
Evolving Spiking Neural P Systems with Polarization

Jules Gerard E. Juico, Jerico L. Silapan, Francis George C. Cabarle*

Ivan Cedric Macababayao, Ren Tristan De la Cruz
University of the Philippines Diliman

Quezon City, Philippines

ABSTRACT

In this work, we introduce a representation of spiking
neural P systems with polarization (or PSNP Systems)
and an algorithm for simulation. An existing represen-
tation and algorithm for spiking neural P systems is
modified to handle neurons with polarizations, neurons
firing spikes and charges, and rules are checked using
the charge of the neuron instead of regular expressions.
In addition to the representation and algorithm, this
work also presents a genetic algorithm framework (GA
framework) that aims to reduce the number of resources
(rules and synapses) of an existing PSNP system. We use
the framework on PSN P systems that perform bitwise
AND and OR. The GA framework will have two selection
methods, Fitness Proportionate and Tournament Selec-
tion. A discussion on the effectiveness of the framework
in obtaining a PSN P System with less number of rules
and synapses will be done at the end.

KEYWORDS

spiking neural p systems, neural p systems, polarization,
genetic algorithm, simulation

1 INTRODUCTION

Learning starts with us imitating what our parents or
guardians do. By observing their movements or by listen-
ing and repeating the words they say, we slowly under-
stand and gain knowledge about simple to complicated
things about the world. We then broaden our knowledge
by reading books and listening to valuable lessons from
our teachers and professors. But it does not end there.
Driven by curiosity and craving for knowledge led us to
discover information beyond present sources has to offer
and for this study, we focus on the very place where us,
humans, interact all the time, nature.
Biological processes such as changes in individuals

due to natural selection and cooperation of millions of
neurons in the brain has been an inspiration for many
and it gave rise to the development of natural computing.
This lead to further understanding algorithms present

*corresponding author: fccabarle@up.edu.ph. Appendices that ac-

company this work include supplementary information such as
figures, tables. The appendices may be available in a separate

manner from the main paper.

in the nature which can be a guide to produce better
algorithms and spark up interesting ideas [7].

Membrane computing is one of the youngest areas of
natural computing. Computational model are inspired
by cells in terms of structure and functioning. It concerns
distributed and parallel computing models called P sys-
tems. P systems have three main categories that differ
in structure: cell-like P systems which are hierarchically
arranged, tissue-like P systems which are arranged in
an undirected graph, or neural-like P systems which are
arranged in a directed graph [7].

A work by [4] is about a kind of neural-like P system
called Spiking Neural P Systems or SN P systems. SN
P systems are third generation neural networks that
have neurons placed in the nodes of a directed graph
that utilized spikes to send signals from one node to
another similar to how nerve cells communicate with one
another. These neurons are connected by edges called
synapses where the spikes are transmitted to and from.
Each neuron contains rules that will determine the spikes
to be sent by the neuron to all neighbouring neurons.

A recent work by [9] is about a variant of the SN P sys-
tem called Spiking Neural P Systems with Polarization.
The distinct difference between the two would be the
use of polarization to determine whether a rule inside a
neuron will apply or not.
Simulation algorithms for SN P systems has been

present and an inspiration for this work is the work of
[1] which is a algorithm to simulate SN P systems using
a GPU. An algorithm for simulation is a great help as it
reduces the time to simulate. In addition, longer input
spike trains and larger systems can be simulated with
the help of a computer.
Another area in natural computing is evolutionary

computing which is inspired by biological evolution. This
opened a new area to which problems can be solved. As it
suggests, it is a process of continuous selection, mutation,
and crossover until a certain criterion has been met.

Both simple and complex PSN P systems can be per-
formed using a pen and paper given a decent amount of
time. For complex PSN P systems, it is not practical to
perform it by hand as time is important and mistakes
could occur. Having a representation and an algorithm

1

11



Juico and Silapan, et al.

for PSN P systems can assist future works involving com-
plex PSN P systems. The first main objective for this
work is to create a tool to assist individuals who want
to simulate PSN P systems using a computer. At the
moment this work is done, there exists no other studies
about transforming a PSN P system so that it would com-
pute approximately the same output where the system
contains the same or reduced number of synapses and
rules. The number of possible combinations of synapses
and rules forms a large solution space that would make
it difficult to find a PSN P system using a brute force
approach. As discussed above, genetic algorithms are
suited to find solutions in a large solution space. Another
motivation of this work is: How do we create a framework
for PSN P systems using genetic algorithms so that we
could transform the system to perform its function but
with a possibly reduced number of synapses and rules?

In this work we introduce a modified version of the
existing algorithm in [1]. Modifications are applied to be
able to simulate PSN P systems. To be specific, in this
work introduce the following results: PSN P Repre-
sentation, PSN P Simulator Algorithm, PSN P
Simulator Program. The PSN P representation is a
modified version from the work of [1]. New vectors are
modified to handle the polarization of neurons and rules
are now checked using charges instead for regular expres-
sions. Similarly, the PSN P simulation algorithm is also
inspired from the work of [1]. Changes will be done since
the this work is concerned with PSN P systems.
The next main objective is to design a genetic algo-

rithm framework for reducing the number of rules and
synapses of a PSN P System while still making it perform
correctly the operation it supposed to do. The genetic
algorithm has a framework defined later in Section 3.
For this work, we discuss definitions and details of

spiking neural P systems with polarization or PSN P
systems in Section 2. Section 3 will discuss details of the
genetic algorithm and theoretical framework of this work,
including the scope and limitations of this work. Related
literature of this work will be discussed in Section 4. A
discussion on how the SNP algorithm from the work
of [1] is modified for PSN P systems can be found on
Section 5. Details of the specific parts of the genetic
algorithm framework are discussed in Section 6. How the
experiments are conducted is presented in Section 7 and
an analysis of the said experiments are found right after
in Section 8. The conclusions and future work from our
experiments are on Section 9.

