An Algorithm for Propagating Graceful Trees Using the Adjacency Matrix of Given Graceful Trees

Marjo-Anne B. Acob
Institute of Mathematical Sciences and Physics
University of the Philippines Los Baños
College, Laguna 4031, Philippines
mbacob@up.edu.ph or
marjoanne_acob@yahoo.com

Jean O. Loyola
Institute of Mathematical Sciences and Physics
University of the Philippines Los Baños
College, Laguna 4031, Philippines
joloyola@up.edu.ph or
jeanloyola@yahoo.com

Abstract

A tree T on $n+1$ vertices is said to be graceful if its vertices can be labeled using all of the integers $0,1, \ldots, n$ such that the edge weights will run from 1 through n, and where the weight of an edge equals the absolute value of the difference of the numbers assigned to its vertices. In this paper, we develop an algorithm that uses the adjacency matrices of known graceful trees to propagate new graceful trees through duplication of arbitrary graceful trees and joining them by additional edges. The algorithm developed facilitates faster generation of families of graceful trees, the study of which is one of the current directions in establishing the graceful tree conjecture.

1. PRELIMINARIES AND DEFINITIONS

Let T be a tree on $n+1$ vertices with vertex set $V(T)$ and edge set $E(T)$. A graceful valuation g of T is an injection

$$
g: V(T) \rightarrow\{0,1, \ldots, n\}
$$

such that if

$$
w(u, v)=|g(u)-g(v)| \forall(u, v) \in E(T),
$$

then

$$
w: E(T) \rightarrow\{1,2, \ldots, n\}
$$

is an injection. A tree which admits a graceful valuation is said to be graceful.

A simple graph that is connected with $n+1$ vertices and n edges is a tree [2].

A graph G is said to be bipartite if $V(G)$ can be partitioned into sets $A_{G}=\left\{x_{1}, x_{2}, \ldots, x_{p}\right\}$ and $B_{G}=\left\{y_{1}, y_{2}, \ldots, y_{q}\right\}$
such that $\left(x_{i}, x_{j}\right) \notin E(G)$ for all $1 \leq i, j \leq p$ and $\left(y_{i}, y_{j}\right) \notin$ $E(G)$ for all $1 \leq i, j \leq q$.

The distance $d(u, v)=d(v, u)$ between any two vertices u and v in a connected graph G is the length of the shortest path between u and v.

The parity set $P(v)$ of a vertex v in a tree T is the set of all vertices including v which are of even distance from v in T. The base of T under its graceful valuation g is that vertex b in T such that $g(b)=0$.

A graceful valuation g is interlaced if g induces, by restriction, a bijection between $\left(P(b)\right.$ and $N_{s-1}=\{0,1,2, \ldots, s-1\}$ where s, the size of T, is the number of vertices of T in $P(v)$.

To illustrate the above-mentioned definitions, consider the tree T shown in Figure 1.1 with its graceful valuation g in Figure 1.2.

Figure 1.1

Figure 1.2

In Figure 1.2, it follows that the base of T under its graceful valuation g is v_{2} and from Figure 1.1,

$$
P\left(v_{2}\right)=\left\{v_{0}, v_{1}, v_{2}, v_{3}, v_{5}, v_{7}, v_{8}\right\} .
$$

Clearly, $P\left(v_{2}\right)$ has $s=7$ elements so that

$$
N_{s-1}=N_{6}=\{0,1,2,3,4,5,6\} .
$$

Now, g is interlaced since it induces a bijection between $P\left(v_{2}\right)$ and N_{6} as illustrated in Figure 1.3.

Figure 1.3
The adjacency matrix A_{T} of a tree T with vertex set $V(T)=$ $\left\{v_{0}, v_{1}, \ldots, v_{n}\right\}$ is the $(n+1) \times(n+1)$ matrix $\left(a_{i j}\right)$ defined by

$$
a_{i j}= \begin{cases}1 & \text { if }\left(v_{i}, v_{j}\right) \in E(T) \\ 0 & \text { otherwise }\end{cases}
$$

In general, if the vertices of a graceful tree are identified with their labels in the graceful valuation of the tree, then the adjacency matrix can be written in such a way that the sum of the diagonal elements except for the main diagonal is 1 . This is because each element of a diagonal of the said matrix corresponds to a representative class of edges of the same weight. Since an edge weight in a graceful tree is unique, there can only be one such edge. Thus, the adjacency matrix of any graceful tree can be written in such form which is called generalized adjacency matrix of a tree induced by its graceful valuation.

