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ABSTRACT
Security patrol is an important preventive measure against
threat and danger. Since this involves routing, valid and
near-optimal routes can be determined using techniques in
Graph Theory. This study finds routes for a given num-
ber of security patrols in a certain university campus using
the Min-Max k-Chinese Postman Problem (MM k-CPP) as
the problem model. This problem was solved using simu-
lated annealing (SA) and the results were competitive with
other heuristics. The method was implemented with a user
friendly interface that would accept Open Street Maps (OSM)
data in XML format.
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1. INTRODUCTION
1.1 Significance and Objectives of the study
Route planning is an important area because of the need
to solve well-designed and optimal routes. As Ahr [1] men-
tioned, a lot of organizations perform services that are usu-
ally related to routing. Examples of these are picking up and
distributing materials and waste collection and management
for which these organizations spend a lot of time and money
for repeated transport activities.

Security patrols also need to plan their patrol routes in order
to maximize police visibility and minimize operational cost.

This study finds near-optimal solution routes for a given
number of security patrols in a university. Specifically, it
intends to plan a tour for each patrol where all streets in
the university campus are covered by at least one patrol, and
the longest tour is minimized. This effectively balances the
load among the different patrols. The program implemented
accepts an input map from Open Street Map (OSM) and
outputs the map together with the solution routes. The

problem was modelled as a Min-Max k-Chinese Postman
problem.

1.2 Review of Related Literature
In the dissertation by Ahr [1], he suggested that when study-
ing routing problems in road networks, it is advantageous
to represent this network as a graph, a mathematical con-
cept which consists of nodes and arcs. Nodes may represent
cities, towns, intersection or any point that may be needed
to service. Arcs represent connections between these nodes
which could be roads.

Routing problems could either be a node routing problem,
where services need to be performed on the nodes, or be an
arc routing problem, where services are need to be performed
on arcs. Arc routing problems are also known as postmen
problems. An example of an arc routing problem is the
Chinese postman problem.

The Chinese postman problem (CPP) was formulated by
Mei-ko Kwan. The objective of the CPP is to find a route for
a single postman where he passes and delivers mail on each
street at least once, and gets back to the starting point [14].

The k-chinese postman problem (k-CPP) is a generalization
of the Chinese postman problem according to Guan, as cited
by Osterhues and Mariak [10]. It allows k > 1 postmen to
visit the roads with the same objective to be fulfilled.

Other arc routing problems include the following. The Rural
Postman Problem (RPP), which is a generalization of the
CPP in which a subset of the edges in the graph, referred
as required edges, are only needed to be traversed [6]. The
Capacitated Arc Routing Problem (CARP) is defined by
Golden and Wong as finding a number of tours such that
each arc with positive demand is serviced by exactly one
vehicle, the sum of demand of those arcs serviced by each
vehicle does not exceed the capacity, and the total cost of
the tours is minimized [15].

New problems can be derived from these problems by adding
more constraints. For example, by adding the constraint
that an arc could be passed in only one direction, it will
produce the directed variations of CPP, RPP, and CARP.
More constraints can be added like time dependencies, pri-
ority arcs, etc.

Usually, real world arc routing problems are related to Min-
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Max k-CPP (MM k-CPP) because these problems are of-
ten divided into sub-problems which are handled by multi-
ple postmen which need to provide services given a shortest
amount of time.

Let G = (V,E) be a connected graph where V = {v0, ..., vm}
is the set of nodes in the graph and E = {e0, e1, ..., en} is
the set of edges required to be passed. The structure of each
edge is en = (vsen − v

d
en , wen) composed of a source node,

vs and destination node, vd and a corresponding weight w.
The objective of MM k-CPP is to find a k-postmen tour
from the set of all tours T = (T0, T1, ..., Tk) that minimizes
the maximum cost tour in T [1].

min{maxki=0(cost(Ti)) | Ti ∈ T}

MM k-CPP is NP-hard but approximable within 2− 1/k of
the optimum according to Frederickson et. al. [5]. Since this
problem is NP-hard, finding exact solutions in polynomial
time is unlikely.

