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ABSTRACT
This study calculates the optimal allocation of the
insurer’s portfolio that maximizes the prospect theory
value of its gain or loss. The gain or loss is relative
to the insurer’s current surplus. The surplus process
follows a model formulated by Liu and Yang [2]. The
prospect theory minimizing strategies derived in this
study are compared to the ruin probability minimizing
strategy of Liu and Yang. Effects of prospect theory
parameters on the investment strategy are analyzed.
A simulation of the surplus process showed that using
smooth normalized prospect theory (SNPT) without
probability weighting is the best strategy when initial
surplus is zero, while using complete SNPT (i.e. proba-
bility weighting is included) yields the best results when
the initial surplus is large. The strategies are compared
using finite time ruin probabilities.
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1. INTRODUCTION
Prospect theory is a theory in behavioral economics
introduced by Kahneman and Tversky [4] which serves
as an alternative to the more common expected utility
theory. Prospect theory captures some behaviors of a
decision-maker under risk that violate the axioms of the
expected utility theory such as the tendency to perceive
theoretically equivalent choices differently based on how
they are presented, as well as the tendency to put more
weight on losses than gains in decision-making.

Meanwhile, risk theory is considered as an important
field of study in actuarial science [8]. One of the foun-
dations of this theory is the Cramér-Lundberg model,
which describes the change in surplus of an insurance

company facing two opposing cash flows: the incoming
premiums and the outgoing claims. In this model, the
company is said to have reached ruin when its surplus
falls on or below zero.

Since Kahneman and Tversky instroduced the con-
cept, many studies during the recent years have dealt
with prospect theory-based portfolio selections [1, 9,
11]. The most common scenario analyzed in these
studies is a one-period model with a risk-free and risky
asset, wherein different portfolios are offered to the
prospective investor with different distributions of asset
returns. However, all of these studies dealt with an
individual investor. There is no widely-known litera-
ture that applied prospect theory in the surplus process
setting, where the investor is an insurance firm, hence
the interest of this study.

In this study, we evaluate the value of the surplus of
an insurance company, hereafter will be called “the
insurer”, when its investment on a risky asset (a stock)
and a risk-free asset (a bond) are considered, given that
the insurer behaves under prospect theory. Determining
the prospect theory value of a lottery undergoes two
stages: the editing phase and the evaluation phase. In
the editing phase, the decision-maker sets a reference
point so that the outcomes that are below it are treated
as losses while the outcomes above it are treated as
gains. Then, in the evaluation phase, a value function
of the outcomes similar to those used in the expected
utility theory is used while their corresponding prob-
abilities are weighted using a probability distortion
function. The current surplus is set as the reference
point and the set of differences between the final surplus
and the current surplus are the outcomes.

The goal of the study is to test the adequacy of prospect
theory as a framework in determining a best invest-
ment strategy for an insurer in a surplus process setting,
when compared to a more objective framework. The fol-
lowing assumptions for the model will be used: (1) the
insurer invests in a risky asset (stock) and in a risk-free
asset (bond), (2) the insurer evaluates its outcomes in
terms of the change in surplus, not the final surplus, (3)
the insurer evaluates its surplus every time period and
adjust its investments accordingly, (4) no transaction
costs or tax is involved in trading. The main objective



of the study is to determine an optimal allocation of
investment in a risky and risk-free asset to maximize
the insurer’s prospect theory value under risk.

2. THEORETICAL FRAMEWORK

2.1 The Surplus Process with Investment
We set up the model of the surplus process formulated
by [2] as an extension of the model by [3], which incor-
porates investment on a stock on the classical surplus
process, by adding an investment in a risk-free asset in
the form of a bond. This model follows three assump-
tions: (1) continuous trading is allowed, (2) no transac-
tion cost or tax is involved in trading, and (3) assets are
infinitely divisible.

The price of the bond at time t, denoted by B(t) is
formulated as

dB(t) = r0B(t)dt (1)

where r0 is the constant, non-negative risk-free rate.
The change in the price of the stock at time t, P (t),
follows a geometric Brownian motion

dP (t) = ηP (t)dt+ σP (t)dWt (2)

where η(≥ 0) is the expected instantaneous rate of
return on the stock, σ(> 0) is the volatility of the stock,
and {Wt : t ≥ 0} is a Wiener process.

