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ABSTRACT
This work explores some properties of Spiking Neural dP
Systems, namely: (1) balance and, (2) homogeneity. This class
of Spiking Neural dP Systems uses Extended SNP systems
with Request Rules. As a case study, this work presents two
SNdP systems that accept the language Lww = {ww | w ∈
{b1, · · · , bk}n ,n ≥ 1}, where these SNdP systems differ in the
balance of the input partition, the homogeneity of components
of the system, or the number of SNP components. An analysis
of the communication cost and running time is given for the
two presented SNdP system.
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1 INTRODUCTION
In the field of computer science, natural computing is an
area that aims to produce models of computation inspired by
nature. One further branch of natural computing is membrane
computing, inspired by the membrane structure of living cells,
which is meant to provide computational models along the
lines of computability theory. [18]

P systems are nondeterministic maximally parallel com-
puting model. Communications play vital role in its computa-
tions. Communication complexity of P systems was sugested
as a research topic in [9] and [17]. In [2], communication
cost is associated with an object, denoted as e, representing
the energy required to transport objects in and out of the
membrane. These are the antiport and symport rules. An-
tiport rules allows membranes to send output objects and
receive input objects at the same time, while symport rules
only allow sending objects only in one direction at a time
(either in or out, but not at the same time). A related mea-
sure for symport/antiport P systems namely communication
difference (Comdif) was discussed in [10]. Comdif is the dif-
ference of numbers of input and output objects in an antiport
rule. This measure of communication is static. The idea of
using communication complexity of P systems as a dynamic
measure was initiated in [2]. And in applying the idea of
communication complexity started in 1979 by Yao[22], dP
systems was introduced in [19]. dP systems has been used for
solving NP-complete problems; specifically the satisfiability
problem. In [4], dP systems with active membranes was used
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to solve the N-Queens problem, which was represented using
boolean formula. Hence, the problem of solving N-Queens
became a satisfiability problem. In [1], distributed tissue P
systems with evolutional communication has been used for
solving SAT. And in [3], dP systems with active membranes
was once again used for solving SAT, but with a different
approach.

Our particular P system model focus for this work is the
Spiking Neural P system (SNP system). SNP systems was
first introduced in [12], a P system that mimics the way neural
systems in the brain function by use of electrical impulses
sent through neurons via synapses. Since the introduction
of SNP systems, much work has been done regarding their
computing power, efficiency, and applications as in [5, 6, 14–
16], the SNP systems chapter of the handbook in [21], and
references therein.

An extension of the spiking rules were introduced in [8], and
in [11], request rules were introduced to allow the system to
interact with the environment. The generating and accepting
power of SNP systems with request rules was analysed in [11],
with respect to how the output (for generating) or input (for
accepting) spikes of the system are interpreted. In particular,
the interpretation of a time step without an input or output
spike is referred to as restricted mode, while the interpretation
of a time step without an input or output spike as an empty
string is referred to as unrestricted mode. Similar to SNP
systems with standard rules, SNP working in restricted mode
are unable to recognize some context-sensitive non-context-
free languages such as Lww = {ww | w ∈ {0, 1}*}.

In addition to the introduction of request rules, input
partition was also introduced for SNP systems. Using SNP
systems as components of dP system, Spiking Neural dP
(SNdP) systems was introduced in [11], with some further
investigations in [7]. In [11], it was shown that the use of input
distribution enabled the SNdP system to accept languages
such as Lww without using unrestricted mode of computation.

The focus of the paper is to analyse two properties of
SNdP systems: balance and homogeneity. Balance refers to
the the input of each component of the SNdP sytem; a
balanced system means that each component receives the
same length of input strings from the environment while a
nonbalanced system does not need each component to receive
input strings of the same length. Homogeneity refers to the
neurons of each component: a homogeneous system means
that each component has the same set of neurons while a
nonhomogeneous system has each component have a different
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set of neurons. Two different SNdP systems are presented, a
2-component balanced and homogeneous, and a 3-component
nonbalanced and nonhomogeneous. These two SNdP systems
are made to recognize strings from the language Lww and
the cost of their communication rules are computed. The 2-
component balanced and nonhomogeneous system presented
in [11] will be also be considered for comparison purposes.

The paper is arranged as follows: Section 2 gives the de-
fines the concepts and notations used throughout the paper,
Section 3 presents the main results of this work, presenting
the 3 SNdP systems recognizing Lww and then followed by
their analyses and comparison, and finally Section 4 discusses
future works from this work.

2 PRELIMINARIES
The reader is assumed to be familiar with the fundamentals
of formal language theory. Let Σ be an alphabet, the Kleene
closure of Σ, denoted as Σ*, is the set of all finite words over
the alphabet Σ. We denote by 𝜆 the word of length zero (the
empty string), and by Σ+ the set of all non-empty words.
A multiset M over Σ, is a mapping from Σ to the set of
non-negative integers.

Definition 1. Let P be a non-empty finite set. A col-
lection of {P1, ...,Pn} is called a partition P if and only if
for all 1 ≤ i , j ≤ n, and i ̸= j , Pi and Pj are disjoint, and
n⋃︀

i=1

Pi = P .