In a study by Reis et. al. [12], they proposed a tool called
GAPatrol, a tool used for assisting police managers to find
the routes. It uses a genetic algorithm to find routes for
police patrol units.

A similar study in routing using a genetic algorithm was
done by Huang et al. [7]. Route planning for hazardous ma-
terials (HAZMAT) was considered in the study. Compared
to the first study which also uses a genetic algorithm, a Geo-
graphic Information System (GIS) was used in the study for
providing data to be input to the modified genetic algorithm
used by the authors in the study.

Using GIS for security planning is not new. As stated by
Kuo et al. [9] in his study that uses GIS to organize police
patrol routes, GIS software can solve the above problems
by providing the graphical output, and it became the most
popular tool for visualization of crash data and hotspots
analysis.

Ruan et al. [13] proposed a solution on stochastic patrolling
by dividing the nodes of interest, which may be cities and
hotspots. These divided parts are called sectors. Each sec-
tor of the road network will be assigned to a patrol. Then,
each patrol will follow the predefined route set on each sec-
tor or may respond to a trigger event which may alter the
predefined route. In this setup, there are three subproblems
needed to be solved before arriving to the final solution.
These are partitioning the road network, finding an optimal
route in a sector, and generating multiple patrolling routes.

Chawathe [3] created a tool for determining important pa-
trol routes based on importance scores of locations and the
topology of the road network. This is just a subproblem of
solving routes in road networks. Often, route planning does
not consider the actual events that could happen in the pa-
trol environment because of the large number of possibilities
that could affect the predefined route but knowing where the
crime will focus may also matter. An example of this is the
study by Paruchuri et al. [11] which focuses on security pa-

trolling that considers uncertainty of the movement of the
adversaries.

These are not the only available methods for finding near op-
timal solution to k-CPP. A well known algorithm for solving
MM k-CPP is FHK-Algorithm by Frederickson, Hecht and
Kim which uses the idea of route-first-cluster-second strat-
egy. Its idea starts from solving the optimal CPP then par-
titioning the solution [5]. Ahr also created new constructive
heuristics namely Augment-Merge algorithm and Cluster al-
gorithm for solving MM k-CPP. They have also proposed
exact algorithms for MM k-CPP by using Integer Program-
ming formulations and a branch and cut algorithm [1].

Ahr and Reinelt [2] also published a tabu search algorithm
for solving MM k-CPP. Its idea is to start with a solution
that computes neighbour solutions to improve the objective
function, which in the considered problem is minimizing the
maximum tour. Most of their heuristics require shortest
paths between nodes to be computed earlier, thus apply al-
gorithms like Floyd-Warshall algorithm [4]. Having precom-
puted shortest paths will lead to easy path reconstruction
from solutions.

Simulated annealing is very similar to the tabu search algo-
rithm. Kirkpatrick et al [8] developed the simulated anneal-
ing algorithm by finding the connection between statistical
mechanics and combinatorial optimization. By adapting the
idea from condensed matter physics that annealing metals
will improve certain properties, they simulated many sci-
entific processes and properties involved in annealing like
energy, temperature and applied it to solving combinatorial
optimizations.

2. METHODOLOGY
The program is composed of 3 major parts which are:

1. Parsing of OSM XML data and creation of preliminary
requirements.

2. Solving of routes using simulated annealing.

3. Rendering of maps with solution routes and preparing
patrol tour reports.

Figure 1: OSM Map Snapshot

The OSM data of the university was downloaded and then
cleaned to exclude roads that are not part of the university
campus and to ensure that the resulting road network is
connected.

3 important tags are considered in parsing the OSM XML
data. These are:
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Figure 2: Program Flow

1. The bounds tag - This contains the minimum and max-
imum longitude and latitude of the rectangular region
defined in the OSM XML data. This will define what
tags to fetch from the OSM data file.

2. The way tag - This defines the regions in the OSM data
and contains attributes that define whether a way is a
highway, building, etc. Each Way tag is defined by the
nodes that build its structure. The highway tag is used
for all hardened and recognised routes between two
places used by motorised vehicles, pedestrians, cyclists
and others.