Adding these two cash flows to the classic risk process,
yielding

dU(t) = A(t)
dP (t)

P (t)
+ (U(t)−A(t))

dB(t)

B(t)
+ dR(t) (3)

defined as the surplus process involving investment on
a stock and a bond, U(t), where A(t) is the amount
invested on the stock, and R(t) is the surplus at time t
according to Cramér-Lundberg model, given by

R(t) = u+ ct− S(t) (4)

where c = (1 + θ)λµ is the constant premium rate, with

θ(> 0) as the relative safety loading, and S(t) =

Nt∑
i=1

Xi,

with Nt being a Poisson process with intensity λ and
Xi being an identically and independently distributed
sequence of claim sizes with distribution F and mean µ.

Substituting equations (1), (2), and (4) to expressions
in equation (3) and simplifying results to the equation

dU(t) =((η − r0)A(t) + r0U(t) + c)dt

+ σA(t)dWt − dS(t)
(5)

with U(0) = u

A Hamilton-Jacobi Bellman (HJB) equation was then
formulated with the survival probability, denoted by
φ(u), as the objective function to be maximized and A
as the control value to be modified. The HJB equation

is given by:

max
A

{
λE[φ(u−X)− φ(u)] +

1

2
φ′′(u)σ2A(u)2

+ φ′(u)[c+ (η − r0)A(u) + r0u]
}

= 0.
(6)

Note that A has become a function of the initial surplus
u, instead of t.

The solution to the HJB equation yields the formula

A∗(u) = −η − r0

σ2
· φ
′(u)

φ′′(u)
(7)

for the ruin probability minimizing investment on the
stock, given an initial surplus u.

The results were used to investigate the optimal invest-
ment strategy for exponential, gamma, and Pareto claim
size distributions as well as the effects of underlying
factors and parameters. For exponential claims with
an average claim size of 1 and an average number of
claims of 3, the result is presented in Figure 1. This

Figure 1: Ruin probability minimizing invest-
ment A∗(U(0)) for initial surplus U(0) ∈ [0, 20]

result showed that when the initial surplus is small, the
insurer is more willing to invest in the risky asset (and
even borrow at the risk-free rate) to cover the risk of
claims. However, as the initial surplus increases, the
insurer becomes more confident of surviving the risk of
claims, so it opts for a more conservative investment
strategy and invests less in the risky asset.

Further results showed that the optimal allocation in
the risky asset is positively related to average number of
claims while it is negatively related to the risk-free rate,
the volatility of the risky asset, and the safety loading.

2.2 The Surplus Gain Random Variable
Let X(≥ 0) be the exponential claim amount random
variable with parameter µ and a probability density
function given by

fX(x) = µe−µx. (8)

and let N be the number of claims random variable,
which is Poisson distributed with parameter λ, and with
probability density function given by

Pr[N = n] =
e−λλn

n!
. (9)



Then, S is the total claim amount random variable,
given by the following probability density function:

fS(s) =


∞∑
n=1

µnsn−1e−µs

(n− 1)!
· e
−λλn

n!
if s > 0

e−λ if s = 0

To prove this, we first note that the density of the total
claim amount in a collective risk model is given by the
following convolution formula:

fS(s) =

∞∑
n=0

f
∗(n)
X (s) · Pr[N = n] (10)

where f
∗(n)
X (s) is the density of the n-fold convolution

of X [8].

First, we solve for f
∗(n)
X (s). We first note that

f
∗(0)
X (s) =

{
0 if s > 0

1 if s = 0

Then, if N is Poisson distributed with mean λ,

fS(0) = f
∗(0)
X (0) · Pr[N = 0]

= 1 · e
−λλ0

0!

= e−λ.