A partition {P1, ...,Pn} of P is called a balanced parti-
tion if and only if for each set Pi , 1 ≤ i ≤ n, the size of the
set differs by at most one element from all other sets in the
partition. That is, ||Pi | − |Pj || ≤ 1, for all i , j , 1 ≤ i , j ≤ n,
i ̸= j . Otherwise, the partition is an unbalanced partition.

2.1 dP Systems
Definition 2. A dP scheme of degree n ≥ 1 is a construct[19]:

∆ = (O ,Π1, ...,Πn ,R),

where:
∙ O is an alphabet of objects;
∙ Π1, ...,Πn are cell-like P systems with O as the alphabet

of objects and the skin membranes are labeled with
s1, ..., sn respectively;
∙ R is a finite set of inter-component communication

rules of the form (si , u/v , sj ), where 1 ≤ i , j ≤ n, i ̸= j ,
and u, v ∈ O*, with uv ̸= 𝜆; |uv | is called the length
of the rule (si , u/v , sj ).

The systems Π1, ...,Πn are called the components of ∆.
Each component can take some input and perform computa-
tions independently. The system accepts if all components
end in a halting configuration. Each component can also
communicate symbols with other components as defined by
the rules in R.

A configuration in ∆ for some computation step k ≥ 0
is a distribution of multisets over the membranes of each
component Πi , for all i ∈ {1, ...,n}. For dP systems using

P system components with a dynamic membrane structure,
such as P systems with active membranes, it is also important
to include the membrane structure in the configuration. The
initial configuration of ∆ is denoted as 𝛿0.

2.2 Estimating the Cost of
Communication in dP Systems

Another complexity measure to consider in dP scheme is the
communication cost. The following defines the communication
cost for a given computation step of the system[2, 13, 19]:

Definition 3. Let ∆ be a dP scheme, and 𝛿 : 𝛿0 ⇒ 𝛿1 ⇒
... ⇒ 𝛿h be a halting computation in ∆, and R the set of
inter-component communication rules, with each rule of the
form (si , u/v , sj ). Then for each i = 0, 1, ..., h − 1, we have
the following complexity measures:
∙ ComN (𝛿i ⇒ 𝛿i+1) = 1, if at least one inter-component

communication rule, r ∈ R, is used in this transition,
and ComN (𝛿i ⇒ 𝛿i+1) = 0 otherwise;
∙ ComR(𝛿i ⇒ 𝛿i+1) is the number of inter-component

communication rules used in this transition;
∙ ComW (𝛿i ⇒ 𝛿i+1) is the sum of lengths of all inter-

component communication rules used in this transition.
Recall that the length of a rule r ∈ R is |uv | ≥ 1.

Definition 4. Let the set of strings accepted by ∆ be
denoted as L(∆). For ComX ∈ {ComN , ComR, ComW },
we define:
∙ ComX (𝛿) =

∑︀h−1
i=0 ComX (𝛿i ⇒ 𝛿i+1), for 𝛿 which is a

halting computation.
∙ ComX (w ,∆) = min{ComX (𝛿) | 𝛿 is a computation of
∆ that accepts the string w}
∙ ComX (∆) = max{ComX (w ,∆) | w ∈ L(∆)}

2.3 Extended Spiking Neural P Systems
with Request Rules

For this work, Extended Spiking Neural P Systems with
request rules will be used as components for dP Systems.
The following is a formal definition of this model:

Definition 5 (SNP system). [11] An extended Spiking
Neural P System with request rules is a construct of the form

Π = (O , 𝜎1, · · · , 𝜎m , syn, in, out),

where:
(1) O = {a} is the singleton alphabet (a is called spike);
(2) 𝜎1, · · · , 𝜎m are pairs 𝜎i = (ni ,ℛi), 1 ≤ i ≤ m, called

neurons, where ni ≥ 0 and ni ∈ N ∪ {0} represents the
initial spikes in 𝜎i , and ℛi is a finite set of rules of
the form:

(a) E/ac → ap , where E is a regular expression over O ,
and c ≥ p ≥ 1 (spiking rules);

(b) E/ 𝜆← ar , where E is a regular expression over O,
and r ≥ 1 (request rules);

(c) and as → 𝜆, with s ≥ 1 (forgetting rules) such that
there is no spiking rule E/ac → ap ; d or request
rule E/ 𝜆← ar such that as ∈ L(E).
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(3) syn is the synapse set, a nonreflexive relation on {1, · · · ,m}×
{1, · · · ,m};

(4) in, out ∈ {1, 2, · · · ,m} are the indices of the input and
output neurons, respectively.

Applications of rules are as follows:

∙ (spiking rules) if neuron 𝜎i contains k spikes, ak ∈
L(E) and k ≥ c, then the rule E/ac → ap ∈ ℛi

can be applied. The application of this rule consumes
or removes c spikes from 𝜎i , so that only k − c spikes
remain in 𝜎i . The neuron sends a spike to every 𝜎j such
that (i , j ) ∈ syn. The output neuron has a synapse not
directed to any other neuron, only to the environment.
∙ (request rules) if neuron 𝜎i contains k spikes, ak ∈
L(E), then the rule E/ 𝜆 ← ar can be applied. The
application of this rule produces r spikes, so that the
number of spikes in 𝜎i is now r + k . Spikes produced
using request rules are considered as input from the
environment.
∙ (forgetting rules) if neuron 𝜎i contains exactly s ≥ 1

spikes, then all spikes are removed from 𝜎i , leaving 0
spikes.