3. The node tag - This represents a point in the OSM
data and the building block of OSM data. Each node
tag contains an ID attribute which are referenced by
way tags. Node tags contain the latitude and longitude
coordinate of the node considered.

Once all the nodes considered are stored, a distance ma-
trix of appropriate size to fit the count of nodes is created.
Initially, the distance matrix is filled with values equal to
infinity. Afterwards, each passable way in the OSM data
is appended to an edgelist and distances between included
nodes in the OSM way are used to update the distance ma-
trix. Each passable OSM way is considered a single edge in
annealing the solution. However, when computing the short-
est path from a node to another, an OSM way is dissected
into parts.

After building the required distance matrix, the shortest
path is computed using Floyd-Warshall All Pairs Shortest
Path Algorithm [4]. This is required for computing the cost
of the tours and reconstructing the solution.

Figure 3: OSM XML Sample Format

E = {e0, e1, e2, e3, ..., en−2, en−1, en}

T =


T0 = {e0, ek+1, ...}
T1 = {e1, ek+2, ...}
...
Tk = {ec, e2k−1, ..., en}


Figure 4: State Initialization and Edge Assignment

Once the preliminaries are done, the program proceeds to
the solver. The solver uses simulated annealing to evolve a
solution to become a better solution. A solution in simulated
annealing is called a state in this problem. LetG = (V,E) be
the graph created from parsing the OSM data where V =
{v0, v1, ..., vm} is the set of nodes in the graph and E =
{e0, e1, ..., en} is the set of edges required to be passed. Each
edge is composed of a source node, vs and destination node,
vd. Also, each edge has a corresponding weight w. The
structure of each edge is en = (vsen − v

d
en , wen), where an

edge has its own source edge and destination edge, with
its own weight. The required edges are sorted according to
increasing distances.

The initial state is then created. First,the number of patrols,
k, is required. Also, the universal source node vS ∈ V is
required. Once all these values are already known, the set
of tours T = (T0, T1, ..., Tk) is initialized. Each edge from E
is equally distributed to each tour in T .
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begin
InitialTemperature := 1010

CoolingRate := 0.999
FreezingPoint := 2.23× 10−308

BestSolution := InitialSolution
BestEnergy := COST (BestSolution)
t := InitialTemperature
while t > FreezingPoint do

NewSolution := NEIGHBOUR(BestSolution)
NewEnergy := COST (snew)
∆ := NewEnergy −BestEnergy
if NewEnergy < BestEnergy ∨ random() < e

∆
t

BestSolution := InitialSolution
BestEnergy := NewEnergy

fi
t := t× CoolingRate

od
end

Figure 5: Simulated Annealing Pseudocode

Once the initial state is already built, the annealing of the
state starts. The pseudocode of the annealing used is shown
on Figure 5.

Simulated annealing is not just about minimizing the solu-
tion cost. It possesses a hill climbing technique that allows
it to anneal solutions with a cost greater than the current

best solution at a probability equal to e
∆
t for it may produce

a better neighbour.

The neighbour function used in annealing the states are done
by altering some of the elements in the parameter state. It
returns a new arrangement of edges which defines a new
assignment of edges for each tour. There are 4 ways to
create a neighbour of a state:

1. Exchange edges between two tours - Two tours in T are
randomly chosen, and random edges in these tours are
exchanged.

Initial State:

T =

{
T0 = {e0, e2, ...}
T1 = {e1, e3, ...}

}
Neighbour State:

T =

{
T0 = {e1, e2, ...}
T1 = {e0, e3, ...}

}

Figure 6: Sample exchange edge between two tours

2. Invert traversal of edge in a single tour - A single edge
is randomly selected from a randomly selected tour in
the set of all tours T . The traversal direction of that
edge is reversed if the chosen edge is undirected.

3. Transfer a single edge from a tour to another tour -
Two tours are randomly selected from the set of tours

Initial State:

T =
{
T0 = {e0, e2, ...}

}
e0 = vse0 − v

d
e0

Neighbour State:

T =
{
T0 = {e∗

0, e2, ...}
}

e∗0 = vde0 − v
s
e0

Figure 7: Sample invert single edge in a single tour

T . One of those tours will transfer a randomly selected
edge to another selected tour.