2 PRELIMINARIES

Spiking Neural P Systems with Polarization

In this work, we deal with a variant of spiking neural
P systems with polarization or PSN P systems. PSN P
systems are similar to SN P systems such both of them
have neurons that consume and produce spikes. The
main difference between them is that a new mechanism
is used for determining whether a rule applies or not.
Neurons and rules are now associated with a charge,
rather than using regular expressions. This change is
inspired by the nature of neurons having charges and
avoids the NP-complete problem of deciding whether or
not a regular expression is accepted [9].

Definition 1 (PSN P system). As defined from [8],
spiking neural p system with polarization of degree 𝑚 ≥ 1
is a construct of the form

Π = (𝑂, 𝜎1, 𝜎2, , 𝜎𝑚, 𝑠𝑦𝑛, 𝑖𝑛, 𝑜𝑢𝑡),

where

(1) 𝑂 = 𝑎 is the singleton alphabet (𝑎 is called spike);
(2) 𝜎1, 𝜎2, ..., 𝜎𝑚 are neurons, of the form

𝜎𝑖 = (𝛼𝑖, 𝑛𝑖, 𝑅𝑖), 1 ≤ 𝑖 ≤ 𝑚,

where:
(a) 𝛼𝑖 ∈ {+, 0, −} is initial polarization of neuron

𝜎𝑖;
(b) 𝑛𝑖 ≥ 0 is the initial number of spikes contained

in 𝜎𝑖;
(c) 𝑅𝑖 is a finite set of rules of the following two

forms:
(i) 𝛼/𝑎𝑐 → 𝑎; 𝛽, for 𝛼, 𝛽 ∈ {+, 0, −}, 𝑐 ≥ 1

(spiking rules);
(ii) 𝛼/𝑎𝑠 → 𝜆; 𝛽, for 𝛼, 𝛽 ∈ {+, 0, −}, 𝑠 ≥ 1

(forgetting rules);
(3) 𝑠𝑦𝑛 ⊆ {1, 2, ..., 𝑚} × {1, 2, ..., 𝑚} with 𝑖 ̸= 𝑗 for

each (𝑖, 𝑗) ∈ 𝑠𝑦𝑛, 1 ≤ 𝑖, 𝑗 ≤ 𝑚 (synapses between
neurons);

(4) 𝑖𝑛, 𝑜𝑢𝑡 ∈ {1, 2, ,𝑚} indicate the input and the out-
put neurons, respectively.

Unlike SN P systems, the neurons and rules of a PSN
P system each contain a charge. These charges replace
regular expressions in determining if a rule is applicable
or not. The same types of rules are in PSN P systems,
namely, the spiking rules and the forgetting rules. In the
same case to SN P systems, a rule of a neuron must be
applied whenever possible.
A spiking rule of the form 𝛼/𝑎𝑐 → 𝑎;𝛽 will apply if

the neuron has the charge 𝛼 and contains 𝑘 spikes, such
that 𝑘 ≥ 𝑐. Once applied, the neuron will consume 𝑐
spikes and produce a spike carrying the charge 𝛽. The
spike is sent to all neurons that has a synapse connecting
the neuron that produced the spike.

12



Evolving Spiking Neural P Systems with Polarization

A forgetting rule of PSN P systems does not need to
have the exact number of spikes for the rule to apply. It
will apply as long as the neuron contains 𝑘 spikes and
that 𝑘 ≥ 𝑠. Moreover, aside from the neuron consuming
𝑠 number of spikes, it will also send a charge 𝛽 to all
neighbouring neurons. Once the charges are received, a
computation of these charges is done following the steps
enumerated sequentially:

(1) several positive charges (+), several neutral charges
(0), several negative charges (-) lead to one positive
charge (+), one neutral charge (0), one negative
charge (-), respectively.

(2) a positive charge (+) and a negative charge (-)
cancel each other and give a neutral charge (0);

(3) a positive charge (+) and a negative charge(-) is
not changed by a neutral charge (0).

+/ a → a; 0

(σ1 , +)

−/ a → a; 0

(σ2 , -)
0/ a2 → a;−
0/ a → a; +

(σ3 , 0)

output

input x

input y

Figure 1: An example of an PSN P system for the
logical OR function

Alike SN P systems, neurons will work in parallel and
will be synchronous using a global clock. If several rules
inside a neuron can can be applied, then the rule to be
used is chosen non-deterministically.