The non-determinism in SNP systems occurs when, given
two rules E1/a

c1 → ab1 and E2/a
c2 → ab2 , it is possible to

have L(E1) ∩ L(E2) ̸= ∅. In this situation, only one rule will
be non-deterministically chosen and applied. SNP systems
are globally parallel but are locally sequential. That is, an
SNP system assumes a global clock for all its neurons and
are synchronous. If any neuron can fire a rule it must do so,
but each neuron can only fire at most one rule each time step.
All neurons fire at the same time.

Note that if a spiking rule can be applied, then there is
no forgetting rule that can be applied, and vice versa i.e. if
a spiking and forgetting rule have regular expressions Espik

and Eforg respectively in the same neuron, then L(Espik ) ∩
L(Eforg) = ∅.

Definition 6. Let Π be an Extended SNP system with
Request Rules. A configuration Ci of Π at time step i is a
vector Ci = ⟨r1, · · · , rm⟩, where each element of the vector
represents the number of the symbol a (spikes) in neuron 𝜎j ,
with 0 ≤ rj ≤ m.

The initial configuration of Π is defined as C0 = ⟨n1, · · · ,nm⟩.

Definition 7. Let Π be an Extended SNP system with
Request Rules. A configuration Ci yields a configuration Ci+1,
denoted as Ci ⇒ Ci+1, if and only if Ci+1 is obtained from
Ci by applying spiking rules, request rules, or forgetting rules
in a globally parallel and locally sequential manner.

Definition 8. Let Π be an Extended SNP system with
Request Rules. If from a configuration Ci , i ≥ 0, there are
no more applicable rules of any form (i.e. there does not
exist Ci+1 such that Ci ⇒ Ci+1), then configuration Ci is
referred to as a halting configuration. A halting configuration
is denoted as Ch .

Definition 9. Let Π be an Extended SNP system with
Request Rules. A computation of Π is a sequence of con-
figurations CΠ : C0 ⇒ C1 ⇒ ..., where C0 is the initial
configuration of Π.

A computation CΠ is a halting computation if and only if
CΠ : C0 ⇒ ...⇒ Ch , where Ch is a halting configuration.

In [8, 11], a possible result of a computation extended SNP
system with request rules as strings. For an extended SNP
system with request rules Π, one neuron is designated as the
input neuron (this is the only neuron in Π with request rules),
denoted as 𝜎in . For a string over an alphabet Σ = {b1, ..., bk},
for some k ≥ 1, a symbol bi can be associated with a step
of a computation when i spikes are requested by 𝜎in . The
sequence of spikes that enter Π through 𝜎in can then be
associated with a string over Σ. Note here that for this paper,
we do not associate no spike entering the system to any
symbol in Σ, i.e. we use unrestricted mode in our work. The
result of a computation of Π is formally defined as follows.

Definition 10. Let Π be an Extended SNP system with
Request Rules with a designated input neuron 𝜎in . For a
halting computation CΠ, suppose that a sequence of spikes
⟨i1, ..., in⟩, for some n ≥ 1, enter Π through 𝜎in , and for all
1 ≤ j ≤ n, 1 ≤ ij ≤ k . Then, Π accepts the string bi1 ...bik .

The set of all strings over {b1, ..., bk} accepted by Π is
denoted as L(Π).

Note here that strings associated with sequences of spikes
from a non-halting computation are not accepted.

2.4 Spiking Neural dP Systems
Definition 11 (SNdP system from [11]). A Spiking

Neural dP System (SNdP system) is a construct of the form
∆ = (O ,Π1, · · · ,Πn , esyn), where:

1. O = {a} is the singleton alphabet.
2. Πi = (O , 𝜎i,1, · · · , 𝜎i,ni , syn, ini) is an extended SNP

system with request rules present only in neuron 𝜎ini

– 𝜎i,j = (ni,j ,Ri,j ), where ni,j is the number of spikes
initially present in the neuron and Ri,j is the finite
set of rules of the neuron, 1 ≤ j ≤ ni .

– Only the input neuron of each component (indicated
by ini) will have request rules.

3. esyn, is the set of external synapses between neurons
Πi with the restriction that between any two sysems
Πi ,Πj , there exists at most one neuron of Πi with at
most one synapse to a neuron of Πj and vice versa.
All rules defined in a neuron with an external synapse
are considered as intercomponent communication rule.

The systems Πi , 1 ≤ i ≤ n are called components of ∆.
Each component, Π can take an input through the use of
request rules, do computations using the spiking and for-
getting rules of the neurons, and communicate with other
components through the synapses in esyn.