(11)

For s > 0, we need to prove the expression for f
∗(n)
X for

every positive integer n using mathematical induction.
If n = 1, the density is

fX(x) = µe−µx, (12)

which is the density function for an exponentially dis-
tributed random variable with parameter µ. We note
that since there is only one claim, then X = S. So the
above density function is equivalent to

f
∗(1)
X (s) = µe−µs (13)

Next, assume that for Sn =

n∑
i=1

Xi, where the Xi’s

are independent and identically distributed exponential
random variables,

f
∗(n)
X (s) =

µnsn−1e−µs

(n− 1)!
(14)

as the density function of s(>0). Note that this is the
density function for a gamma distribution with param-
eters n and µ.

Next, we solve for the density of Sn+1 =

n+1∑
i=1

Xi = Sn +

Xn+1 = Sn +X. Using the convolution formula for two

independent random variables, we have

f
∗(n+1)
X (s) =

∫ s

0

fX(s− y)f
∗(n)
X (y)dy

=

∫ s

0

µe−µ(s−y) · µ
nyn−1e−µy

(n− 1)!
dy

= µn+1e−µs
∫ s

0

yn−1

(n− 1)!
dy

= µn+1e−µs
sn

n(n− 1)!

=
µn+1sne−µs

n!

=
µn+1s(n+1)−1e−µs

((n+ 1)− 1)!

(15)

Thus, we have proven that f
∗(n)
X (s) =

µnsn−1e−µs

(n− 1)!
for

any positive integer n and finally, using (10), we have,
for s > 0,

fS(s) =
∞∑
n=1

µnsn−1e−µs

(n− 1)!
· e
−λλn

n!
(16)

Next, we let Q = M − S where M ∼ N(0, σ2) with
probability density funciton given by

fM (m) =
1√

2πσ2
e
− m2

2σ2 for m ∈ R (17)

and S is compound Poisson with exponential claims.
We assume that M and S are independent. Then, S =
M −Q and the probability density funciton of Q can be
written as

fQ(q) =

∫ ∞
−∞

fS(m− q)fM (m)dm. (18)

Substituting (16) and (17) to (18), and after some sim-
plification, we have

fQ(q) =
eµq−λ√

2πσ2

∫ ∞
q

e
−
(
µm+ m2

2σ2

)
ϑ(m)dm. (19)

where

ϑ(m) =

∞∑
n=1

(µλ)n(m− q)n−1

n!(n− 1)!
(20)

In order to simplify the evaluation of the prospect theory
value, we simplify the surplus process by discretizing
(5), yielding

∆Ut =(η − r0)At∆t+ r0Ut∆t+ σAt∆Wt

+ c∆t−∆St.
(21)

Since we are only interested in evaluating the prospect
theory value per time period, (21) simplifies to

U1 − U0 =(η − r0)A0 + r0U0 + σA0(W1 −W0)

+ c−
N∑
i=1

Xi.
(22)



For ∆St, we used the fact that ∆Nt, following a com-
pound Poisson process with intensity λ, has an identical
distribution to N as it is defined in the beginning of Sec-
tion 2.2.

Now, let H be the gain random variable for the surplus
process. From (22), we have

H = U1 − U0

= (η − r0)A0 + r0U0 + σA0Z + c− S
= σA0Z − S + k

(23)

where S is the total claim amount random variable, Z ∼
N(0, 1), and k is a constant equal to (η−r0)A0+r0U0+c.
Now, let M = σA0Z. Then,

H = M − S + k (24)

To derive the density ofH using the following procedure,
we first calculate Pr[H ≤ h].

Pr[H ≤ h] = Pr[M − S + k ≤ h]

= Pr[M − S ≤ h− k]
(25)

From the property of the normal distribution, we con-
clude that M ∼ N(0, σ2A2

0). Hence,

Pr[H ≤ h] = Pr[Q ≤ h− k] (26)

Now, using (18), we have

FQ(h− k) =

∫ h−k

−∞
fQ(q)dq (27)

where

fQ(q) =
eµq−λ√
2πσ2A2

0

∫ ∞
q

e
−
(
µm+ m2

2σ2A2
0

)
ϑ(m)dm (28)

and

ϑ(m) =

∞∑
n=1

(µλ)n(m− q)n−1

n!(n− 1)!
. (29)