2. BACKGROUND OF THE STUDY

In 1963, Kotzig and Ringel conjectured that all trees are graceful [1]. Since then, various efforts have been made to settle the validity of this conjecture but to date, it has remained unresolved. A recent survey of graceful trees can be found in Gallian [3] which includes paths, stars, caterpillars, olive trees, banana trees, and symmetrical trees, among others.

Hugo [4] used the adjacency matrix of a graceful graph to develop two algorithms to generate all possible extensions of the graph to yield graceful graphs. His first algorithm requires the addition of a vertex or an edge by augmenting two diagonals with exactly one " 1 " entry. The propagation of graceful graphs is done recursively. His second algorithm requires the addition of any number of vertices or edges by augmenting any number of rows or columns such that there is exactly one " 1 " entry in each diagonal.

In this paper, we give an algorithm for propagating graceful trees using the adjacency matrices of graceful trees. The algorithm developed may be used to generate graceful trees in
order to identify properties possessed by graceful trees. Attempts to directly prove the Graceful Tree Conjecture have all failed. Proving the conjecture indirectly will start by assuming that there is a tree which is not graceful so it is not isomorphic to any member of a known family of graceful trees. A contradiction must occur somewhere to prove the conjecture and this is where properties of a family of graceful trees could come in.

3. THE ALGORITHM

The following theorem will be needed in our construction in the Algorithm.

Theorem 3.1. Let T_{i} for $i=1, \ldots, m$ be m disjoint graceful trees on $n_{i}+1$ vertices with adjacency matrix $A_{T_{i}}=\left[a_{i j}\right]$. Then the matrix

$$
A=\left(\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & \ldots & 0 & A_{T_{1}} \\
0 & 0 & 0 & 0 & \cdots & 0 & A_{T_{2}} & 0 \\
0 & 0 & \ddots & & \ldots & \ldots & 0 & \vdots \\
0 & & & 0 & A_{T_{m}} & \cdots & & 0 \\
0 & & \ldots & A_{T_{m}} & 0 & & & 0 \\
\vdots & & \ldots & \ldots & & \ddots & 0 & 0 \\
0 & A_{T_{2}} & 0 & \ldots & 0 & 0 & 0 & 0 \\
A_{T_{1}} & 0 & \ldots & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

with dimension

$$
2\left(n_{1}+n_{2}+\cdots+n_{m}+m\right) \times 2\left(n_{1}+n_{2}+\cdots+n_{m}+m\right)
$$

and with 2 submatrices of $A_{T_{i}}, i=1,2, \ldots, m$ where the rest of the entries of A are zero, is an adjacency matrix for the disjoint union of 2 copies of $T_{i}, i=1,2, \ldots, m$.

Proof. By construction, A is a (0,1)-matrix and since $A_{T_{i}}$'s are symmetric, so is A. Also, the main diagonal of A has all zero entries since the main diagonal does not contain entries from any submatrix $A_{T_{i}}$. So, A is an adjacency matrix.

Consider $V\left(T_{i}\right)$ to be the vertex set of $T_{i}, i=1,2, \ldots, m$ such that $\left|V\left(T_{i}\right)\right|=n_{i}+1$. Let $x_{i} \in V\left(T_{i}\right)$ be the base of T_{i} under the graceful valuation f_{i}. Since T_{i} is a bipartite, we can fix a bipartition $V_{i 1}$ and $V_{i 2}$ of the vertices of T_{i} such that $x_{i} \in V_{i 1}$. Moreover,

$$
V_{i 1}=\left\{v \in V\left(T_{i}\right) \mid d\left(x_{i}, v\right) \text { is even }\right\}
$$

and

$$
V_{i 2}=\left\{v \in V\left(T_{i}\right) \mid d\left(x_{i}, v\right) \text { is odd }\right\} .
$$

In the generalized adjacency matrix $A_{T_{i}}$ of $T_{i}, a_{k j}=1 \mathrm{im}-$ plies that $v_{k} \in V_{i 1}$ and $v_{j} \in V_{i 2}$. Let C_{i} and D_{i} be the sets of labels on the vertices of $V_{i 1}$ and $V_{i 2}$, respectively.