When r spikes are taken from the environment, a sym-
bol br is associated with that step, and the strings that
can be formed by and introduced in the system are over
an alphabet Σ = {b1, · · · , bk}, with k being the maximum
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number of spikes that can be obtained by the request rule of
a component.

A halting computation with respect to ∆ accepts the
string x = x1x2 · · · xn over the alphabet Σ if the components
Π1, ...,Πn , beginning from their initial configurations and
working in a synchronous, nondeterministic way, bring from
the environment the substrings x1, ..., xn , respectively, and
halts eventually. The set of all strings over Σ accepted by ∆
is denoted as L(∆).

SNdP systems are synchronized by a universal clock that
exists for all components and neurons to make sure that the
time is marked in the same way throughout the whole system.

Balance and Homogeneity. This work analyses two properties
of SNdP systems: balance and homogeneity.

Balance refers to the input partition of the SNdP system.
Let ∆ be an SNdP system of degree n and Σ = {b1, ..., bk}
be an alphabet. Let L(∆) denote the language of ∆ over Σ.
For a string x ∈ Σ*, let x = x1...xn , where each xi ∈ Σ*.
Then the set {x1, ..., xn} is referred to as an input partition
of x . The partition {x1, ..., xn} is balanced if ||xi | − |xj || ≤ 1
for all 1 ≤ i , j ≤ n. Otherwise, the partition {x1, ..., xn} is
said to be nonbalanced.[20].

A homogeneous SNP system is an SNP system where all
neurons have the same set of rules[23]. In SNdP systems,
however, homogeneity does not apply to the individual neu-
rons of each component, but rather to the components of the
SNdP itself. That is, there is a one-to-one correspondence be-
tween the components of a homogeneous SNdP system. Each
component has the same set of neurons, the same set of start-
ing spikes, spiking rules, request rules, and forgetting rules.
Likewise, in a nonhomogeneous SNdP system, components
can have different sets of neurons.

As a case study, the aforementioned balance and homogene-
ity are applied to the language Lww = {ww | w ∈ {0, 1}*}.

2.5 An example of an SNdP system with
balanced inputs and nonhomogeneous
components

Figure 1 shows an SNdP system from [11] that recognizes
the language, Lww = {ww | w ∈ {0, 1}*}.

Neuron 𝜎(1,1) can bring in some spikes from the environ-
ment, say r1 spikes, while 𝜎(2,1) can bring in r2 spikes. These
spikes are moved one-by-one up to at most a total of k steps,
where k is the cardinality of the alphabet. They are moved to
𝜎(1,2) and 𝜎(1,3) respectively, through the rules a4a+/a → a,
and are duplicated in the neurons 𝜎(1,4) and 𝜎(1,5), where
they are removed by the forgetting rule a2 → 𝜆.

If r1 = r2, then the neurons will reach a computation
where the spikes will be forgotten in 𝜎(1,4) and 𝜎(1,5) will use
the rule a6 → a3 to send spikes to 𝜎(1,1) and 𝜎(2,1) to start
the process all over again and read one further symbol of the
string.

However, if r1 ̸= r2, then one of 𝜎(1,1) and 𝜎(2,1) send one
spike while the other sends three, causing four spikes to arrive
at neuron 𝜎(1,4), which then sends spikes to 𝜎(1,6) and 𝜎(1,1),

two neurons that send forever spikes to each other, creating
a computation that never halts.

Ultimately, after going through the whole string, if the two
substrings received by the input neurons are equal, then the
computation will stop.

r − 1 steps are needed for using the rules a4a+/a → a
and one step for the rule a4 → a3, then two more steps for
sending three spikes to neurons 𝜎(1,1) and 𝜎(2,1).

3 RESULTS
In [11], an SNdP accepting the language Lww = {ww | w ∈
{b1, b2, · · · , bk}n ,n ≥ 1} was presented. This system uses
a balanced partition, and uses two components that have
different sets of neurons. Thus, for the purpose of our work, we
categorize this particular SNdP accepting Lww as a Balanced
and Nonhomogeneous system.

For the following, an SNdP with a balanced partition,
using two similar components, accepting Lww is presented.

3.1 Balanced and Homogeneous SNdP
Proposition 1. Lww = {ww | w ∈ {b1, b2, · · · , bk}n ,n ≥

1} can be recognized by a 2-component SNdP system, ∆,
with balanced input and homogeneous components, where
ComN (∆) = kn, ComR(∆) = 2kn, and ComW (∆) = 2kn +
4n + 2, and ∆ uses a total of 16 neurons in 2 components.

Proof: Let Σk = {b1, · · · , bk} and w ′ ∈ Σ+
k . The input

string, w ′, is partitioned into two substrings in this way:
w ′ = w1w2, where ||w1| − |w2|| ≤ 1.

The Balanced and Homogeneous SNdP system that can
recognize the above language using the above partition is the
following:

∆ = ({a},Π1,Π2, {((2, 2), (1, 4)), ((1, 2), (2, 4))})

Figure 2 shows the 2-component SNdP system with bal-
anced input partition and homogeneous components recogniz-
ing Lww . r spikes produced using the request rules represents
the character br from the alphabet of w , {b1, b2, · · · , bk}. The
first component, Π1, takes in w1 while the second component,
Π2 takes in w2. The system then tries to check if both compo-
nents received the same inputs strings from the environment.
Because the input is partitioned in a balance manner, both
components would be taking an input of length n from the
environment, so that |w ′| = 2n. The system is homogeneous,
so both components have the same number of neurons and
these neurons have the same rules.