Now, we use a change of variables. Let r = q + k. Then,
the integral becomes

FH(h) =

∫ h

−∞
fH(r)dr. (30)

And thus, the density of H is given by

fH(h) =
eµ(h−k)−λ√

2πσ2A2
0

∫ ∞
h−k

e
−
(
µm+ m2

2σ2A2
0

)
%(m)dm (31)

where

%(m) =

∞∑
n=1

(µλ)n(m− h+ k)n−1

n!(n− 1)!
. (32)

However, the density given by (31) only applies when
A0 > 0. For the trivial case A0 = 0, the density is
simply given by

fH(h) = eµ(h−`)−λ
∞∑
n=1

(µλ)n(−h+ `)n−1

n!(n− 1)!
(33)

where ` = r0U0 + c.

2.3 Prospect Theory Value
For a given lottery with a set of finite outcomes X =
(x1, x2, x3, ..., xn) and a set of corresponding probabili-
ties P = (p1, p2, p3, ..., pn), the prospect theory value is
given by

PT (X) =

n∑
i=1

v(xi)w(pi) (34)

where v(xi) is the value function similar to the utility
function in expected utility theory and w(pi) is the prob-
ability weighting (or probability distortion) function.
Note that the set of outcomes X are presented as gains
and losses, not as final wealth.

The value function to be used in this study is the one
proposed by [4], defined as

v(x) =

{
xα1 if x ≥ 0

−β|x|α2 if x < 0

where β is the loss sensitivity parameter and α1 and
α2 are the parameters that set the curvature of the
S-shaped curve of the value function. In testing a best
fit model of the value function to empirical data, [10]
obtained the following estimates for the parameters:
α1 = 0.39, α2 = 0.69, and β = 2.02

Meanwhile, the probability weighting function to be
used is the one introduced by [5] is

w(p) = exp(−(−ln(p))γ) (35)

where γ is the weighting parameter. This probability
weighting function captures the risk-seeking attitude for
large probabilities of losses and risk-averse attitude for
large probabilities of gains. [10] estimated γ to be 0.44.

However, the prospect theory value defined previously
can only be applied in a discrete set of finite outcomes.
In this study, our outcome is defined by the random vari-
able H, which has a continuous probability distribution.
Hence, a variant of prospect theory for continuous out-
comes will be used, called smooth normalized prospect
theory.

Let p be a probability measure, v and w be the value and
probability weighting functions, respectively, and ε is a
parameter wherein outcomes that differ by ε are treated
as the same. Then the smooth normalized prospect
theory value of X is given by

SNPT (X) =

∫
Ω

v(x)w

(∫ x+ε

x−ε
dp

)
dx∫

Ω

w

(∫ x+ε

x−ε
dp

)
dx

(36)

This equation is formulated from a result in [7] to get
the prospect theory value of outcomes with continuous
probability distributions.



For the gain random variable H, the smooth normalized
prospect theory value is given by

SNPT (H) =

∫∞
−∞ v(h)w

( ∫ h+ε

h−ε fH(r)dr
)
dh∫∞

−∞ w
( ∫ h+ε

h−ε fH(r)dr
)
dh

(37)

For A0 = 0, the upper bounds of the outer integrals
become `.

2.4 Approximating the Integral
Trapezoidal rule is employed in calculating all integrals.
An integral represented by an area under a curve y =
f(x) over [a, b] can be approximated by a series of trape-
zoids that lie above the sub-intervals [xk, xk+1]. The
combined area of the trapezoids is given by:

T (f, h) =
h

2

M∑
k=1

(f(xk−1) + f(xk)) (38)

where h is the length of each sub-interval and M is the
number of sub-intervals [6]. To solve numerically for
SNPT (H), the intrinsic function inttrap in Scilab was
used in implementing the trapezoidal rule for all inte-
grals involved. However, for numerical integration to
be feasible, the bounds of the integrals needed to be
adjusted.