Now consider the $2 m$ copies of adjacency matrices as assembled in A. Call the copy of adjacency matrix as the $j^{\text {th }}$ copy if it is the $j^{\text {th }}$ counting from the bottom left corner of A. For a set of integers S, let $a+S=\{a+s \mid s \in S\}$ for any $a \in \mathbb{Z}$. The $1^{\text {st }}$ copy of $A_{T_{i}}$ in A defines edges between vertices with labels $C_{1} \cup\left(\hat{n}+D_{1}\right)$ where

$$
\hat{n}=2 \sum_{i=1}^{m}\left(n_{i}+1\right)-\left(n_{1}+1\right) .
$$

There is an edge $v_{s} v_{\hat{n}+q}$ for some $s \in C_{j}$ and $q \in D_{j}$ precisely when $v_{s} \in V_{i 1}$ and $v_{q} \in V_{i 2}$ and $v_{s} v_{q} \in E\left(T_{i}\right)$. Thus, the $1^{s t}$ copy of adjacency matrix in A that represents T_{1} induces an isomorphic copy of T_{1} on the corresponding vertex set.

For $j \in\{2, \ldots, 2 m\}$, the $j^{t h}$ copy of adjacency matrix in A defines edges between vertices with labels $\left(\bar{n}+C_{j}\right) \cup\left(\hat{n}+D_{j}\right)$ where

$$
\bar{n}=\sum_{i=1}^{j-1}\left(n_{i}+1\right)
$$

and

$$
\hat{n}=2 \sum_{i=1}^{m}\left(n_{i}+1\right)-\sum_{i=1}^{j}\left(n_{i}+1\right)
$$

There is an edge $v_{\bar{n}+s} v_{\hat{n}+q}$ for some $s \in C_{j}$ and $q \in D_{j}$ precisely when $v_{s} \in V_{i 1}$ and $v_{q} \in V_{i 2}$ and $v_{s} v_{q} \in E\left(T_{i}\right)$. Thus, the $j^{\text {th }}$ copy of adjacency matrix in A that represents T_{i} induces an isomorphic copy of T_{i} on the corresponding vertex set.

In general, since matrix A is symmetric, the $j^{t h}$ copy and the $[2 m-j+1]^{t h}$ copy are equal and that they represent the graceful tree $T_{j}, j=1,2, \ldots, m$. Hence, the $j^{t h}$ and the $[2 m-j+1]^{t h}$ adjacency matrices both induce isomorphic copies of T_{j} on their corresponding vertex sets. Thus we have, 2 copies of T_{j}.

Further, by construction of matrix A, the 2 copies of T_{i}, $i=1, \ldots, m$ are pairwise disjoint.

THEOREM 3.2. Let T_{i} for $i=1, \ldots, m$ be m disjoint graceful trees on $n_{i}+1$ vertices with adjacency matrix $A_{T_{i}}=\left[a_{i j}\right]$. Then the matrix

$$
A_{T_{i}}=\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & \ldots & 0 & A_{T_{1}} \\
0 & 0 & 0 & \ldots & & \cdots & 0 \\
0 & 0 & \ddots & & A_{T_{m}-1} & \ldots & \vdots \\
0 & \vdots & & A_{T_{m}} & & & 0 \\
\vdots & \ldots & A_{T_{m}-1} & & \ddots & 0 & 0 \\
0 & \ldots & & \ldots & 0 & 0 & 0 \\
A_{T_{1}} & 0 & \ldots & 0 & 0 & 0 & 0
\end{array}\right)
$$

with dimension $\left[2\left(n_{1}+\cdots+n_{m-1}+m-1\right)+\left(n_{m}+1\right)\right] \times$ $\left[2\left(n_{1}+\cdots+n_{m-1}+m-1\right)+\left(n_{m}+1\right)\right]$ and with 2 submatrices of $A_{T_{i}}, i=1,2, \ldots, m-1$ and a submatrix of $A_{T_{m}}$, where the rest of the entries of A are zero, is an adjacency matrix for the disjoint union of 2 copies of $T_{i}, i=1,2, \ldots, m-1$ and a copy of T_{m}.

