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ABSTRACT
Let q = p

m be a power of a prime p and m, l 2 N. Denote by
F

q

the Galois field of characteristic p and cardinality q. In
this paper, the ring R(q, l) = F

q

[u1, u2, . . . , ul

]/
�
u

2
i

�
which

is a non-principal ideal ring Frobenius ring was examined.
The ring has been shown to be isomorphic to a ring of poly-
nomials over F

q

and a subring of the ring of 2l ⇥ 2l upper
triangular matrices over F

q

. The latter isomorphism was
then used to define a weight function on R(q, l) called the
M

B

-weight some of which are egalitarian. Following the def-
inition of the weight defined by Bachoc on R(p, 1), a Bachoc
weight on R(2, l) was defined. Conditions on the parameters
m and l of the ring were determined in order for the Bachoc
weight to be homogeneous. Lastly, a generating character
on R(q, l) was obtained in order to derive a homogeneous
weight on the ring for any q and l.

Keywords
homogeneous weight, Lee weight, Bachoc weight, Frobenius
ring, non-principal ideal ring

1. INTRODUCTION
Finite principal ideal rings have been studied extensively
over the past few years but not much work is done over non-
principal ideal rings. The ring F

q

[u1, u2, ..., ul

]/
�
u

2
i

�
, l > 2

is not a principal ideal ring but is a Frobenius ring. Be-
ing a Frobenius ring, a homogeneous weight on the ring can
be derived in terms of its generating character. Also, finite
Frobenius rings are singled out to be the most appropriate
rings for coding-theoretic purposes since over such rings, sev-
eral important theorems on codes over finite fields such as
the MacWilliams identities and the extension theorem find
nice generalizations.This paper aims to enrich the study on
non-principal ideal but Frobenius rings by examining the

ring and modular properties of F
q

[u1, u2, ..., ul

]/
�
u

2
i

�
, l > 2

and deriving weight functions on it.

The code-theoretic applications of the ring R(2, 2) was first
examined by Yildiz and Karadeniz in 2010 [13]. Since R(2, 2)
is not a principal ideal ring, the standard theory of generat-
ing matrices is not applicable for linear codes over R(2, 2).
Instead, generating sets has been used to study such codes.
Other studies on R(q, 2) followed soon after ([1],[5],[6],[9],[10],
[12], [14]). Dougherty, Yildiz and Karadeniz extended their
work over the ring R(2, l) for an arbitrary integer l by defin-
ing a homogeneous weight on the ring and deriving an isom-
etry from R(2, l) to a product of binary field elements under
the homogeneous and Hamming weight, respectively. Other
studies on R(2, l) are done in [7] and [15].

This paper is organized as follows: a brief discussion on
Frobenius rings, trace functions on Galois fields and weight
functions on a commutative ring is given in Section 2, ring
structure and modular properties of R(q, l) in Section 3.1,
and the derivation of weight functions on R(q, l) some of
which are egalitarian, homogeneous or neither in Section
3.2.

2. PRELIMINARIES AND DEFINITIONS
2.1 Finite Frobenius Rings
Let T denote the multiplicative group of unit complex num-
bers. A character of a finite ring R, written additively, is a
group homomorphism � : R ! T. The set of all characters
of R forms a group called the character group R̂; the group
operation is pointwise multiplication of characters. More-
over, R̂ is a left (resp. right) R-module according to the
relation r

�(x) = �(rx) resp. (�(x)r = �(rx)). The char-
acter � is called a left (resp. right) generating character
if

� : R! R̂ where r 7! r

� (resp. r 7! �

r)

is an isomorphism of left (resp., right) R-modules.

Alternative definitions of a generating character and a finite
Frobenius ring given by J. Wood in [11] will be used in this
paper.