For brevity of discussing the flow of the computation, we
only refer to the computation of one component (unless both
components are involved for a computation step). As the
components are homogeneous, they would have the same flow
of computation. Let 𝛼 ∈ {1, 2}.

At the start of the computation, 𝜎(𝛼,1) will get r spikes
from the environment using the request rule a2/ 𝜆 ← ar ,
1 ≤ r ≤ k . Then, 𝜎(𝛼,1) will send the r − 1 spikes one-by-one
using the spiking rule (a3)a+/a → a to 𝜎(𝛼,2). For the last
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Figure 1: A balanced, nonhomogeneous SNdP system (presented in [11]) recognizing Lww = {ww | w ∈ {0, 1}*}

a2

a2/λ← ar, 1 ≤ r ≤ k
a3 → a3

(a3)a+/a→ a

(1, 1)
a

a2/a→ a
a4 → a4

a4 → a3

(1, 2)

a→ λ

a3 → a
a4 → λ

(1, 3)

a→ a

a2 → λ
a4 → a
a5 → a
a6 → a6

a7 → λ
a8 → λ

(1, 4)

a→ λ

a6 → a2
(1, 5)

a→ a

a6 → λ

(1, 6)
a+/a→ a

(1, 7)

a+/a→ a

(1, 8)

a2

a2/λ← ar, 1 ≤ r ≤ k
a3 → a3

(a3)a+/a→ a

(2, 1)
a

a2/a→ a
a4 → a4

a4 → a3

(2, 2)

a→ λ

a3 → a
a4 → λ

(2, 3)

a→ a

a2 → λ
a4 → a
a5 → a
a6 → a6

a7 → λ
a8 → λ

(2, 4)

a→ λ

a6 → a2
(2, 5)

a→ a

a6 → λ

(2, 6)
a+/a→ a

(2, 7)

a+/a→ a

(2, 8)

Figure 2: The SNdP system for the proof of Proposition 1

spike, the rule a3 → a3 will be used instead, consuming all
remaining spikes in 𝜎(𝛼,1).

For the first r − 1 spikes, neuron 𝜎(1,2) will send its spikes
to 𝜎(1,4) and 𝜎(2,4), using spiking rule a2/a → a. Likewise,

𝜎(2,2) will also send its spikes to 𝜎(1,4) and 𝜎(2,4). For the last
spike of the current symbol, 𝜎(𝛼,2) will non-deterministically
choose between rules a4 → a4 xor a4 → a3 to apply. Neuron
𝜎(𝛼,3) are used to ensure that neuron 𝜎(𝛼,2) will have one

5



Buño, et al.

spike when it uses rule a4 → a3. The number of spikes sent by
𝜎(1,2) and 𝜎(2,2) to the other components will be interpreted
as follows:

∙ 1 spike from 𝜎(𝛼,2) indicates that component Π𝛼 is still
processing the symbol it requested from the environ-
ment.
∙ 3 spikes indicate that component Π𝛼 has finished pro-

cessing the last spike of its current symbol. In addition,
3 spikes mean that Π𝛼 wishes to request a new symbol
from the environment.
∙ 4 spikes indicate that component Π𝛼 has finished pro-

cessing the last spike of its current symbol. In addition,
4 spikes mean that Π𝛼 will not request anymore sym-
bols from the environment.

The purpose of neuron 𝜎(𝛼,4) is to receive the spike sent
from the other component’s neuron 2 and, together with the
spike sent by 𝜎(𝛼,2), decide if the current symbols processed by
the components are the same. The following are the responses
of 𝜎(𝛼,4) based on the sum of spikes received from 𝜎(1,2) and
𝜎(2,2):

∙ Positive Response - Neuron 𝜎(𝛼,4) will either enable
the request of new symbols, or halt the computation
and hence, the system, ∆, will accept the input string
w ′ = w1w2.
– (2 spikes) Both components are still processing the

spikes of their respective current symbols, so compu-
tation should continue. The 2 spikes are erased by a
forgetting rule.

– (6 spikes) Both components have processed the last
spike of their respective current symbols, and that
both components wishes to request a new symbol
from the environment. Neuron 𝜎(𝛼,4) will use rule
a6 → a6 to send 6 spikes to neurons 𝜎(𝛼,5), to con-
tinue the symbol request process by returning 2
spikes to neuron 𝜎(𝛼,1). Neuron 𝜎(𝛼,6) which will
erase the 6 spikes.

– (7 spikes) Both components have processed the last
spike of their respective current symbols, but one
component wishes to request a new symbol, while
the other wishes to end the system computation.
For this case, we opt to just end the computation
if at least one component does not wish to request
a new symbol. Hence, the 7 spikes are forgotten to
stop further request of new symbols. This ends the
computation of ∆.