The configuration of the system is described by both
the number of spikes and the charge of each neuron,
and as a result, the initial configuration of the system is
𝐶0 = ⟨ 𝑛1, 𝑛2,...,𝑛𝑚;𝛼1,𝛼2,...,𝛼𝑚⟩
We denote a transition between two configuration,

say 𝐶1 and 𝐶2 using 𝐶1 ⇒ 𝐶2. A computation is any
sequence of transitions that starts from the initial con-
figuration. We say that a computation is successful and
halting if the system reaches a configuration in which no
rules can be applied in any neurons.
Input and output neuron of a PSN P system may

or may not be defined, thus there are several ways to
define the result of a computation. To elaborate, a PSN P
system can be a generative, an accepting, or a computing
device. Input neuron 𝑖𝑛 is ignored for a generative device
while the output neuron 𝑜𝑢𝑡 is ignored. But when both

input and output neuron is considered, the PSN P system
can be used to compute numerical functions.

step input 𝑥 input 𝑦 𝜎1 𝜎2 𝜎3 output
0 𝑎 𝑎 0, + 0, - 0, + 0
1 0 0 𝑎, + 𝑎, - 0, + 0
2 0 0 0, + 0, - 𝑎2, 0 0
3 0 0 0, + 0, - 0, 0 𝑎

Table 1: A computation of the PSN P system in Fig-
ure 1 with (bit) inputs 𝑥 = 1 and 𝑦 = 1.

An example of a PSN P system can be seen in Figure
1. If a spike is entered from each input, a computation is
provided on Table 1. These two spikes enter the system
through input 𝑥 and input 𝑦. Initially, all three neurons
do not contain any spikes, and neurons 𝜎1 and 𝜎3 contain
a positive charge while 𝜎2 contain a negative charge. At
step 1, 𝜎1 and 𝜎2 will contain a spike each and at the
next step, given the charges they contain, the rules will
accept the spikes and the charges which will lead to
producing a spike for each neuron. The spikes produced
by both 𝜎1 and 𝜎2 is fired to 𝜎3. Neurons 𝜎1 and 𝜎2 also
fires a positive charge and a negative charge, respectively.
Following the computation for charges, 𝜎3 contains a
positive charge and receives a positive charge from 𝜎1

which first leads to one positive charge. The negative
charge sent by the neuron 𝜎2 then cancels out the positive
charge. This will result to 𝜎3 containing a neutral charge
as well as two spikes at step 2. At step 3, the rule 0/
𝑎2 → 𝑎; 0 accepts the neutral charge and consumes the
two spikes to produce a single spike sent out as the output
of the system. The output completes the computation of
the logical OR function, such that the equation 1𝑂𝑅1
produces 1 as how the system outputs a single spike with
an input two separate spikes.

Genetic Algorithm

Genetic algorithms are an approach to solving problems
by taking an inspiration from biological evolution. Ac-
cording to Melanie [5], evolution is a method of searching
through a large number of constantly changing possibili-
ties for solutions. Genetic algorithms are patterned after
evolution to solve computational problems by repeatedly
searching and evolving candidate solutions for the prob-
lem. By evolving candidate solutions, genetic algorithms
create solutions and narrow them down which makes
them suitable for large solution spaces. These candidate
solutions are called chromosomes, often encoded as bit
strings, which are composed of genes that are usually
either bits or blocks of bits that represent an element

13



Juico and Silapan, et al.

of the candidate solution. Alleles are the alphabet of
a gene, which in the case of a gene represented as bit
strings, is either 1 or 0.
Figure 9 shows the flow of how genetic algorithms.

A population is first generated by inputting chromo-
somes. A fitness function assigns a score to a chromosome
which can be used to determine which chromosomes will
crossover and mutate, or which chromosome will be se-
lected as the solution. A stop criterion is provided which
may be a certain number of iterations of crossing over
and mutating or if a chromosome has achieved certain
fitness score. The stop criterion is provided to determine
whether a chromosome is selected to become the output
or if the genetic algorithm will continue to evolve the
chromosomes. In the case of the latter, chromosomes are
selected to be evolved for the population of the next gen-
eration of chromosomes. To evolve chromosomes, genetic
algorithms utilize crossover and mutation to the chro-
mosomes in a population. Crossover is the exchange of
genes between two chromosomes while mutation consists
of flipping random genes of a chromosome.

3 GENETIC ALGORITHM AND THEORETICAL
FRAMEWORK

Details of the genetic algorithm framework, continuing
the main objectives from Section 1, is as follows. Given
an initial deterministic PSN P Π𝑖𝑛𝑖𝑡 = (𝑂, 𝜎1, 𝜎2, ...,
𝜎𝑚, 𝑠𝑦𝑛, 𝑖𝑛, 𝑜𝑢𝑡) and a set of finite triplets 𝑆 = {(𝑎1,
𝑏1, 𝑐1), (𝑎2, 𝑏2, 𝑐2), ..., (𝑎𝑛, 𝑏𝑛, 𝑐𝑛)} where
(1) 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 ∈ {0, 1}+
(2) Π𝑖𝑛𝑖𝑡(𝑎𝑖, 𝑏𝑖) = 𝑐𝑖

construct a genetic algorithm that outputs a determinis-
tic PSN P Π𝑓𝑖𝑛𝑎𝑙 = (𝑂, 𝜎