For fH(h), we choose m̄ such that Pr[M > m̄] ≤ 10−4.
The tolerance level was chosen to truncate the tail of
the distribution for efficiency in using the trapezoidal
rule. Furthermore, n̄ was also chosen such that Pr[N >
n̄] ≤ 10−4. Thus, (31) becomes

fH(h) =
eµ(h−k)−λ√

2πσ2A2
0

∫ m̄

h−k
e
−
(
µm+ m2

2σ2A2
0

)
%(m)dm. (39)

The same limiting bound n̄ is applied to (33).

We set s̄ such that Pr[S > s̄] ≤ 10−4, where fS(s) =
n̄∑
n=1

µnsn−1e−µs

(n− 1)!
· e
−λλn

n!
, for s > 0. Then, (37)

becomes

SNPT (H) =

∫ k+m̄

k−(m̄+s̄)

v(h)w

(∫ h+ε

h−ε
fH(r)dr

)
dh∫ k+m̄

k−(m̄+s̄)

w

(∫ h+ε

h−ε
fH(r)dr

)
dh

(40)
For A0 = 0, the upper and lower bounds of the outer
integrals become ` and `− s̄, respectively.

Microsoft Excel is used to obtain n̄, s̄, and m̄. Note that
m̄ is unique for every A0.

3. RESULTS AND DISCUSSION
3.1 The Distribution of H
Using a Scilab program, the distribution of H for A0 =
0, 0.5, 1, 1.5, ..., 19.5, 20 and U0 = 0, 1, 2, 3, ..., 19, 20 is
determined. The case A0 > U0 is considered to be the
case where the insurer can borrow A0 − U0 at the risk-
free rate. The parameters used are η = 0.1, r0 = 0.01,
σ = 0.3, θ = 0.2, λ = 3 and µ = 1, the same parameters

used in [2]. The resulting n̄, s̄, are 11 and 21, respec-
tively. m̄ is given by a vector of values corresponding
to each A0. For each integral, trapezoidal rule is used
with 25 subintervals. The results are shown in Figure 2
and Figure 3.

Figure 2: The distribution of H for U0 = 0

Figure 3: The distribution of H for U0 = 20

From the two figures, note that the resulting distribu-
tions for U0 = 0 and U0 = 20 have near-identical shapes,
which is in fact, the case for all U0 = 0, 1, 2, ..., 20. This
means that the initial surplus has minimal effect on the
distribution of the change in the surplus. However, the
allocation in the risky asset heavily affects the distribu-
tion, since it affects the variance of the random variable
M . It is important to note that the peak of the distri-
bution always lies above h > 0, which means a greater
probability of having gains than losses but the tail of the
distribution is thicker on the left side of the origin, which
means that the it is more possible to render very heavy
losses than very large gains, albeit all extreme events
have very low probability. It can also be observed from
the two figures that as A0 increases, the distribution
becomes more platykurtic and the tails become heavier,
which increases the probability of incurring a loss.

3.2 Complete SNPT Behavior
We also compute SNPT (H) by employing the trape-
zoidal rule in Scilab. The prospect theory parameters
used are the ones estimated by [10], namely: α1 = 0.39,
α2 = 0.69, β = 2.02, and γ = 0.44. Meanwhile, we set
ε = 0.1. The result is shown in Figure 4.

It can be observed that as the allocation on the risky
asset A0 increases, the smooth normalized prospect



Figure 4: Smooth normalized prospect theory
value of H with α1 = 0.39, α2 = 0.69, β = 2.02, and
γ = 0.44.

theory value SNPT (H) roughly increases until it
reaches A0 = 8 and decrease thereafter. Meanwhile, as
the initial surplus U0 increases, the graph merely shifts
upward but retains its shape. This means that the
complete SNPT insurer is willing to invest an amount
of 8 in the risky asset, regardless of initial wealth, since
the distributions of H are nearly the same for all values
of U0 considered. It is also important to note that the
insurer is willing to risk a considerable amount in its
investment since it is already expecting to lose money,
signifying pessimistic behavior, but it will not take
risks when the probability of losses clearly outweighs
the chances of gains.