– (8 spikes) Both components have processed the last
spike of their respective current symbols, and both
components wishes to end the computation. Hence,
the 8 spikes are forgotten to stop further request of
new symbols. This ends the computation of ∆.

∙ Negative Response - Neuron 𝜎(𝛼,4) will cause a nonhalt-
ing computation, making the system reject the input
string.
– (4 spikes, 5 spikes) One component has processed

the last spike of its request symbol, while the other

component has not. This indicates that the two re-
quested symbols of the two components are not the
same. Hence, the input string w ′ /∈ Lww , and must
be rejected. Neuron 𝜎(𝛼,4) will send one spike to
neuron 𝜎(𝛼,5), which will forget the spike, and to
neuron 𝜎(𝛼,6), which will relay the spike to neurons
𝜎(𝛼,7) and 𝜎(𝛼,8). Neurons 𝜎(𝛼,7) and 𝜎(𝛼,8) will ex-
change the spikes indefinitely, causing a nonhalting
computation.

– (1 spike) These occurs when in the previous compu-
tation step, 𝜎(𝛼,4) received either 4 spikes or 5 spikes.
Neuron 𝜎(𝛼,4) will fire 1 spike, but this will not affect
the nonhalting computation anymore.

The algorithm makes use of two components with eight
neurons each. Suppose the input string to ∆, w ′, is of length
2n. Partitioning w ′ to w1w2, each substring is of length n.
Analysing the running time of an accepting computation,
for 𝛼 ∈ {1, 2}, for every symbol, br , 1 ≤ r ≤ k , of input
string w𝛼 to component Π𝛼, it takes 1 step to request r
spikes from the environment, and takes r steps before the
final spike of br arrives at neuron 𝜎(𝛼,2). Then, 1 step to move
the last spike to 𝜎(𝛼,4). And then, two more steps to produce
2 spikes back in 𝜎(𝛼,1). Since the running time is affected
by which symbols are requested from the environment, we
consider the worst case in which the component will always
request the maximum k spikes. Hence, for the partitioned
input string w𝛼 of length n, the first n − 1 symbols will take
(k + 4)(n − 1) and the last symbol of w𝛼 requires k +3 steps
to process. Thus, the total running time of a halting and
accepting computation is (kn + 4n − 1) steps.

To analyse the communication complexity between the
two components, for each symbol br ∈ {b1, ..., bk}, note that
the number of times each component communicates to the
other component through the external synapse is r , which is
k at most. Both components send spikes at the same time,
hence the number of communication steps per symbol, br ,
processed is at most k . Hence, for an input of length n, there
are at most kn communications between the two components.
Therefore, ComN (∆) = kn.

For each communication step, two intercomponent commu-
nication rules (one for each component). Therefore, ComR(∆) =
2kn.

For each character br , the component sends r + 2 spikes,
and both components send to each other at the same time.
For the last symbol of the input substring, w𝛼, the number
of spikes sent is r + 3. Taking again the maximum possible
number of spikes per character, which is k , the number of
spikes required to be communicated is (k+2)(n−1)+k+3 =
kn + 2n + 1 per component. Hence the total weight of the
communication is 2(kn + 2n + 1) = 2kn + 4n + 2. Therefore,
ComW (∆) = 2kn + 4n + 2.

In summary, we have that ComN (∆) = kn, ComR(∆) =
2kn, and ComW (∆) = 2kn + 4n + 2.

□
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3.2 3-component Nonbalanced and
Nonhomogeneous SNdP

Proposition 2. Lww = {ww | w ∈ {b1, b2, · · · , bk}n ,n ≥
1} can be recognized by a 3-component SNdP system, ∆,
with nonbalanced input partition and nonhomogeneous com-
ponents, with ComN (∆) = ComR(∆) = (k + 1)n, and
ComW (∆) = (k + 2)n, and ∆ uses a total of 13 neurons
across all components.

Proof: Let Σk = {b1, · · · , bk}. The input string, say w ′ ∈
Σ2n

k , n ≥ 1, will be partitioned into two substrings in this way:
w ′ = w1w2, where ||w1| − |w2|| ≤ 1. The first component, Π1,
takes in w1 while the second and third components, Π2 and
Π3, takes in w2. w2 is further partitioned between these two
components in this way: Let w2 = x1x2 · · · xn where k = |w2|.
If n is odd, y1 = x1x3x5 · · · xn and y2 = x2x4 · · · xn−1. If n is
even, y1 = x1x3x5 · · · xn−1 while y2 = x2x4 · · · xn .

∆ = ({a}, Π1, Π2, Π3, {((1, 4), (3, 1)), ((1, 7), (2, 1)),

((2, 2), (1, 3)), ((3, 2), (1, 6))})

Figure 3 shows the 3-component SNdP system using non-
balanced partition and nonhomogeneous components recog-
nizing Lww , where x is ⌈ |w|

2
⌉, around the half length of w ,

and y is |w | − x , around the other half of w , and 1 ≤ r ≤ k .
r spikes represents the character br from the alphabet of w ,
{b1, b2, · · · , bk}.