Theorem 2.1. (J.Wood, [11]). Let R be a finite ring.
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Then the following properties hold:

1. If � is a character of R, then � is a right generat-
ing character if and only if ker� does not contain any
nonzero right ideal;

2. A character of a finite ring is a left generating character
if and only if it is a right generating character; and

3. R is Frobenius if and only if it has a generating char-
acter.

2.2 The Trace Function on Fpm

The trace function tr is defined by tr : F
p

m ! F
p

where

tr(↵) = ↵+↵

p+· · ·+↵

p

m�1
for ↵ 2 F

p

m . The trace function
on F

p

projects an element of F
p

onto itself, that is, tr(↵) = ↵

for every ↵ 2 F
p

. Listed below are some properties of the
trace function that will be used in this work.

Theorem 2.2. (R. Lidl and H. Niederreiter,[8]) The fol-
lowing statements hold for ↵, � 2 F

p

m and c 2 F
p

.

(T1) tr(↵ + �) = tr(↵) + tr(�);

(T2) tr(c · ↵) = c · tr(↵);

(T3) tr(↵p) = tr(↵);

(T4) tr is surjective and F
p

m
/ ker tr

⇠= F
p

; and

(T5) tr takes on each value in F
p

equally often, that is, there
are p

m�1 elements of F
p

m mapped to the same element
of F

p

.

2.3 Weight Functions in a Commutative Ring
R

Let R be the set of real numbers. A mapping w : R ! R is
called a weight if the following conditions are satisfied:

(W1) w(x) = 0 if and only if x = 0;

(W2) w(x) � 0 for all x 2 R;

(W3) w(x) = w(�x) for all x 2 R; and

(W4) w(x + y)  w(x) + w(y) for all x, y 2 R.

A weight w on a finite commutative ring R is egalitarian if
it satisfies condition (E1) below. If in addition, condition
(E2) is satisfied, then w is said to be homogeneous.

(E1) every nonzero ideal (x) of R has the same average
weight, that is, there exists a nonnegative real num-
ber � such that

X

y2(x)

w(y) = � · |(x)|

for all x 2 R \ {0}.

(E2) for all x, y 2 R, (x) = (y) implies that w(x) = w(y),
that is, associates in R have the same weight; and

A homogeneous weight w will be denoted by w

hom

. Further,
if in w

hom

, � = 1 then the homogeneous weight is said to be
normalized.

In [4], it was established that every finite Frobenius ring is
equipped with a homogeneous weight and can be expressed
in terms of its generating character.

Theorem 2.3. (T. Honold, [4]) Let R be a Frobenius ring
with generating character �, then every homogeneous weight
w

hom

on R can be expressed in terms of � as follows

w

hom

(x) = �

2

41� 1
|R⇥|

X

y2R

⇥

�(xy)

3

5
.

where R

⇥ is the group of units of R.

3. RESULTS AND DISCUSSIONS
First we define some notations. Consider the set S = {1, 2, ..., l}.
Define an order in the subsets s

i

of S as follows: s1 =
{}, s2 = {1}, s3 = {2}, s4 = {1, 2}, s5 = {3}, s6 = {1, 3}, s7 =
{2, 3}, s8 = {1, 2, 3}. In general, s2i�j

= s2i�1�j

[{i} where
i = 1, 2, ..., l and j = 0, 1, 2, ..., 2i�1 � 1. We know that
there will be 2l such subsets of S. Now, define u

s1 = 1 and

u
sm =

Y

i2sm

u

i

whenever m 6= 1. To illustrate, let i = 4 and

j = 6, then u10 = u2 [ {4} = u1u4.

3.1 Properties of the Ring R(q, l)
Denote by R(q, l) the set whose elements are written in the

form
2lX

m=1

a

m

u
sm where a

m

2 F
q

. For example,

R(q, 1) = {a1 + a2u1|ai

2 F
q

} = F
q

+ u1F
q

while

R(q, 2) = {a1 + a2u1 + a3u2 + a4u1u2|ai

2 F
q

}
= F

q

+ u1F
q

+ u2F
q

+ u1u2F
q

.