Initial State:

T =

{
T0 = {e0, e2, ...}
T1 = {e1, e3, ...}

}
Neighbour State:

T =

{
T0 = {e2, ...}
T1 = {e0, e1, e3, ...}

}

Figure 8: Sample transfer a single edge from a tour
to another tour

4. Exchange position of two edges in a single tour - A
single tour is randomly selected from the set of tours
T . Two edges from that tour are randomly selected
and their positions are exchanged.

Initial State:

T =
{
T0 = {e0, e2, ..., e5, e6, ...}

}
Neighbour State:

T =
{
T0 = {e6, e2, ..., e5, e0, ...}

}
Figure 9: Sample exchange position of two edges in
a single tour

The cost function, COST (T ), determines the total energy of
the current state which represents maximum cost of a tour
in the set of all tours.

From the defined source node, each edge is traversed accord-
ing to its ordering in the tours. Each edge is converted to
its node form. This leads the edge list to become a series
of nodes. Route from an edge to another is determined by
the precomputed shortest path, SP (vs, vd), earlier. Since
k-CPP requires the source node and the destination node
(depot) to be the same, it is appended to the start and end
of the tour. Shortest paths to the depot are then computed.

After the tour is expanded, the cost is easily computed by
getting the distance between two nodes from the distance
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State:

T =
{
T0 = {e0, e1, e2}

}
Edge expansion (edge list to node list):

T =
{
T0 = {vse0 , v

d
e0 , v

s
e1 , v

d
e1 , v

s
e2 , v

d
e2}

}
Shortest path computation for a single tour:

T0 = {vS , SP (vS , vse0), vse0 , v
d
e0 , SP (vde0 , v

s
e1), vse1 , ..., v

S}

Figure 10: Expanding a single tour

matrix. After computing the cost of all the tours in T , the
maximum cost will be the energy of the state.

As the temperature t decreases, the energy of the state de-
creases because of the continuous search for a more optimal
neighbour from a considered state. This leads to achieving
a near-optimal solution to MM k-CPP.

Map images are downloaded from tile.openstreetmap.org. The
download URL is in the form of tile.openstreetmap.org/z/x/y,
where z is the zoom level, x is the tile image index of a given
longitude and y is the tile image index of a given latitude.
Tile image index of a Mercator coordinate is computed as
specified in Figure 11

x =

⌊
lon+ 180

360
× 2z

⌋

y =


1−

ln

(
tan

(
lat× π

180

)
+ 1

cos(lat× π
180 )

)
π

× 2z−1


Figure 11: Formula for computing tile image index
of a given coordinate

Required tiles are downloaded and stitched into a single im-
age. The solution will be rendered as a series of line segments
in the considered map.

The program is designed to easily start the annealing process
and customize input parameters depending on the choice of
the user. Colors of the solution routes can be changed de-
pending on the choice of the user. A panel which displays the
map image can be seen which shows the preliminary solution
image and the display to set the source location. Buttons
to save the solution image and tour reports are available for
convenience.

3. RESULTS AND DISCUSSION
The algorithm was first tested in the test graph defined by
Ahr [1] to test his heuristics for solving routing problems.
For ease of comparison of the implemented method to well
known methods, the same graph was also used. The test
graph is shown in Figure 13.

The simulated annealing approach implemented nearly matches
the performance of other algorithms for MM k-CPP. Table

Figure 12: Program Snapshot

Figure 13: A connected weighted undirected test
graph

1 displays the solutions for the input graph. The approach
is compared to the FHK algorithm of Frederickson et. al.
and the 3 other algorithms presented by Ahr.

Table 1: Comparison of Simulated Annealing (SA)
to other known MM k-CPP methods on the small
test graph (Figure 13) for k = 2

C(T0) C(T1) Cmax(T )
SA (10 Run Average) 94.6 95.0 95.3
FHK 89.0 98.0 98.0
Augment-Merge 101.0 107.0 107.0
Cluster 37.0 155.0 155.0
ClusterWeighted 117.0 93.0 117.0

Table 1 shows that the SA implementation results is not
far from the other known methods as tested on the input
graph Ahr created. It has actually outdone the methods
laid out by Ahr in his dissertation with the test input in
consideration. This cannot be tested further on other inputs
since these methods are not implemented and those results
are only shown on his publication.