′
1, 𝜎

′
2, ..., 𝜎

′
𝑚, 𝑠𝑦𝑛, 𝑖𝑛, 𝑜𝑢𝑡) such

that the output of Π𝑓𝑖𝑛𝑎𝑙(𝑎𝑖, 𝑏𝑖) is within a certain fit-
ness value relative to 𝑏𝑖 and 𝑠𝑖𝑧𝑒(Π𝑓𝑖𝑛𝑎𝑙) ≤ 𝑠𝑖𝑧𝑒(Π𝑖𝑛𝑖𝑡),
where size is a computation of the number of rules and
synapses.
A diagram for the proposed framework for evolving

PSN P systems is shown in Figure 2. The framework
is to work similarly to how genetic algorithms work as
shown in Figure 9 and how genetic algorithm is applied
to neural networks in [3]. The framework contains the
same elements as most genetic algorithms with a few
modifications to be able to evolve PSN P systems. An
initial PSN P system is entered as input to the genetic
algorithm along with a pair of input and output spike
trains. Initially, population of PSN P systems are gener-
ated once. The fitness scores of the PSN P systems in the
population are computed by using the input spike trains
to generate an output spike train for each PSN P system
and comparing them to the initial output spike train

Population

Calculating Fitness

Crossover/Mutation

Selection

PSN P Simulator

Initial PSN P System

Input and Output
Spike trains

Figure 2: A framework for evolving PSN P systems
using genetic algorithms

entered to the genetic algorithm. The algorithm then
selects PSN P systems for crossover and mutation, based
on their fitness score. The resulting PSN P systems are
placed back to the population and will continue to iterate
over these cycle of steps until the stop criterion is met.
Once the cycle stops, the fittest PSN P system is selected
and becomes the output of the genetic algorithm.

The systems to be used for this work are specific vari-
ant of the Spiking Neural P Systems with Polarization,
or PSN P, wherein the following restrictions are used:
Fixed initial neuron charges: All neurons in the sys-
tem have preset and initial charges. Fixed number of
neurons: The PSN P system used have a constant num-
ber of neurons. The number of neurons do not increase
or decrease during and after evolution with the genetic
algorithm. Synchronous mode: Neurons in the PSN P
system work in parallel and will be synchronous using a
global clock. Constant input and output neurons:
Input and output neurons will remain the same during
and after evolution. Computing device: Spike trains
are required for the input neurons. The output neuron
will produce a spike train.

4 RELATED WORK

[6] evolved weights of a neural network with fixed units
called neurons and connections using genetic algorithm.
The weights are represented or encoded using a list of real
numbers. The weights are then subjected to operations
of GA such as mutation, crossover, and selection using an
evaluation function. This concept helps to guide encoding
PSN P systems for input, transformation and output of
the genetic algorithm.

[1] simulated SN P systems both with CPU and GPU
simulators. The simulators used matrices to encode SN
P systems by representing different elements of the SN

14



Evolving Spiking Neural P Systems with Polarization

P systems, like the amount of spikes in a neuron at a
certain time step, the delay of each rule in the neuron,
the number of spikes consumed or sent, and the status,
whether open or close, of each neuron at a certain time
step. The study also provided a runtime comparison
between the CPU and GPU simulators, and showed up
to 50𝑥 speed up for the GPU simulator over the CPU
simulator. The SN P simulators used in this study can
be modified to simulate PSN P systems which could be
used for the evolution of PSN P systems in our study.
[3] used a framework in optimizing the consumption

of fuel and electricity in an absorption chiller system
using genetic algorithm and neural networks. The frame-
work used is visualized in Figure Here, the framework is
structured similar to how the genetic algorithm can be
applied in evolving PSN P systems.

In Figure 2, we can see the framework of [3] which can
be used in this study. The encoding of PSN P systems
for this framework takes inspiration for how [6] encoded
the weights of a neural network for the genetic algorithm
that was used. The SN P simulators in [1] could be used,
with modifications to simulate PSN P systems instead
of SN P. It could then be used for calculating the fitness
for selection by checking if the output of a candidate
PSN P system is within a certain range of the output of
the initial PSN P system entered to the system.

5 ALGORITHM FOR PSN P SYSTEM

The algorithm of [1] was modified to create a simulator
since the neurons are now associated with a charge and
the mechanism to determine if a rule will apply is based
on charges rather than using regular expressions. Let Π
be an PSN P system with 𝑛 number of neurons and 𝑟
number of rules. The following definitions are used to
represent Π.

Definition 2 (Configuration vector). The con-
figuration vector 𝐶𝑛𝑉 = < 𝑐1,..., 𝑐𝑛 >, where 𝑐𝑖 is the
number of spikes contained in neuron 𝑖

Definition 3 (Spiking Vector). The spiking vector
𝑆𝑝𝑉 = < 𝑠𝑝1,.., 𝑠𝑝𝑛 >, where for each 𝑖 ∈ { 1, 2,..,𝑛},

𝑠𝑝𝑖 =

{︃
1, if a rule in neuron 𝑖 is applied

0, otherwise

Definition 4 (Status Vector). The status vector
𝑆𝑡𝑉 = < 𝑠𝑡1,..., 𝑠𝑡𝑛 >, where for each 𝑖 ∈ { 1, 2,..,𝑛},

𝑠𝑡𝑖 =

{︃
1, if neuron 𝑖 is open

0, otherwise

Definition 5 (Rule Representation Matrix).
The rule representation matrix 𝑅𝑅𝑀 = < 𝑟1,..., 𝑟𝑟 >,

where for each 𝑖 = 1,..., 𝑛, 𝑟𝑖 = < 𝑠𝑐, 𝑗, 𝑑′, 𝑐𝑎, 𝑐𝑓 ,
𝑠𝑓 >.