Define addition and multiplication on these sets as the addi-
tion and multiplication in the ring F

q

[u1, u2, . . . , ul

] except
that u

2
i

= 0 for any i. Then hR(q, l), +, ·i is a commuta-

tive ring with unity 1, characteristic p and cardinality q

2l
.

Moreover, for every subsets A, B of S, it is easy to see that

u
A

u
B

=

⇢
0 if A \B 6= �

u
A[B

if A \B = �

. (1)

Also, we note here that every element of the ring R(q, l) can
be uniquely written in the form x+yu

l

where x, y 2 R(q, l�
1). Thus, R(q, l) can be defined recursively by R(q, l) =
R(q, l� 1) + u

l

R(q, l� 1). Lastly, denote by a the sequence

of coe�cients (a1, a2, . . . , a2l) of
2lX

i=1

a

i

u
si .

Proposition 3.4. An element of R(q, l) is a unit if and
only if the coe�cient of u

s1 is nonzero.

10



Proof: ()) Let x =
2lX

m=1

a

m

u
sm be a nonzero element of

R(q, l) with u
s1 = 0. Now, u

s2l x = 0 since s2l \ s

m

6=
� for all m. Thus, x is a zero divisor. (() Let x =
2lX

m=1

a

m

u
sm be a zero divisor then there is a nonzero ele-

ment y =
2lX

n=1

b

n

u
sn 2 R(q, l) such that xy = 0. However,

xy =
2lX

m,n=1

a

m

b

n

u
sm[sn = 0 would imply that a

m

b

n

= 0

whenever s

m

\ s

n

= �. In particular, a

s1b

n

= 0 for all n.
Since b 6= 0, a

s1 = 0. ⌅

For a unit x =
2lX

m=1

a

m

u
sm in the ring R(q, l), define T

r

=

{m1, m2, . . . , mr

} where s

m1 , s

m2 , . . . , s

mr are pairwise dis-
joint, a

Tr =
Q

i2Tr
a

i

and s
Tr =

S
i2Tr

s

i

. Then the multi-
plicative inverse of x is

a

�1
1

 
1 +

lX

r=1

a
TrusTr

· (�1)r ·
�
a

�1
1

�
r · r!

!
.

For example in R(4, 3), the inverse of ! + u1 + !

2
u2u3 is

!

2(1� !

2
u1 � !u2u3 + 2u1u2u3). While the inverse of 2 +

3u1 +u2 +4u3 +u4 in R(5, 4) is 3(1�4u1�3u2�2u3�3u4 +
4u1u2 +u1u3 +4u1u4 +2u2u3 +3u2u4 +2u3u4� 4u1u2u3�
4u1u3u4 � u1u2u4 � 3u2u3u4 + 3u1u2u3u4).

Proposition 3.5. The ring R(q, l) is a local ring with
unique maximal ideal M = hu1, u2, ..., ul

i. This ideal con-

tains all zero divisors and has q

2l�1 elements. Also, the ring
R(q, l) has a unique minimal ideal m = hu

s2l i = hu1u2 · · ·u
l

i
which has q elements.

Proof: All elements of M are non-units. By Proposition 3.4,

|M| = q

2l�1. All elements of m are multiples of u
s2l , that

is, they are of the form au
s2l where a 2 F

q

. So, |m| = q. ⌅

Proposition 3.6. R(q, l) is a finite chain ring if and only
if l = 1.

Proof: If l = 1, then the maximal ideal coincides with the
minimal ideal. Thus, the ideals are linearly ordered by set
inclusion making R(q, l) a finite chain ring. If l 6= 1, then
the maximal ideal is not a principal ideal. Consequently,
R(q, l) is not a finite chain ring. ⌅

Proposition 3.7. The ideal generated by u
s

has q

2l�|s|

elements.