The proof of Theorem 3.2 is similar with the proof of Theorem 3.1.

The Algorithm

1. Consider m disjoint graceful trees $T_{i}, i=1, \ldots, m$ with $n_{i}+1$ vertices.
2. Use the graceful labeling of T_{i} to write its adjacency matrix as

$$
A=\left(\begin{array}{ccccc}
0 & a_{01} & a_{02} & \cdots & a_{0 n} \\
a_{10} & 0 & a_{12} & \cdots & a_{1 n} \\
a_{20} & a_{21} & \ddots & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n 0} & a_{n 1} & a_{n 2} & \cdots & 0
\end{array}\right)
$$

The sum of the $c^{t h}$ diagonal elements of $A_{T_{i}}$ is 1 for each $1 \leq c \leq n$.
3. Assemble 2 copies of each $A_{T_{i}}$ for $i=1, \ldots, m$ as in Theorem 3.1 to form the transition matrix
$T(A)=\left[b_{i j}\right]=\left(\begin{array}{cccccc}0 & \cdots & & & \cdots 0 & A_{T_{1}} \\ \vdots & \ddots & \ldots & & & 0 \\ & & 0 & A_{T_{m}} & & \\ & \ldots & A_{T_{m}} & 0 & & \\ 0 & & & \cdots & \ddots & \vdots \\ A_{T_{1}} & 0 & \cdots & & \cdots & 0\end{array}\right)$
with dimension
$2\left(n_{1}+n_{2}+\cdots+n_{m}+m\right) \times 2\left(n_{1}+n_{2}+\cdots+n_{m}+m\right)$
4. For the diagonals of $T(A)$ which are also the main diagonals of each $A_{T_{i}}$, replace exactly one " 0 " entry in the main diagonal of $A_{T_{i}}$ by " 1 ".
5. For each $i=1,2, \ldots, m-1$, let

$$
c_{i}=\min \left\{\left|V\left(T_{i}\right)\right|,\left|V\left(T_{i+1}\right)\right|\right\}
$$

and \bar{D} be the diagonal of $T(A)$ that passes through $b_{0 k}$ and $b_{k 0}$ where

$$
k=2 \sum_{i=1}^{m}\left(n_{i}+1\right)-1
$$

For the diagonal of $T(A)$ between $A_{T_{i}}$ and $A_{T_{i+1}}$, consider the cells within c_{i} steps above and below \bar{D}. Replace exactly one " 0 " entry in those cells by " 1 ". Denote the new transition matrix as $T^{*}(A)$.
6. Generate the graph given by $T^{*}(A)$ on

$$
2 \sum_{i=1}^{m}\left(n_{i}+1\right)
$$

vertices and

$$
2 \sum_{i=1}^{m} n_{i}+(2 m-1)
$$

edges.
7. Repeat steps 4 to 6 to exhaust the possible cases in replacing exactly one " 0 " entry by " 1 " in the cells considered in Steps 4 and 5. Note that we can generate possibly

$$
\left(n_{1}+1\right) \cdot\left(n_{2}+1\right) \cdots \cdot\left(n_{m}+1\right) \cdot 2 c_{1} \cdot 2 c_{2} \cdot 2 c_{m-1}
$$

gracefully labeled graphs.

ThEOREM 3.3. Each graph generated by the Algorithm is a graceful tree.

Proof. Let T_{i} be graceful trees on $n_{i}+1$ vertices for $i=$ $1,2, \ldots, m$. Let $A_{T_{i}}$ be the corresponding adjacency matrix of T_{i}, for $i=1,2, \ldots, m$. Now, the sum of the diagonal elements of each $A_{T_{i}}$ is 1 for each $1 \leq c \leq n$.