𝑠𝑐 is the number of spikes consumed by rule 𝑖
𝑗 is the neuron contained by rule 𝑖

𝑑′ =

{︃
−1, if rule 𝑖 us not fired

0, if it is fired

𝑐𝑎 is the charge accepted by rule 𝑖
𝑐𝑓 is the charge fired by neuron 𝑖
𝑠𝑓 is the number of spikes consumed by rule 𝑖 if it will

fire

Definition 6 (Loss Vector). The loss vector 𝐿𝑉 =
< 𝑙1,..., 𝑙𝑛 >, where for each 𝑖 ∈ { 1, 2,..,𝑛}, 𝑙𝑖 is the
number of consumed spikes by neuron 𝑖 at the current
step.

Definition 7 (Gain Vector). The gain vector 𝐺𝑉 =
< 𝑔1,..., 𝑔𝑛 >, where for each 𝑖 ∈ { 1, 2,..,𝑛}, 𝑔𝑖 is the
number of spikes sent by neighboring neurons to neuron
𝑖 at the current time step.

Definition 8 (Transition Matrix). The transition
matrix 𝑇𝑀 = < 𝑡𝑣1,..., 𝑡𝑣𝑟 >, where for each 𝑖 = 1,...,𝑟,
𝑡𝑣𝑖 = < 𝑝1,..., 𝑝𝑛 > such that 𝑝𝑖 is the number of spikes
received by neuron 𝑖 given that rule 𝑟 fires.

Definition 9 (Indicator Vector). The indicator
vector 𝐼𝑉 = < 𝑖𝑣1,..., 𝑖𝑣𝑟 >, where 𝑖𝑣𝑖 is equal to 1 if
rule 𝑖 will fire at the current time step and 0 otherwise.

Definition 10 (Removing Matrix). The removing
matrix 𝑅𝑀 = < 𝑟𝑚𝑖,..., 𝑟𝑚𝑟 >, where for each 𝑖 =
1,...,𝑟, 𝑟𝑚𝑖 = 𝑟𝑠1,..., 𝑟𝑠𝑛 > such that 𝑟𝑠𝑖 is the number
of spikes consumed by neuron 𝑖 given that rule 𝑟 fires.

Definition 11 (Net Gain Vector). The net gain
vector 𝑁𝑉 = < 𝑛𝑔𝑖,..., 𝑛𝑔𝑛 >, where 𝑛𝑔𝑖 is the number
of spikes gained by neuron 𝑖 at the current time step.

Definition 12 (Charge Vector). The charge vec-
tor 𝐶ℎ𝑉 = < 𝑐ℎ1,..., 𝑐ℎ𝑛 >, where 𝑐ℎ𝑖 is the charge
contained by neuron 𝑖.

Definition 13 (Charge Transition Matrix). The
charge transition matrix 𝑇𝑐ℎ𝑀 = < 𝑡𝑐𝑣1,..., 𝑡𝑐𝑣𝑟 >,
where for each 𝑖 = 1,..,𝑟, 𝑡𝑐𝑣𝑖 = < 𝑐𝑝1,..., 𝑐𝑝𝑛 > such
that 𝑐𝑝𝑖 is the charge received by neuron 𝑖 if rule 𝑟 fires.

Output neurons will send spikes to the environment.
For this experiment, the environment will be considered
as another neuron labeled as 𝜎𝑒𝑛𝑣.

PSN P systems used for the algorithm is represented
using a string that has the following:

(1) Number of neurons including 𝜎𝑒𝑛𝑣

15



Juico and Silapan, et al.

(2) Number of rules
(3) Synapse Matrix
(4) Rule Representation Matrix
(5) Initial charges of neurons
(6) Input neurons

The addition Charge Vector and Charge Transition
Matrix to the algorithm of [1] is to accommodate the
charges that a PSN P system works with. The Charge
Transition Matrix is computed the same way the Tran-
sition Matrix is, but instead of getting the spike of the
rule, the charge fired by the rule is taken instead. The
Charge Vector has the charges contained the neurons.
The Charge Vector is computed by collecting the charges
that will be received by the neuron if for the rules that
will apply and the charge of the neuron itself. Then for
each neuron, the computation for the charges is applied
to the charges collected.