3.3 No Loss Sensitivity
If we set β = 1, then the insurer is not sensitive to its
losses. This results to an increase in the prospect value
of the surplus as shown in Figure 5. Furthermore, the
peak of the graphs shifted to A0 = 12.5. This means
that an insurer that is not loss sensitive is willing to
invest more in the risky asset and is more optimistic
with its outcomes, which is logically consistent.

Figure 5: Smooth normalized prospect theory
value of H with α1 = 0.39, α2 = 0.69, β = 1, and
γ = 0.44.

3.4 No Curvature in the Value Function
If we set both α1 and α2 to be 1, then the value function
is linear. Figure 6 shows that this results to a decrease in
the overall prospect value of the surplus but an increase
in the investment in the risky asset. This is because the
marginal value of the gain and the loss are no longer
diminishing, this makes the insurer expect to lose more,
making it more willing to invest in the risky asset.

Figure 6: Smooth normalized prospect theory
value of H with α1 = 1, α2 = 1, β = 2.02, and
γ = 0.44.

3.5 No Probability Weighting
To model the surplus’s prospect theory value without
weighting the probabilities, simply setting γ to be equal
to 1 is not enough. We also need to set ε to be 0 to
remove the effect of weighting similar outcomes. Thus,
the results are shown in Figure 7.

Figure 7: Smooth normalized prospect theory
value of H with α1 = 0.39, α2 = 0.69, β = 2.02, and
γ = 1.

The figure shows that if the insurer does not overweight
its probabilities, it becomes more conservative in its
strategy since it does not seek the chance of gains that
much. However, the overall prospect value increases
since the insurer is also not overweighting very small
probabilities of large losses. The insurer is expecting a
gain but a small loss is enough to keep him from risking
more than an amount of 2.5 in the risky asset. This
result is the one closest to the result in [2].

3.6 Absence of Prospect Theory Behavior
If we set α1 = 1, α2 = 1, β = 1, and γ = 1, then the
insurer will evaluate its gain or loss in terms of expected
value. Figure 8 shows that investment in the risky asset
increases as the average gain in the surplus increases.
This makes the insurer invest the maximum amount it
has in the risky asset, signifying risk-seeking behavior.
This strategy is not recommended in practice.

3.7 Comparison of Optimal Investment
Strategies

Let us denote the investment strategies of an insurer
minimizing its probability of ruin as discussed in Section
2.1, an insurer engaging in complete SNPT behavior



Figure 8: Smooth normalized prospect theory
value of H with α1 = 1, α2 = 1, β = 1, and γ = 1.

as discussed in Section 3.2, and an insurer engaging
in SNPT behavior without the probability weighting as
discussed in Section 3.5 as strategy A, B, and C, respec-
tively. Figure 9 shows the graphs of the three strategies.

Figure 9: Optimal allocation of investment in
the risky asset for initial surplus 0 to 20.

The figure shows that in this setup, the behavior of
an SNPT insurer minus the probability weighting opts
for an investment strategy almost identical to that of
a ruin probability minimizing insurer, while an insurer
engaging in complete SNPT behavior would employ a
less conservative, more risk-seeking strategy.

A simulation of the surplus process for 10 time periods
is run using Microsoft Excel. Insurers A, B, and C
each start with initial surplus = u, are faced with the
total claim amounts and the movement of the stock
price random varible, and respond with their corre-
sponding investment strategies for every time period.
Each random sample is simulated by first generating
a uniform normal random number p using the RAND
function, then calculating the approximate inverse
cumulative distribution function of p with respect to
the intended distribution of the sample. A realization
of the process is shown in Table 1.