The first component, Π1, takes in w1 while the second
component takes y1 and the third component takes y2. The
input of the system is nonbalanced, so the components do
not necessarily have to take inputs of equal length from the
environment. And since the system is nonhomogeneous, the
system does not need to have components with the same
neurons. The first neuron on modules 2 and 3 is a counter
that is initialized to have 2x and 2y spikes, respectively.

At the beginning of the computation, 𝜎(1,7) has two spikes.
It uses these two spikes to send a spike each to 𝜎(1,1) and
𝜎(2,1). This causes the counter in 𝜎(2,1) to decrement and
send a spike to 𝜎(2,2) using the rule a(aa)+/a → a and for
𝜎(1,1) to get an input from the environment using its request
rule a/ 𝜆 ← ar . 𝜎(1,1) then sends these spikes one by one
to 𝜎(1,2) and 𝜎(1,5) using either the rules (aa)a+/a → a if
it is not yet the last spike or the rule a2 → a2 if it is the
last spike, consuming all spikes in the neuron in the process.
However, since 𝜎(1,5) has no spikes at first, it will just forget
if it gets one spike. When 𝜎(1,1) sends its first spike to 𝜎(1,2),
𝜎(2,2) gets a spike from the environment. Both 𝜎(1,2) and
𝜎(2,2) then sends the spikes they get one by one to 𝜎(1,3),
𝜎(1,2) using either the rule a3/a → a or the rule a4 → a2

which consumes all spikes in 𝜎(1,2) if 𝜎(1,1) sends two spikes,
meaning it received the last character. 𝜎(2,2) sends spikes in
the same manner as 𝜎(1,1). If 𝜎(1,3) receives the same spikes
from both 𝜎(1,2) and 𝜎(2,2), it just forgets these spikes using
either a2 → 𝜆 or a4 → 𝜆. Otherwise, it uses a3 → a to send
a spike to 𝜎(1,8) to cause it to have infinite spikes with 𝜎(1,9).

When 𝜎(1,1) sends its last two spikes, it will give two spikes
to 𝜎(1,5) and will cause 𝜎(1,2) to use all of its spikes to send two
spikes to 𝜎(1,4) which will be used to send one spike to 𝜎(1,1)

and 𝜎(3,1). Neuron 𝜎(3,1) assumes its function as a counter
and begins decrementing, sneding a spike to 𝜎(3,2) using the
rule a(aa)+/a3 → a. This causes computations similar to
the one done between the first and second components but
this time using a different set of neurons. Because this time
it is 𝜎(1,5) that has two spikes and 𝜎(1,2) has none, the latter
will just forget if it obtains one spike while the former will do
the computations of sending either one or two spikes to 𝜎(1,6)

and 𝜎(1,7). As with 𝜎(1,3), if 𝜎(1,6) receives the same spikes,
it will forget them, but receiving different spikes causes it
to send to 𝜎(1,8), which, again, causes infinite spikes in the
system.

These computations go on, with Π1 alternating between
computing with Π2 and Π3. If both counters finish counting
down to 0, the computation will halt, signaling that the whole
ww string has been read and accepted.

The algorithm makes use of three components: one with
nine neurons, and two with two neurons each. For every
character of input, it takes 1 step for either 𝜎(1,4) or 𝜎(1,7) to
send a signal to the counter in one of the neurons, 1 step to
decrement from the counter and for 𝜎(1,1) to get the input
from the environment, then 1 step to send to 𝜎(1,2) and for
𝜎(2,2) or 𝜎(3,2) to get an input from the environment. Then,
the input spikes are decremented one by one and sent to
either 𝜎(1,3) or 𝜎(1,6). For a character r where 1 ≤ r ≤ n,
with n as the maximum number of steps. As the last spike of
the character is used, the neuron that will send to the counter
is also reinitialized. This shows that it takes a maximum of
n+3 steps per character. Thus, for any input string of length
with any length n, It will take at most kn+3n steps to reach
a halting computation.

To analyse the communication complexity between the
three components, note that the number of times a compo-
nent sends to the other depends on the number of spikes
r it receives from the environment, which, again, is k at
most. There is also one communication between components
sent when decrementing from the counter. Thus, the num-
ber of communications used between three components is
at most k + 1. And for an input string w ′ = w1w2 of length
2n, there are (k + 1)n communications between the three
components. Hence, ComN (∆) = (k + 1)n. Additionally,
for each communication step, only one intercomponent com-
munication rule is used. Note here that since Π2 and Π3

alternates between the odd and even symbols of w2, only
one is actively communicating with Π1 at a time. Hence,
ComR(∆) = ComN (∆) = (k + 1)n.

Observe that for a spike r , the 𝜎(2,2) or 𝜎(3,2) sends 1
spike to the first component for up to r − 1 times and then
sends 2 for the last spike. This means that each character
causes one component to send (r −1)+2 = r +1 spikes. One
spike is also sent between communications to decrement the
counter per character. And because the maximum r for each
character is k , that means per character, the total weight of
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Figure 3: The SNdP system for the proof of Proposition 2

communication is k + 1+ 1 = k + 2. Then, for a string w ′ of
length 2n, the total communication cost of kn + 2n spikes.
Hence, ComW (∆) = kn + 2n.