6 GENETIC ALGORITHM

Initial of Population

A given initial PSN P system called Π𝑖𝑛𝑖𝑡 = (𝑂, 𝜎1, 𝜎2,
, 𝜎𝑚, 𝑠𝑦𝑛, 𝑖𝑛, 𝑜𝑢𝑡) and a population size 𝑝𝑠𝑖𝑧𝑒 is used
to make an initial population 𝑃 = { Π1, Π2,...,Π𝑝𝑠𝑖𝑧𝑒}.
To build the population, the initial PSN P system

Π𝑖𝑛𝑖𝑡 will undergo mutation which contains the following
operations:

Fitness Calculation

Each member of population 𝑃 will undergo simulation
and will be given input and output spike trains 𝑆 =
{(𝑎1,𝑏1,𝑐1), (𝑎2,𝑏2,𝑐2),..., (𝑎𝑛𝑡, 𝑏𝑛𝑡, 𝑐𝑛𝑡)}, where 𝑎 and 𝑏
are input spike trains, 𝑐 is the respective output spike
train of 𝑎 and 𝑏, and 𝑛𝑡 is a user selected number. After
the simulation for each pair of input spike trains 𝑎 and
𝑏, each chromosome will have a an output spike train
𝑐′𝑖 where 1 < 𝑖 < 𝑝𝑠𝑖𝑧𝑒. These output spike trains 𝑐′𝑖
will be compared to their respective 𝑐𝑖 using a string
matching method 𝑓 . Using 𝑓 , we can obtain a 𝑠𝑐𝑜𝑟𝑒.
For every member of the population, the average of the
𝑠𝑐𝑜𝑟𝑒𝑠 for all output spike trains will be computed. This
average will be taken as the fitness of the chromosome.
For this work, the string matching method used will
be Longest Common Substring or LCS. LCS finds the
longest spiketrain substring common to both 𝑐𝑖 and 𝑐′𝑖.
This method ensures that whenever we find a 100%
match, then it means there exists a substring in 𝑐′𝑖 that
is exactly 𝑐𝑖.

Selection

After obtaining the population 𝑃 fitness scores, we are
now going to the process of selecting parents that will

later undergo crossover. For this work, we used two
selection methods based from [5]:

(1) Fitness Proportionate: Computes the sum of fit-
ness scores of all chromosomes in the population
and pseudo-randomly chooses a number between 0
and this sum. Then, for each chromosome in the
population, add it’s fitness to a partial sum until
the partial sum exceeds the chosen number. The
chromosome whose fitness score makes the partial
sum exceed the chosen number is selected as a
parent.

(2) Tournament Selection: Pseudo-randomly chooses
2 parents and an integer from 1 to 100. If the
chosen integer is higher than the threshold set by
the user, the chromosome with the higher fitness
is selected, else, the chromosome with the lower
fitness is selected as a parent for crossover.

These selection methods are used to introduce variety
into the population while still attempting to select fit
chromosomes as parents. This aids in avoiding reaching
local maxima for fitness of chromosomes.

Crossover

After the selection process, the parent chromosomes
are paired and a crossover is performed for each pair.
A neuron is pseudo-randomly selected from both each
parent chromosome and the following crossover processes
may be performed:

(1) Rule Swap: All rules for each selected neuron will
be removed and then added to the other neuron.

(2) Synapse Swap: All outgoing synapses of each se-
lected neuron will be removed and then added to
the other neuron. The receiving neurons of these
synapses will remain the same.

Either of the two or both swaps may take place and
is pseudo-randomly chosen based on thresholds set by
the user.

Mutation

The child chromosomes from the crossover has a chance
to be selected for mutation depending on the mutation
rate parameter set by the user. If a child chromosome
is selected, it will undergo mutation which contains the
following operations:

(1) Rule Removal: Removes an existing rule from the
system.

(2) Rule Addition: Adds a new rule that doesn’t exist
yet in the system.

(3) Rule Replace: Replaces an existing rule in the
system with a new rule. A check is implemented

16



Evolving Spiking Neural P Systems with Polarization

to make sure the the newly created rule will not
be the same with the replaced rule.

(4) Synapse Removal: Removes an existing synapses
in the system.

(5) Synapse Addition: Add a synapse that doesn’t exist
yet in the system.

(6) Synapse Replace: Replaces the receiving neuron of
the synapse of a neuron in the system.

A child chromosome who is selected for mutation
will be pseudo-randomly determined whether it will un-
dergo a rule mutation, synapse mutation, or combina-
tion of both. It will also be pseudo-randomly determined
whether a removal, addition, or replacement will take
place for the selected mutation. The parameters for mu-
tation such as elements of the rules and the neuron
containing the rule, or the sending and receiving neu-
rons are all pseudo-randomly selected. In the case where
the selected mutation cannot be performed, the genetic
algorithm will reattempt to mutate but with different
parameters. Several failed attempts to mutate will result
to a reattempt pseudo-randomly choosing the mutation
type. Continuous failed reattempts with different muta-
tion types will leave the chromosome unchanged. The
number of reattempts is set by the user.

PSN P Validation

Each PSN P chromosome is checked whether it is valid
or not. A PSN P chromosome is valid if there is a path
from each input neuron to the output neuron. This check
is performed, after the crossover or a mutation if the
chromosome is selected for mutation. If the chromosome
is invalid, the mutation and crossover is reverted, and
will be performed again.

7 EXPERIMENTS

Input Design

The genetic algorithm will accept an initial PSN P Π𝑖𝑛𝑖𝑡
as an input used to create a population. For this study,
there are three (3) categories of initial PSN P designed
to test the genetic algorithm, namely: Perfect, Extra,
Mutated. These were designed to contain extra or modi-
fied neurons, rules, and synapses on a PSN P that will
approximate a bitwise AND and bitwise OR operation.
Through this, we can check if the algorithm will be able
to obtain a PSN P chromosome that can approximate
the functions by adding, removing, or replacing rules
and synapses.