Let T^{*} be a graph generated by the Algorithm when applied to $T_{i}, i=1,2, \ldots, m$. We wish to show that T^{*} is a tree. We now describe the construction of T^{*}. Notice that the transition matrix $T(A)=\left[b_{i j}\right]$ is constructed as in Theorem 3.1. Hence, it induces disjoint union of 2 copies of $T_{i}, i=$ $1,2, \ldots, m$. Note that $T(A)$ has dimension

$$
2\left(n_{1}+n_{2}+\cdots+n_{m}+m\right) \times 2\left(n_{1}+n_{2}+\cdots+n_{m}+m\right)
$$

and it has

$$
2\left(n_{1}+n_{2}+\cdots+n_{m}\right)
$$

"1" entries.

Now if the diagonals of $T(A)$ are also the main diagonals of each $A_{T_{i}}$, then exactly one " 0 " entry in the main diagonal of $A_{T_{i}}$ is replaced by " 1 ". The " 1 " entry in the main diagonal of $A_{T_{1}}$ indicates an edge joining the 2 copies of T_{1}, denoted by $2 T_{1}$, making $2 T_{1}$ a simple connected graph of $2\left(n_{1}+1\right)$ vertices and $2 n_{1}+1$ edges. Hence, $2 T_{1}$ is a tree. Generally, the " 1 " entry in the main diagonal of $A_{T_{i}}, i=1,2, \ldots, m$ indicates an edge joining the 2 copies of T_{i}, denoted by $2 T_{i}$, and thereby making $2 T_{i}$ a simple connected graph of $2\left(n_{i}+1\right)$ vertices and $2 n_{i}+1$ edges. Hence, $2 T_{i}, i=1,2, \ldots, m$ is a tree. Consequently, there are additional m " 1 " entries in $T(A)$.

For each $i=1,2, \ldots, m-1$, let

$$
c_{i}=\min \left\{\left|V\left(T_{i}\right)\right|,\left|V\left(T_{i+1}\right)\right|\right\}
$$

and \bar{D} be the diagonal of $T(A)$ that passes through $b_{0 k}$ and $b_{k 0}$ where

$$
k=2 \sum_{i=1}^{m}\left(n_{i}+1\right)-1
$$

For the diagonal of $T(A)$ between $A_{T_{i}}$ and $A_{T_{i+1}}$, we consider the cells within c_{i} steps above and below \bar{D} and we replace exactly one " 0 " entry in those cells by " 1 ". This " 1 " entry indicates an edge that join $2 A_{T_{i}}$ to $2 A_{T_{i+1}}$ for $i=1,2, \ldots, m-1$. Consequently, there are additional $m-1$ " 1 " entries in $T(A)$. We denote the new transition matrix as $T^{*}(A)$. Observe that the graph T^{*} induced by $T^{*}(A)$ is connected with

$$
2\left(n_{1}+1+n_{2}+1+\cdots+n_{m}+1\right)=2 \sum_{i=1}^{m} n_{i}+2 m
$$

vertices and

$$
2\left(n_{1}+n_{2}+\cdots+n_{m}\right)+m+m-1=2 \sum_{i=1}^{m} n_{i}+2 m-1
$$

edges. Hence, T^{*} is a tree.
If a diagonal of $T(A)$ contains an element of $A_{T_{i}}$, then the sum of its elements is 1 since the sum of its elements which are in $A_{T_{i}}$ is 1 and the remaining elements of the diagonal are all 0 . If the diagonal of $T(A)$ is the main diagonal of $A_{T_{i}}$ then the sum of its elements is 1 since exactly one of its 0 elements is replaced by 1 . Similarly, if a diagonal of $T(A)$ does not contain an element of $A_{T_{i}}$ then the sum of its elements is 1 since exactly one of its 0 elements is replaced by 1 . Thus, T^{*} is a graceful tree.

4. APPLICATION OF THE ALGORITHM

Step 1. Consider the graceful trees T_{1} and T_{2} with $n_{1}+1=1+1=2$ vertices and $n_{2}+1=2+1=3$ vertices, respectively as shown in Figure 4.1

Figure 4.1
Step 2. Obtain the adjacency matrix of T_{1} and T_{2}. See Figures 4.2.

