the segments were then computed.

The calculated hourly densities of the Blk, Boc, Mcy, and
Mrl segments are shown in Figures 2, 3, 4, and 5, respec-
tively. As seen from the values of the graphs, the density
values of the Blk segment is relatively higher than the den-
sity values of the 3 other segments. The graphs’ behavior
are similar with the exception of Mcy segment. Mcy seg-
ment’s graph is more varied than the other graphs because
it has only half of its original weeks (26 out of 52), whereas
the others only lost at most 11 weeks.

All graphs show relatively higher values on the 2000th-3000th

hour (1000th-1500th hour in Mcy), 6000th-7000th hour (5000th-
6000th in Blk, 3500th-4000th in Mcy), and final hours of the
graphs. These hours represent the Holy Week in mid-April,
All Saint’s Day/semestral break at the end of October until
the start of November, and the Christmas holidays, respec-
tively.

Figure 2: Hourly Densities of the Blk Segment

Figure 3: Hourly Densities of the Boc Segment

Figure 4: Hourly Densities of the Mcy Segment

Figure 5: Hourly Densities of the Mrl Segment

4.2 Data Signature-Based Cluster and
Visualization Models

The following improved Dunn-like index iDnc values were
obtained for the different segments’ data sets as shown in
Table 1.

Representation Blk Boc Mcy Mrl
4D 1.238 1.088 1.226 0.808
7D 1.180 1.150 1.196 0.881
n
2
D 0.585 0.703 0.737 0.669
nD 0.682 0.647 0.739 0.554

Table 1: iDnc of Cluster Models using Data Signa-
tures and entire Power Spectrums of the Density
Data Sets

The non-parametric method Kruskal-Wallis test is then done
to determine the data signature with the optimal dimension
for the density data sets of Blk, Boc, Mcy, and Mrl.

Shown in Tables 2 and 3 are the values showing the Mean
Ranks and Test Statistics of the data signatures used in
obtaining the cluster validity index iDnc for the segments
Blk, Boc, Mcy, and Mrl.



Representation N Mean Rank
4D 4 12.75
7D 4 12.25
n
2
D 4 4.75
nD 4 4.25

Table 2: Ranks of Used Data Dignatures for the
Density Data Sets using iDnc.

iDnc value
Chi-square 11.34
df 3
Asymp. Sig. 0.01

Table 3: Test Statisticsa,b of Used Data Signatures
for the Density Data Sets using iDnc. a. Kruskal
Wallis Test. b. Grouping variable:Representation

As we can see from the mean ranks in Table 2, 4D data sig-
nature has the highest rank among the given density data
sets on the said segments. Also, it is suggested that the
computed index iDnc using the different dimensioned data
signatures of the density data sets for the said segments
are significantly different because the P-value (Asymp. Sig.
value) of the Kruskal-Wallis Test on the data signature is ¡
0.05 (at 0.01). This means that the quality of the cluster
models derived from using data signature with higher di-
mensions (i.e. 7D, n

2
D, nD) is statistically inequivalent to

that of the 4D data signatures to describe the data set.

4.3 Notes on Traffic Behavior for the NLEX
Segments

As seen from the data images of the segments’ densities in
Figures 6, 7, 8, and 9, the following weeks have relatively
high densities in the 4 segments: week 15 (day 4) and week
44 (days 3 and 4). The sudden increase in density is due to
the departure for the holidays on Holy Week and All Saint’s
Day. The following weeks have relatively low densities in
the 4 segments: week 1 (day 1), week 39 (day 5 to 6), week
15(days 5, 6, and 7), and week 44 (day 4). Instances of
the sudden decrease in density occurred on some days of
a holiday vacation. Majority of the people planning on a
vacation have already left, leaving a few to depart on the
following days (week 15’s days 5, 6, and 7). Other instances
of a relatively low density turnout are also attributed to
travel advisories due to typhoons (week 39 and 44 - typhoons
Milenyo and Paeng).

The Blk segment is found to exhibit higher densities more
frequently. Among the 4 segments, it is the only one that
has a record of about 90 vehicles per kilometer. Mrl and Boc
segments, on the other hand, are the segments that exhibit
free flow more frequently. Mcy segment is too compromised
(only half of the weeks are valid) so analysis might not be
reliable and accurate.

Figure 6: Data Image of the Blk Segment’s Hourly
Traffic Density Data

Figure 7: Data Image of the Boc Segment’s Hourly
Traffic Density Data

Figure 8: Data Image of the Mcy Segment’s Hourly
Traffic Density Data



Figure 9: Data Image of the Mrl Segment’s Hourly
Traffic Density Data

5. CONCLUSIONS AND
RECOMMENDATIONS

In this paper, we used density for traffic analysis as a con-
gestion indicator in traffic. 4D data signature-based clus-
ter models were obtained to characterize traffic behavior
through time in NLEX. Traffic density analysis on differ-
ent segments produced similar behaviors on periods where
significant spikes are observed (e.g. high density in April
because of Holy Week).

This paper also proved that the cluster validity index iDnc
is indeed an improved variant of Dnc in both theory and
application for periodic traffic density data set. Using iDnc,
the produced density data signatures’ optimal cluster model
of the given traffic data set is found to be the 4D cluster
model, the same as volume’s optimal cluster model. The
4D data signature cluster model’s iDnc value was also the
numerically highest among the studied dimensions (i.e., 4D,
7D, n

2
D, nD) and it also had the highest mean rank. The

higher dimensions were not statistically equivalent with the
4D cluster model. This resulted in a more efficient analysis
without compromising its accuracy.

Traffic density analysis on NLEX’s 4 segments using data
image showed the traffic behavior of the expressway accu-
rately because of the color coded scheme implemented in
the visualization technique. Because of this, congestions can
now be observed more easily and accurately.

Multi-year traffic density analysis on a segment is recom-
mended for further validation of the 4D data signature clus-
ter model optimality.
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