Proof: The ideal generated by u
s

contains the elements of

the form
2lX

i=1

a

i

u
sius

. By equation (1), we wish to count

the number of subsets s

i

of S with no intersection with s.
These subsets are exactly the elements of the power set of

S \ s with has q

2l�|s|
elements.⌅

Proposition 3.8. Let A = {k
j

|j = 1, 2, . . . , r}. Then
hu

k1 , u

k2 , . . . , u

kr i? = hu
A

i.

Proof: hu
s

i contains elements of the form
2lX

i=0

a

i

u
sius

while

hu
k1 , u

k2 , . . . , u

kr i contains elements of the form
2lX

i=0

a

i

u
siukj

or any linear combination of these. By equation (1), the
proposition follows. ⌅

Proposition 3.9. The ring R(q, l) is a vector space over
F

q

with dimension 2l and a free R(q, l � 1)-module with
dimension 2.

Proof: F
q

and R(q, l � 1) are subrings of R(q, l). Then
R(q, l) is an F

q

-module. In addition, there exists 1 2 F
q

such that 1 · x = 1 ·
2lX

m=1

a

m

u
sm =

2lX

m=1

a

m

u
sm = x for all

x 2 R(q, l). Thus, R(q, l) is a unitary F
q

-module. Since F
q

is a field, R(q, l) is a vector space over F
q

. Clearly, the set�
u

sm |m = 1, 2, 3, . . . , 2l

 
is a basis for R(q, l) as an F

q

vec-
tor space while {1, u

l

} is a basis for R(q, l) as an R(q, l� 1)-
module. ⌅

Proposition 3.10. B is a basis for R(q, l) as an F
q

-vector

space if and only if the columns of
⇣
u

s1 ,u
s2 , . . . ,u

s2l

⌘
M ,

where M is a 2l ⇥ 2l invertible matrix over F
q

, are exactly
the elements of B.

Proof: Since element x 2 R(q, l) is uniquely represented by

a linear combination of the u0
i

s, x =
⇣
u

s1 ,u
s2 , . . . ,u

s2l

⌘
m1

where m1 is the 2l ⇥ 1 matrix coe�cient of x. Since in a
basis the elements must be linearly independent, then its
coe�cient matrix must be invertible. ⌅

Denote by M

B

the matrix M associated with the basis B

for R(q, l � 1) as an F
q

-vector space.

Corollary 3.11. The matrices
✓

M

B

0
�M

B

M

B

◆
and

✓
M

B

0
0 M

B

◆

are associated to some basis of R(q, l + 1).

Now, we look at two rings to which R(q, l) is isomorphic to.
First, we look into the quotient ring F

q

[u1, u2, ..., ul

]/hu2
i

i
then into a subring of triangular matrices over F

q

. The
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isomorphism between R(q, l) can be shown with the map

that sends
2lX

m=1

a

m

u
sm to

2lX

m=1

a

m

u
sm + (u2

1, u
2
2, . . . , u

2
l

).

Let M1(a1) denote the 2⇥ 2 matrix of the form
✓

a1 a2

0 a1

◆

over F
q

, M2(a1) denote the 4⇥ 4 matrix of the form
0

BB@

a1 a2 a3 a4

0 a1 0 a3

0 0 a1 a2

0 0 0 a1

1

CCA

over F
q

, and M3(a1) denote an 8⇥ 8 matrix of the form
0

BBBBBBBBB@

a1 a2 a3 a4 a5 a6 a7 a8

0 a1 0 a3 0 a5 0 a7

0 0 a1 a2 0 0 a5 a6

0 0 0 a1 0 0 0 a5

0 0 0 0 a1 a2 a3 a4

0 0 0 0 0 a1 0 a3

0 0 0 0 0 0 a1 a2

0 0 0 0 0 0 0 a1

1

CCCCCCCCCA

.

Notice that M3(a1) can be written in the form
✓

M2(a1) M2(a5)
0 M2(a1)

◆
.