Perfect category. This category of PSN P system input
is determined by the authors to be one of the smallest
PSN P systems that can approximate a bitwise OR and
bitwise AND operations. By using this as input in the

Perfect AND
10% 20% 30%

Experiment 1 99 100 100
Experiment 2 99 100 100
Experiment 3 99 100 100

Table 2: Perfect AND Experiment for Tournament
Selection and Fitness Proportionate

Extra AND
10% 20% 30%

Experiment 1 53 59 100
Experiment 2 53 56 59
Experiment 3 58 55 56

Table 3: Extra AND Experiment - Tournament Se-
lection

genetic algorithm, the initial population would contain
one or two changes from the considered smallest PSN P
for the specified operations.

Extra category. This category of PSN P system is hand-
made by the authors to contain a few extra neurons from
the Perfect category of PSN P system input. This aids
in checking if the PSN P is able to obtain the Perfect
category PSN P system by disconnecting the extra neu-
rons through removing or replacing rules and synapses
of these extra neurons.

Mutated category. This category of PSN P system is
generated by repeatedly running the Perfect category
PSN P system through the Mutation function in 6. The
final output after several mutation iterations is the PSN
P to be used as the input for the genetic algorithm.

Experiment Setup

Experiment sources (e.g. codes, test files) are available
from the corresponding author upon request. For each
PSN P category and operation, six (6) types of exper-
iments is performed. Three (3) of these is using Tour-
nament selection and the other three (3) uses Fitness
Proportionate type of parent selection. These three (3)
for both types of selections vary in mutation rate: 10%,
20%, and 30% mutation rate. Each experiment is run
three (3) times in this work to be able to grasp certain
trends or outliers in the duration of the experiment. This
amounts to a total one hundred and eighteen (118) tests,
each of which is a single run of the genetic algorithm.
In Section A of the Appendix we list the parameters we
used in this work.

17



Juico and Silapan, et al.

Extra AND
10% 20% 30%

Experiment 1 55 53 56
Experiment 2 54 57 60
Experiment 3 55 61 85

Table 4: Extra AND Experiment - Fitness Propor-
tionate

Mutated AND
10% 20% 30%

Experiment 1 60 64 58
Experiment 2 61 65 58
Experiment 3 63 69 58

Table 5: Mutated AND Experiment - Tournament
Selection

Mutated AND
10% 20% 30%

Experiment 1 61 65 58
Experiment 2 54 69 59
Experiment 3 59 65 58

Table 6: Mutated AND Experiment - Fitness Pro-
portionate

Perfect OR
10% 20% 30%

Experiment 1 100 100 100
Experiment 2 100 100 100
Experiment 3 100 100 100

Table 7: Perfect OR Experiment for Tournament Se-
lection and Fitness Proportionate

8 ANALYSIS AND DISCUSSION

For the Perfect OR and AND, after 100 generations,
the PSN P keeps a hundred fitness and always have
equal resources as the initial PSN P. This result is to be
expected because chromosomes in the populations used
for this category are close to Perfect PSN P system for
computing bitwise Or and And operations as stated in
Section 7.
As we can see in Table 8, the average fitness across

all experiments of Extra OR are 100. This is due to the
initial population having the Perfect OR in it’s subgraph.
And if we look at Figure 17, the GA framework is able
to remove unnecessary neurons and arrive at the Perfect
OR PSNP.

Extra OR
10% 20% 30%

Experiment 1 100 100 100
Experiment 2 100 100 100
Experiment 3 100 100 100

Table 8: Extra OR Experiment for Tournament Se-
lection and Fitness Proportionate

Mutated OR
10% 20% 30%

Experiment 1 39 45 41
Experiment 2 37 40 44
Experiment 3 37 22 40

Table 9: Mutated OR Experiment - Tournament Se-
lection

Mutated OR
10% 20% 30%

Experiment 1 26 49 32
Experiment 2 39 40 41
Experiment 3 26 52 41

Table 10: Mutated OR Experiment - Fitness Propor-
tionate

For Extra AND, as we can see from Table 3 and
Table 4, across all experiments, no experiment has an
average fitness of the highest reach 100. But in one
test in Experiment 1 with 30% mutation rate, the GA
framework manages to at least get one 100% fitness
Extra AND PSN P system. We can see the only 100%
fitness PSN P system in all of the experiments for Extra
AND in Figure 15, the unnecessary neurons was removed
leading to the Perfect AND PSN P.
Mutated OR didn’t succeed in yielding significant

output. Across all experiments, the highest fitness the
GA framework achieved is 45. As we can see here in
Figure 18, the GA framework managed to put rules in
the neurons that does not have on during the initial but
it failed to remove the extra synapses.

Same with problem in mutated OR, the GA framework
was able to insert new rules to the empty neurons in
initial mutated AND as we can see in Figure 20 but
failed to reduce the synapses.
As mentioned previously, we used the same initial

population for every experiment in each PSN P category.
This would hopefully give us a clue on what selection
method would be better based on our experiments. But
unfortunately, as we can see from the graphs in Figures 5,

18



Evolving Spiking Neural P Systems with Polarization

10% 20% 30%

0

50

100
99 100 10099 100 100

Mutation Rate

A
ve
ra
ge

of
th
e
H
ig
h
es
t
F
it
n
es
s

Perfect AND

Tournament Selection
Fitness Proportionate

Figure 3: Bar graph about the Average of the High-
est Fitness across all experiments in Perfect AND

10% 20% 30%

0

50

100

54.67 56.67

71.66

54.67 57
67

Mutation Rate

A
ve
ra
ge

of
th
e
H
ig
h
es
t
F
it
n
es
s

Extra AND

Tournament Selection
Fitness Proportionate

Figure 4: Bar graph about the Average of the High-
est Fitness across all experiments in Extra AND

3, 6, 8, 7, and 4, there is no visible trend. The results of
the various experiments are too close to each other and
there is little number of tests per category and operation
to determine a certain trend with the selection type.