As for the results on applying the SA approach on the ac-
tual patrol routes solving, Table 2 shows the values for k =
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Figure 14: Sample result of simulated annealing on
the test graph for k = 2 and v1 as source node

2, 3, 4, ..., 9, 10 and source coordinates 14.1646, 121.2419. The
input used is the OSM data of the university road network.
For each k, 10 runs of SA were performed and the results
were averaged.

Table 2: Results of Simulated Annealing in OSM
Data (10 Run Average)

k Cmax σ
2 49848.80 m 7.0
3 34271.10 m 4.4
4 26416.80 m 10.0
5 21556.00 m 22.0
6 18047.50 m 33.0
7 15708.50 m 16.3
8 13835.30 m 19.4
9 12572.10 m 26.6
10 11474.10 m 28.0

Table 3: Absolute and Percentage Difference of Re-
sults of Simulated Annealing in OSM Data (10 Run
Average)

k Clb Cmax − Clb |Cmax−Clb
Clb

|
2 18970.00 m 30878.80 m 1.63
3 12646.67 m 21624.43 m 1.71
4 9485.00 m 16931.80 m 1.79
5 7588.00 m 13968.00 m 1.84
6 6323.33 m 11724.17 m 1.85
7 5420.00 m 10288.50 m 1.90
8 4742.50 m 9092.80 m 1.92
9 4215.56 m 8356.54 m 1.98
10 3794.00 m 7680.10 m 2.02

In the Table 2, Clb = TotalCost(E)
k

is defined as the division
of the total cost of all edges TotalCost(E) = ΣC(e∗) by the
number of patrol teams k, where e∗ denotes all the edges in
E of G = (V,E). Finding a solution with Cmax = Clb is
difficult since Clb is not a tight lower bound. This value is
just the lower bound of solution to MM k-CPP with k = c.
Finding the real optimal solution is difficult because it means
computing the exact solution for MM k-CPP through integer
programming.

As Table 3 has shown, the task of dividing the tour cost
is achieved because of the trend of Cmax to decrease as k
increases. These results may be affected by the fact that the
results of the SA may be different from every run. However,
this trend may be a close depiction of the trend of solutions
for each k.

Deviation between individual tours in tour set for each k
varies and has no trend. Increasing the number of tours, k,
may decrease the absolute difference, which may mean lesser
cost of tours but increases the percentage error, which may
mean greater relative distance to optimal solution.

In the main program, 2 results can be produced, either a
solution image or a tour report. Figure 15 shows a sample
of a solution image for k = 10 and source coordinates equal
to 14.1646, 121.2419 with the solution trend.

Solutions are painted in colors chosen by the user. Default
color settings are available. This image is just a simple de-
piction of the solution. Another solution form is the tour
report which contain the tours by wayname and/or by co-
ordinate form.

4. CONCLUSION AND FUTURE WORK
Solving near-optimal routes for multiple security patrols in
the considered university road network is dependent on the
approach for solving the problem model MM k-CPP. Differ-
ent approaches are possible for solving MM k-CPP mostly
involve heuristics. Nevertheless, the method proposed was
successful in finding near-optimal routes for multiple secu-
rity patrols in the university as an aide for security planning.

The simulated annealing method proposed in solving the
MM k-CPP performs quite well for the near-optimal defi-
nition in the problem although further improvement of the
method used is still possible. These include better neigh-
bour solution generation, adaptive annealing structure and
elite seeding.

Another possible future work is assessing the parallelizability
of the input road network. Knowing whether the input is
highly parallelizable will help the program to figure out the
optimal number of patrols to use for that network.

Even though any OSM Map is accepted by the program, it is
recommended to develop tools for the automated cleaning of
the input OSM data and preparing it for the routing process.

The program implemented can be used as a start on plan-
ning security patrols in different universities or larger road
networks.
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Figure 15: Solution Trend on Actual Data, inset is a sample solution for k = 10 patrols
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