In general, define M

l

(a1) as the 2l ⇥ 2l matrix of the form
✓

M

l�1(a1) M

l�1(a2l�1+1)
0 M

l�1(a1)

◆
. (2)

Proposition 3.12. The ring of all matrices over F
q

of
the form described in (2) is a commutative subring of the
ring of all 2l ⇥ 2l matrices over F

q

.

Proof: Let M
l

be the collection of all matrices M1(a1) de-
scribed in (2). Clearly, M

l

is a nonempty subset of the ring
of all 2l ⇥ 2l matrices over F

q

.

(i) M
l

is closed under matrix subtraction since
✓

M

l�1(a1) M

l�1(a2l�1+1)
0 M

l�1(a1)

◆

�
✓

M

l�1(b1) M

l�1(b2l�1+1)
0 M

l�1(b1)

◆

=

✓
M

l�1(a1 � b1) M

l�1(a2l�1+1 � b2l�1+1)
0 M

l�1(a1 � b1)

◆
2M

l

.

(ii) Next, we show that M
l

is closed under matrix multi-
plication by induction on l.

M1(a1) ·M1(b1) =

✓
a1b1 a1b2 + a2b1

0 a1b1

◆
2M1.

Suppose for some arbitrary 1 < i < l,M1,M2, ...,Mi�1

are closed under multiplication. Now

M

i

(a1) · M

i

(b1) =

✓
M

i�1(a1) M

i�1(a2i�1+1)
0 M

i�1(a1)

◆
·

✓
M

i�1(b1) M

i�1(b2i�1+1)
0 M

i�1(b1)

◆

=

✓
M

i�1(a1)Mi�1(b1) A

0 M

i�1(a1)Mi�1(b1)

◆

where

A = M

i�1(a1)Mi�1(b2i�1+1)+M

i�1(a2i�1+1)Mi�1(b1).

So,M
i

is also closed under matrix multiplication. Specif-
ically, we can conclude that M

l

is closed under matrix
multiplication.

(iii) Lastly, multiplication is commutative in M
l

.

M1(a1) ·M1(b1) =

✓
a1b1 a1b2 + a2b1

0 a1b1

◆

=

✓
b1a1 b2a1 + b1a2

0 b1a1

◆
= M1(b1) ·M1(a1).

Suppose for some arbitrary 1 < i < l, matrix multipli-
cation is commutative on M1,M2, ...,Mi�1. Now

M

i

(a1) ·Mi

(b1)

=

✓
M

i�1(a1)Mi�1(b1) A

0 M

i�1(a1)Mi�1(b1)

◆
.

But

A = M

i�1(b1)Mi�1(a2i�1+1)+M

i�1(b2i�1+1)Mi�1(a1)
= M

i�1(b1)Mi�1(a2i�1+1) + M

i�1(b2i�1+1)Mi�1(a1).

Thus,

M

i

(a1) ·Mi

(b1)

=

✓
M

i�1(a1)Mi�1(b1) A

0 M

i�1(a1)Mi�1(b1)

◆

= M

i

(b1) ·Mi

(a1).

By mathematical induction, M
l

is commutative.

Therefore, M
l

is a commutative subring of the ring of
all 2l ⇥ 2l matrices over F

q

.

Proposition 3.13. The ring R(q, l) is isomorphic to the
subring M

l

described in Proposition 3.12.

Proof: Define � : R(q, l) ! M
l

where x =
2lX

m=1

a

m

u
sm 7!

M

l

(a1). We shall also denote this mapping by M
l

(x).

(i) � is a group homomorphism since

�

0

@
2lX

m=1

a

m

u
sm +

2lX

m=1

b

m

u
sm

1

A

= �

0

@
2lX

m=1

(a
m

+ b

m

)u
sm

1

A

=

✓
M

l�1(a1 + b1) M

l�1(a2l�1+1 + b2l�1+1)
0 M

l�1(a1 + b1)

◆

=

✓
M

l�1(a1) M

l�1(a2l�1+1)
0 M

l�1(a1)

◆
+

12



✓
M

l�1(b1) M

l�1(b2l�1+1)
0 M

l�1(b1)

◆

= �

0

@
2lX

m=1

a

m

u
sm

1

A + �

0

@
2lX

m=1

b

m

u
sm

1

A.