9 CONCLUSIONS AND FUTURE WORKS

We have used a genetic algorithm to obtain a PSN P
system that would approximate a function from an initial
PSN P system and spike trains input. The resulting
PSN P systems may vary in fitness and may contain
outliers. These aren’t ideal PSN P systems but they

10% 20% 30%

0

50

100
100 100 100100 100 100

Mutation Rate

A
ve
ra
ge

of
th
e
H
ig
h
es
t
F
it
n
es
s

Perfect OR

Tournament Selection
Fitness Proportionate

Figure 5: Bar graph about the Average of the High-
est Fitness across all experiments in Perfect OR

10% 20% 30%

0

50

100

37.67 35.67
41.67

30.33

47
36

Mutation Rate

A
ve
ra
ge

of
th
e
H
ig
h
es
t
F
it
n
es
s
Mutated OR

Tournament Selection
Fitness Proportionate

Figure 6: Bar graph about the Average of the High-
est Fitness across all experiments in Mutated OR

show results which present that the framework created
in this study may be a feasible solution to the problem
in Section 1. While the experiments still have lots of
room for improvement, it introduces a new approach for
transforming PSN P systems for future work.
The mutation used in our GA framework is limited

to the operations in Section 6. Given this, a new oper-
ation such as being able to change the polarization of
neurons can be considered. This could free neurons from
being stuck in the same polarity for longer runs. In line

19



Juico and Silapan, et al.

10% 20% 30%

0

50

100
100 100 100100 100 100

Mutation Rate

A
ve
ra
ge

of
th
e
H
ig
h
es
t
F
it
n
es
s

Extra OR

Tournament Selection
Fitness Proportionate

Figure 7: Bar graph about the Average of the High-
est Fitness across all experiments in Extra OR

10% 20% 30%

0

50

100

61.33 66
5858

66.33
58.33

Mutation Rate

A
ve
ra
ge

of
th
e
H
ig
h
es
t
F
it
n
es
s

Mutated AND

Tournament Selection
Fitness Proportionate

Figure 8: Bar graph about the Average of the High-
est Fitness across all experiments in Mutated AND

with this, other semantics of polarity evaluation can be
explored.

Additional factors like number of inactive and discon-
nected neurons from the work of [2] could be included
in fitness calculation.

Other methods for parents selection can be considered
that can help add variety to the population. Moreover,a
different parent crossover mechanism could be used to
improve off-springs.

REFERENCES

[1] Jym Paul Carandang, John Matthew B Villaflores, Francis
George C Cabarle, Henry N Adorna, and MA Martınezdel-

Amor. 2017. CuSNP: Spiking neural P systems simulators

in CUDA. Romanian Journal of Information Science and
Technology 20, 1 (2017), 57–70.

[2] Lovely Joy Casauay, Ivan Cedric H Macababayao, Francis

George C Cabarle, Ren Tristan A de la Cruz, Henry N Adorna,

Xiangxiang Zeng, and Miguel Ángel Martinez-del Amor. 2019.

A Framework for Evolving Spiking Neural P Systems. In
ACMC2019: The International Conference on Membrane Com-

puting (Asian Branch). (in press) International Journal of

Unconventional Computing, Old City Publishing.
[3] TT Chow, GQ Zhang, Z Lin, and CL Song. 2002. Global

optimization of absorption chiller system by genetic algorithm

and neural network. Energy and buildings 34, 1 (2002), 103–
109.

[4] Mihai Ionescu, Gheorghe Păun, and Takashi Yokomori. 2006.
Spiking neural P systems. Fundamenta informaticae 71, 2, 3

(2006), 279–308.

[5] Melanie Mitchell. 1998. An introduction to genetic algorithms.
MIT press.

[6] David J Montana and Lawrence Davis. 1989. Training Feedfor-

ward Neural Networks Using Genetic Algorithms.. In IJCAI,
Vol. 89. 762–767.

[7] Gheorghe Paun. 2012. Membrane computing: an introduction.

Springer Science & Business Media.
[8] Gheorghe Paun, Tingfang Wu, and Zhiqiang Zhang. 2016. Open

Problems, Research Topics, Recent Results on Numerical and

Spiking Neural P Systems (The” Curtea de Arge s 2015 Se-
ries”). BWMC 2016: 14th Brainstorming Week on Membrane

Computing: Sevilla, ETS de Ingenieŕıa Informática, February
1-5 (2016), p 285-300 (2016), 285–300.

[9] Tingfang Wu, Andrei Păun, Zhiqiang Zhang, and Linqiang

Pan. 2017. Spiking neural P systems with polarizations. IEEE
transactions on neural networks and learning systems (2017).

20


	PCJ-PSystem-2019_Vol14No2