In summary, we have that ComN (∆) = ComR(∆) =
(k + 1)n, and ComW (∆) = (k + 2)n.

□

3.3 Comparison Between Models
Looking at the three models, i.e., the balanced and nonhomo-
geneous system, the balanced and homogeneous systems, and
the nonbalanced nonhomogeneous system, we can compare
them in terms of their communication costs as well as the
neurons needed per component.

For the balanced and nonhomogeneous system presented
in [11], we see that per character, the second component
communicates with the first component r times because
it sends the spikes one by one, and afterwards, the first
component communicates with the second component once.
Since r ≤ k , then the number of communications between
the components in a given computation is k +1. For a string
of length n, this means that there are kn+n communications.
When the weights of the communications are considered, we
see that the second component sends to the first component 1
spike r−1 times, and 3 spikes once per character for a total of
r −1+3 = r +2 spikes per character with k as the maximum
r , and it does this for n characters. The second component
then sends for a communication cost of n(k + 2) = kn + 2n.
The first component, on the other hand, sends 3 spikes for the
first n − 1 characters and just 1 spike for the last character,
which means it sends 3(n − 1) + 1 = 3n − 2 spikes in total.
Adding the two, the total communication cost is kn +5n − 2.

The number of time steps needed to finished computing one
character is k+2. For n character, this means a running time
of kn + 2n.

The balanced and nonhomogeneous system, then, has a
ComN (∆) = kn + k and ComW (∆) = kn + 5k − 2. The
balanced and homogeneous system has ComN (∆) = kn and
ComW (∆) = 2kn + 4k and the nonbalanced and nonhomo-
geneous system has ComN (∆) = ⌊ n

2
⌋k and ComW (∆) =

⌊ n
2
⌋(k +2). Here, we see that the nonbalanced and nonhomo-

geneous system gives the least communication cost at almost
a quarter of the balanced and nonhomogeneous system, while
the balanced and homogeneous system gives the most, which
is almost double that of the balanced and homogeneous sys-
tem.

In terms of the number of neurons of the components,
the balanced and nonhomogeneous used the least neurons,
with 7 neurons on the first component and 1 neuron on the
second component for a total of 8 neurons. The balanced
and homogeneous system, being homogeneous, used the same
number of neurons per component, which is 8, for a total of
16 neurons.

Table 2 summarizes the analyses between the models.

4 FINAL REMARKS
This work was only able to model SNdP that are either
balanced and homogeneous or nonbalanced and nonhomoge-
neous. As shown in Table 1, constructing an SNdP system
with a nonbalanced partition and homogeneous components
is still left open. Some things to note for future reference are
difficulties in communicating between components when they
do not have inputs of equal lengths, as well as the difficulty

8
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Table 1: Balance and Homogeneity of SNdP Systems recognizing Lww

Balanced Input Partition Nonbalanced Input Partition
Homogeneous Components Section 3.1 Open Problem
Nonhomogeneous Components In [11] Section 3.2

Table 2: Comparison between models

Number of
Communications Weighted Cost Number of

Neurons Running Time

2-component
Balanced
Nonhomogeneous[11]

nk + k nk + 5k − 2 8 kn + 2n

2-component
Balanced
Homogeneous
(in Section 3.1)

kn 2kn + 4k 16 kn + 4n − 1

3-component
Nonbalanced
Nonhomogeneous
(in Section 3.2)

nk + k kn + 2k 13 kn + 3n

of making sure that neurons have the same rules and are able
to use them effectively.

In this work, we measured the communication cost of the
presented SNdP systems as defined in Section 2. Based on
Table 2, compared to the work in [11], the SNdP in Section 3.1
has a lower number of communications but higher weighted
communication cost and running time. The weighted commu-
nication cost, number of neurons, and running time of the
SNdP in Section 3.2 are also lower than that of the SNdP
in Section 3.1, even if it has more components. This may
indicate that SNdP would benefit more from having nonho-
mogeneous components, having a “central” component doing
most of the processing, with auxilliary input components.

This work mainly looked into SNdP systems that recognize
the language {ww | w ∈ {b1, b2, · · · , bn}n ,n ≥ 1}. However,
this can be generalized further into the family of languages
{wk , k ≥ 2 | w ∈ {b1, b2, · · · , bn}n ,n ≥ 2}. Some ideas to do
this is to follow a pattern similar to the components of the
homogeneous and balanced SNdP systems in this work. There
can be one component for each w and the spikes counter
and rules can be adjusted accordingly to accommodate more
spikes being exchanged in between components.

In the introduction of dP systems[19], dP systems should
have constant communication measures with respect ot the
length of the input. This is important for another property
of dP systems, known as parallelizability. Parallelizability
can be viewed as a measure of how we scale-up the solution
(in terms of number of components). Having a non-constant
communication measure would make a dP system with more
components less desirable, as most of the resource will go to
communication, rather than the internal and independent
computation of the individual components. For further future
works, we would like to look into how we can construct a
SNdP solution with communication measures that is not a

function of the length of the input, similar to the dP systems
in [1, 3, 4].
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