(ii) � is a ring homomorphism since

�

0

@
2lX

m=1

a

m

u
sm ·

2lX

n=1

b

n

u
sm

1

A

= �

0

@
2lX

m,n=1

a

m

b

n

u
sm[sn

1

A

=

✓
M

i�1(a1)Mi�1(b1) A

0 B

◆

=

✓
M

i�1(a1) M

i�1(a2i�1+1)
0 M

i�1(a1)

◆
·

✓
M

i�1(b1) M

i�1(b2i�1+1)
0 M

i�1(b1)

◆

= M

i

(a1)·Mi

(b1) = �

0

@
2lX

m=1

a

m

u
sm

1

A·�

0

@
2lX

n=1

b

n

u
sm

1

A

where
A = M

i�1(a1)Mi�1(b2i�1+1)+M

i�1(a2i�1+1)Mi�1(b1)
and B = M

i�1(a1)Mi�1(b1).

iii.) � is a monomorphism since

ker� =

8
<

:

2lX

m=1

a

m

u
sm

������
�

0

@
2lX

m=1

a

m

u
sm

1

A =

✓
0 0
0 0

◆9
=

;

contains only 0.

iv.) � is clearly an epimorphism.

Thus, � is an isomorphism. ⌅

3.2 Weight Functions on the Ring R(q, l)
3.2.1 M

B

-weight
Now, we will use the matrix M associated with basis B of
R(q, l) as a vector space over F

q

to define a weight function
on R(q, l).

Theorem 3.14. Let B be a basis for R(q, l) as an F
q

-

vector space. The mapping  : R(q, l)! F2l

q

where
2lX

m=1

a

m

u
si 7! aM

B

is an F
q

-module isomorphism.

Proof: Let x =
2lX

i=1

a

i

u
si and y =

2lX

i=1

b

i

u
si and r 2 F

q

.

(i)  (x + y) =
2lX

i=1

(a
i

+ b

i

)u
si = (a + b)M

B

= aM

B

+

bM

B

=  (x) +  (y).

(ii)  (rx) =  

0

@
2lX

i=1

ra

i

u
si

1

A = raM

B

= r (x).

(iii) ker =

8
<

:x =
2lX

i=1

a

i

u
si

������
 (x) = 0

9
=

;

=

8
<

:x =
2lX

i=1

a

i

u
si

������
aM

B

= 0

9
=

; = {0} since the rows of

M

B

are linearly independent.

(iv) Let (a1, a2, . . . , a2l) 2 F2l

q

. Take x as the element of
R(q, l) with coe�cient sequence (a1, a2, . . . , a2l) M

�1
B

.

Then  (x) = (a1, a2, . . . , a2l), that is, Im = F2l

q

.

Thus,  is an F-module isomorphism. ⌅

Let x =
2lX

i=1

a

i

u
si . Define the M

B

-weight of x, as the Ham-

ming weight of aM

B

and is denoted by w

MB (x). In par-

ticular, if L1 =

✓
1 0
�1 1

◆
and L

l

=

✓
L

l�1 0
�L

l�1 L

l�1

◆
, the

M

Ll -weight of x is called the Lee weight of x and is denoted
by w

L

(x). This definition is consistent with the Lee weight
on R(2, l) defined in [3]. It is easy to show that the Lee
weight on R(2, 2) is egalitarian but not homogeneous.

Proposition 3.15. There are

✓
2l

i

◆
elements of R(q, l) of

M

B

-weight i. In particular, only u2l has Lee weight 2l and
only units have odd Lee weights in the ring R(2, l).