0	1	
0	0	1
	0	1
	1	0

$\begin{array}{llll}0 & 1 & 2\end{array}$			
0	0	0	1
1	0	0	1
2	1	1	0

Figure 4.2
Step 3. Assemble $A_{T_{1}}$ and $A_{T_{2}}$ to form the transition matrix $T(A)=\left[b_{i j}\right]$ shown in Figure 4.3

$\begin{array}{llllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$											
0	0	0	0	0	0	0	0	0	0	0	1
1	0	0	0	0	0	0	0	0	1		0
2	0	0	0	0	0	0	0	1	0	0	0
3	0	0	0	0	0	0	0	1	0	0	0
4	0	0	0	0	0	1	1	0	0	0	0
5	0	0	0	0	1	0	0	0	0	0	0
6	0	0	0	0	1	0	0	0	0	0	0
7	0	0	1	1	0	0	0	0	0	0	0
8	0	1	0	0	0	0	0	0	0	0	0
9	1	0	0	0	0	0	0	0	0	0	0

Figure 4.3
The transition matrix $T(A)$ in Figure 4.3 is of dimension 10×10.

Step 4. For the diagonal of $T(A)$ which is also the main diagonal of $A_{T_{1}}$, replace exactly one " 0 " entry by " 1 ". For the diagonal of $T(A)$ which is also the main diagonal of $A_{T_{2}}$, replace exactly one " 0 " entry by " 1 ". See Figure 4.4.

| 0 | | | | | | | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 6

Figure 4.4

Step 5. Let

$$
c_{1}=\min \left\{\left|V\left(T_{1}\right)\right|,\left|V\left(T_{2}\right)\right|\right\}=\min \{2,3\}=2
$$

and \bar{D} be the diagonal of $T(A)$ that passes through $b_{0 k}$ and $b_{k 0}$ where $k=2(2)+2(3)-1=9$. For the diagonal of $T(A)$ between $A_{T_{1}}$ and $A_{T_{2}}$ that does not contain an element of $A_{T_{1}}$ and $A_{T_{2}}$, consider the cells within $c_{1}=2$ steps above and below \bar{D}. Replace exactly one " 0 " entry in those cells by " 1 " as shown in Figure 4.5.

Step 6. Generate the tree from the given adjacency matrix in Figure 4.5 as shown in Figure 4.6. Note that if we exhaust all the possible cases by replacing exactly one " 0 " entry by " 1 " in the cells considered in Steps 4 and 5 , we can generate

$\begin{array}{lllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$											
0	0	0	0	0	0	0	0	0	0	0	1
1	0	0	0	0	0	0	0	0	1	1	
2	0	0	0	0	0	0	0	1	0	0	0
3	0	0	0	0	0	0	0		0	0	
4	0	0	0	0	0	1	1		0	0	0
5	0	0	0	0	1	0	0	0	0	0	0
6	0	0	0	0	1	0	0	0	0	0	0
7	0	0	1	1	1	0	0	0	0	0	0
8	0	1	0	0	0	0	0	0	0	0	0
9	1	1	0		0	0	0	0	0	0	0

$$
\left(n_{1}+1\right) \cdot\left(n_{2}+1\right) \cdot 2 c_{1}=2 \cdot 3 \cdot 2 \cdot 2=24
$$

possible gracefully labeled trees on 10 vertices.

Figure 4.6

Figure 4.5

5. REFERENCES

[1] G. S. Bloom, A Chronology of the Ringel-Kotzig conjecture and the continuing quest to call all trees graceful, Annals of New York Academy of Sciences, 328 (1979), 38-45.
[2] J. A. Bondy and S. A. R. Murty, Graph theory with applications, The Macmillan Press, Ltd. (1985) 25.
[3] J. A. Gallian A Dynamic Survey of Graph Labeling, Electronic Journal of Combinatorics, (2012).
[4] K. A. Hugo, Propagating graceful graphs using adjacency matrices of a given graceful graph, $M S$ Thesis, University of the Philippines Los Baños, College Laguna, Philippines, (2011).