25,000 paths are simulated and the probability of ruin
before time 10, denoted by ψ(u, 10) is approximated for
each investment strategy. A finite time ruin probability
is considered since in practice, finite time ruin probabil-
ities are more important than absolute ruin probabili-
ties, as intervening factors that can drastically affect the
model like economic recession and regime switching in
the short run render long run predictions obsolete. The
results for u = 0, 5, 10 are shown in Table 2.

t Ut(A) Ut(B) Ut(C)
0 0 0 0
1 1.94 1.5781 1.8269
2 4.2973 3.8264 4.1916
3 8.0991 9.6974 7.8374
4 10.2018 9.4705 9.9594
5 6.8516 6.91987 6.6098
6 9.5387 9.2941 9.2965
7 11.3586 11.0334 11.1064
8 9.0457 7.1641 8.74602
9 3.1817 -0.7423 2.8712
10 7.4893 — 6.8749

Table 1: A sample path of the surplus process
using strategies A, B, and C for u = 0.

u ψA(u, 10) ψB(u, 10) ψC(u, 10)
0 0.35732 0.41488 0.35224
5 0.12464 0.13388 0.1204
10 0.07584 0.0722 0.0738

Table 2: The approximated probabilities of ruin
before time 10 using 25,000 simulations.

For initial surplus 0, Strategy C yielded the least average
finite time ruin probability, followed by Strategy A, and
then Strategy B. Thus, for a time frame of 10 periods, it
can be concluded that the SNPT insurer without prob-
ability weighting has the best investment strategy, only
better than the ruin probability minimizing insurer by
a small margin. This may be a result of the formula-
tion of Strategy A, wherein the increasing allocation of
investment in the risky asset from zero up to the peak
at small values of initial surplus is considered as a poor
strategy while facing the risk of claims, while in compar-
ison, the SNPT insurer without probability weighting
invests 2.5 in the risky asset even at zero initial sur-
plus. Meanwhile, the complete SNPT insurer has the
poorest strategy among the three, which implies that
investing very large amounts in the risky asset, as that
in an expected value approach, would more likely result
to ruin when the initial surplus is at the lowest since it
is where the risk of ruin is largest.

At initial surplus 10, Strategy B yielded the least
average ruin probability, followed by Strategy C, and
then Strategy A, which mean that when the initial sur-
plus is large enough for the surplus to drift away from
zero, the risk of ruin becomes small that taking risks
in investment can be considered as a reliable strategy.
This is particularly the case in this setting, where the
claims follow a light-tailed distribution. However, the
increase in the initial surplus also resulted to the dif-
ference among the finite time ruin probabilities of the
three strategies to be less significant. When the initial
surplus is large enough, any strategy will give almost
the same finite time ruin probability.

4. CONCLUSION
Prospect theory is a widely recognized theory used to
model the behavior of a decision-maker which is consis-
tent with how people think in reality. A decision-maker



with prospect theory behavior thinks only in terms of
gains and losses, is sensitive to losses, and tends to over-
weight small probabilities and underweight very large
probabilities. However, it is only a descriptive model
and thus, is not highly recommended for modelling
objective behavior like optimal strategies.

For an insurer with prospect theory behavior that faces
exponential claims, it is found out that the optimal
allocation of investment in the risky asset is consistent
for any initial surplus since the distribution of the gain
in surplus for any initial surplus is near identical to one
another. An insurer with prospect theory behavior is
also found out to be willing to invest (or even borrow to
invest) a considerable amount in stocks if it is expecting
only a loss while it is willing to risk only a small amount
if it expects to gain or to be able to cover the claims.
It was also shown that an SNPT insurer that does
not distort its probabilities chooses an investment
strategy close to that of the ruin probability minimizing
insurerof Liu and Yang [2]. This is further supported
by the results of the simulation for finite time ruin
probabilities. Moreover, the simulation showed that a
prospect theory model without probability weighting
yields a better finite time ruin probability than a ruin
probability minimizing model. A complete prospect
theory model also provides a better model than the two
when the initial surplus is large enough but with less sig-
nificant differences. This implies that a prospect theory
framework can be adequate not only as a descriptive
tool but also to challenge objective optimal decision
models. At best, it provides better models than the ruin
probability minimizing model of [2] in terms of short
run finite time ruin, which is a more useful time frame
to consider than long run time, especially when dealing
with immediate changes in investment strategies.

Mathematical modelling of “irrational” behavior can be
applied to many other areas in the insurance business,
such as analayzing the behavior of policyholders, agency
problems, response to impending natural or man-made
disasters, and business competition. We hope that
with this study, interest in studying the application of
prospect theory, and behavioral economics in general,
would flourish.
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