Proof: In

✓
n

i

◆
, let i be the number of nonzero entries in

an n-tuple. Recall that

✓
n

0

◆
+

✓
n

2

◆
+ · · · +

✓
n

n

◆
=

✓
n

1

◆
+

✓
n

3

◆
+· · ·+

✓
n

n� 1

◆
for any positive even integer n. So, half

of the elements of R(q, l) are of odd weight. It su�ces that
if x is a unit then w

Ll(x) is odd. The proof is by induction
on l. In R(2, 1), the units have Lee weight 1. In R(2, 2), the
units have Lee weights of either 1 or 3. Suppose now that for
some k 2 N, the units of the ring R(2, l) have odd lengths.
In R(2, l + 1), units are of the form x + yu

l

for some unit

x =
2lX

i=1

a

i

u
si and y

2lX

i=1

b

i

u
si in R(2, l). Denote by m the

Lee weight of x in R(2, l), n the Lee weigt on y in R(2, l),
t1 the number of i such that a

i

= b

i

= 1, t2 the number of
i such that a

i

= 1 but b

i

= 0 and t3 the number of i such
that a

i

= 0 but b

i

= 1. Then w

Ll+1(x + yu

l

) = t2 + t3 + n

where t1 + t2 = m, t1 + t3 = n.

If y is not a unit, then n is even and t2, t3 are not both even
nor both odd. In either case, m + n is odd. If y is a unit,
then n is odd and either t2, t3 are both even or both odd.
In either case, m + n is odd. Thus, units in R(2, k + 1) have
odd Lee weights. ⌅
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3.2.2 Bachoc weight
C. Bachoc defined in [2] a weight function on certain classes
of rings R as

w

B

(x) =

8
<

:

p if x 2 R \
�
R

⇥ [ {0}
�

1 if x 2 R

⇥

0 if x = 0
.

Now, we extend the Bachoc weight on R(2, 1) to a weight
function on R(2m

, l) and show that it is indeed a weight
function on R(2m

, l).

Theorem 3.16. The function defined by

w

B

(x) =

8
<

:

2 if x is a zero divisor
1 if x is a unit
0 if x = 0

is a weight function on R(2m

, l).

Proof: It is obvious from the definition of w

B

that w

B

(x) =
0 if and only if x = 0 and that w

B

(x) � 0. (W3) is also sat-
isfied since in R(2m

, l), the additive inverse of a zero divisor
is also a zero divisor and the additive inverse of a unit is
also a unit. For (W4), we will look at all possible sums of
two elements in R(2m

, l). The sum of two zero divisors is
zero, a zero divisor or a unit. Whichever is the case, (W4)
holds since w

B

(x) + w

B

(y) = 4 > 1 > 0. The sum of two
units is zero, a zero divisor or a unit. Whichever is the
case, (W4) holds since w

B

(x) + w

B

(y) = 2 � 2 > 1 > 0.
Lastly, the sum of a unit and a zero divisor is a unit and
w

B

(x) + w

B

(y) = 3 > 1. Thus, w

B

is a weight function on
R(2m

, l). ⌅

Clearly, the Bachoc weight on R(2m

, l) satisfies condition
(E2). However, it does not satisfy (E1) for any m, l > 1.

The average weight in the minimal ideal is 2� 2

2m

while the

average weight in the ideal (u1) is 2� 2

(2m)2l�1
. Thus, the

Bachoc weight is egalitarian only if l = 1. Now, the average

weight in R(2m

, 1) is
3
2
� 2

22m

. So, m must be 1 as well.

Thus, the Bachoc weight is egalitarian only if m = l = 1.
Consequently, it is homogeneous if and only if m = l = 1.

3.2.3 Homogeneous Weight
To derive a homogeneous weight on R(q, l), we first develop
a generating character on the ring.

Proposition 3.17. The map � from R(q, l) to T where

2lX

m=1

a

m

u
sm 7! e

2⇡i
p tr(a2l )

is a generating character of R(q, l).

Proof:

(i) � is a group homomorphism since

�

0

@
2lX

m=1

a

m

u
sm +

2lX

m=1

b

m

u
sm

1

A

= �

0

@
2lX

m=1

(a
m

+ b

m

)u
sm

1

A

= e

2⇡i
p

tr(a
2l+b

2l ) = e

2⇡i
p

tr(a
2l ) · e

2⇡i
p

tr(b
2l )

= �

0

@
2lX

m=1

a

m

u
sm

1

A · �

0

@
2lX

m=1

b

m

u
sm

1

A.

(ii) ker � =

8
<

:

2lX

m=1

a

m

u
sm

������
e

2⇡i
p tr(a2l ) = 1

9
=

;

=

8
<

:

2lX

m=1

a

m

u
sm

������
tr(a2l) = 0

9
=

;.

Recall that R(q, l) has a unique minimal ideal m which
contains the elements of the form cu2l , c 2 F

q

. With
q = p

m, there are only p

m�1 elements c of F
q

such that
tr(c) = 0. Since |m| = p

m

> p

m�1 = | ker �|, ker � can
not contain any nonzero ideal of R(q, l).

Thus, � is a generating character of R(q, l). ⌅

With the existence of a generating character, R(q, l) is a
Frobenius ring. Moreover, a homogeneous weight on R(q, l)
can now be derived from its generating character.

Theorem 3.18. The homogeneous weight on R(q, l) is
given by

w

hom

(x) =

8
<

:

� if x 2 R(q, l) \ m
q

q�1� if x 2 m \ {0}
0 if x = 0

.

Proof: Denote by R

⇥ the set of all units in R(q, l). By
Theorem 2.5, the homogeneous weight of x 2 R(q, l) is given
by

w

hom

(x) = �

2

41� 1
|R⇥|

X

y2R

⇥

�(xy)

3

5
.

By Proposition 3.4, |R⇥| = (q � 1)q2l�1. Now, we consider
the multiset M = {xy|y 2 R

⇥} for each x 2 R(q, l).

Case 1. Suppose x = 0. Then
X

y2R

⇥

�(0) =
|R⇥|X

n=1

e

2⇡i
p tr(0) =

|R⇥|.

Case 2. Suppose x 2 R

⇥. Then xy 2 R

⇥ and in the multiset
M , every y 2 R

⇥ would appear exactly once. Moreover,

there are (q � 1)q2l�2 of them with the same coe�cient a

of u
s2l for every a 2 F

q

. But p

m�1 elements of F
q

have the
same trace j, 8j = 0, 1, 2, . . . , p� 1. Thus,
X

y2R

⇥

�(xy) =
X

y2R

⇥

�(y) = (q � 1)q2l�2
p

m�1
X

j2Fp

e

2⇡i
p j = 0.
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Case 3. Suppose x 2 m \ {0}. Then x = au2l , a 2 F
q

\ {0}
and in the multiset M , every x 2 m\{0} would appear |R⇥|

q�1

number of times. Also, of the q � 1 elements of m \ {0},
p

m�1 will have trace j, 8j = 1, 2, . . . , p � 1 while p

m�1 � 1
will have trace 0 (since x 6= 0). Thus,

X

y2R

⇥

�(xy) =
|R⇥|
q � 1

2

4
p

m�1
X

j2Fq\{0}

e

2⇡i
p j + (pm�1 � 1)e0

3

5

which is equal to |R⇥|
1�q

Case 4. Suppose x 2 M \ m. Then xy 2 M \ m and in
the multiset M , every element x 2 M \ m would appear

|R⇥|
q

2l�1�q

number of times. Of the q

2l�1�q elements of M\m,

q

2l�2 � 1 will have the same coe�cient a of u
s2l for each

a 2 F
q

and p

m�1 of these will have the same trace j, 8j =
0, 1, 2, . . . , p� 1. Thus,

X

y2R

⇥

�(xy) =
|R⇥|

q

2l�1 � q

(q2l�2 � 1)pm�1
X

j2Fq

e

2i⇡
p j = 0.

⌅
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