
Evaluating Language Model Finetuning Techniques for
Low-Resource Languages

Jan Christian Blaise Cruz
Center for Language Technologies

College of Computer Studies
De La Salle University, Manila

jan_christian_cruz@dlsu.edu.ph

Charibeth Cheng
Center for Language Technologies

College of Computer Studies
De La Salle University, Manila

charibeth.cheng@dlsu.edu.ph

ABSTRACT
Unlike mainstream languages (such as English and French), low-
resource languages often suffer from a lack of expert-annotated
corpora and benchmark resources that make it hard to apply state-of-
the-art techniques directly. In this paper, we alleviate this scarcity
problem for the low-resourced Filipino language in two ways. First,
we introduce a new benchmark language modeling dataset in Fil-
ipino which we call WikiText-TL-39. Second, we show that lan-
guage model finetuning techniques such as BERT and ULMFiT
can be used to consistently train robust classifiers in low-resource
settings, experiencing at most a 0.0782 increase in validation error
when the number of training examples is decreased from 10K to 1K
while finetuning using a privately-held sentiment dataset.

1. INTRODUCTION
The use of neural networks in Natural Language Processing (NLP)
has achieved great successes in multiple areas such as language
modeling [9]. machine translation [14, 2], and multitask learning
[11, 8].

While effective, neural network methods are data-hungry and do
not operate well in data scarce settings such as with low-resource
languages [15]. In addition, such languages may also not have
readily-available resources found in mainstream languages such as
pretrained word embeddings and expert-annotated corpora [1].

This data scarcity problem is best met with the construction of
properly annotated corpora for such tasks, however such annotation
work is cost-prohibitive and time-consuming [4]. Techniques must
be developed to address the low-resource case in NLP and allow
robust models to be trained despite data scarcity [4].

Transfer learning provides one way to offset this data scarcity prob-
lem, allowing models to be pretrained then suibsequently finetuned
on a smaller dataset, reducing not only the resource requiremens, but
also the compute and time requirements to achieve a robust model
[6].

In this paper, we provide two contributions: first, we release the

first open, large-scale preprocessed unlabeled text corpora in the
low-resource Filipino language which we call “WikiText-TL-39.”
Second, we show that transfer learning techniques such as BERT
[5] and ULMFiT [6] can be used to train robust classifiers in low-
resource settings, experiencing at most a 0.0782 increase in error
when the number of training examples is reduced from 10K to 1K.

We open source all pretrained models and datasets in an open, public
repository1.

2. METHODOLOGY
Our evaluation methodology is as follows: First, we construct a
large-scale unlabeled text corpora to train pretrained language mod-
els to transfer from. Second, we evaluate transfer learning perfor-
mance on a privately held sentiment dataset. We will then steadily
decrease the number of training examples and study the changes on
validation accuracy.

We use two transfer learning techniques, namely BERT [5] and [6].

2.1 ULMFiT
ULMFiT [6] was introduced as a transfer learning method for Natu-
ral Language Processing that works akin to ImageNet [12] pretrain-
ing in Computer Vision.

It uses an AWD-LSTM [10] pretrained on a language modeling
objective as a base model, which is then finetuned to a downstream
task in two steps.

First, the language model is finetuned to the text of the target task to
adapt to it syntactically. Second, a classification layer is appended
to the model and is finetuned to the classification task conservatively.
During finetuning, multiple different techniques are introduced to
prevent catastrophic forgetting, wherein the model loses most (if not
all) information and relations it has learned during the pretraining
stage.

ULMFiT holds state-of-the-art for text classification, and is notable
for being able to set comparable scores with as little as 1000 samples
of data which makes it attractive for use in low-resource settings.

An overview schematic of ULMFiT can be found in figure 2.

2.2 BERT
BERT is a transformer-based [14] language model that is designed
to pretrain “deep bidirectional representations” that can be finetuned
1https://github.com/jcblaisecruz02/Filipino-Text-Benchmarks

1



Figure 1. Overall ULMFiT pretraining and finetuning framework. An AWD-LSTM [10]
is pretrained on a language modeling task. The weights are then reused with no modifications to the architecture. For finetuning, the model is
first finetuned, again using language modeling, this time to the text of the target dataset to adapt to its own vocabulary and idiosyncracies.
Lastly, a “classification layer” is added to the model and is finetuned for text classification. Adapted from [6].

to different tasks, with state-of-the-art results achieved in multiple
benchmarks [5].

BERT’s power comes from Attention, a mechanism that allows a
network to give more weight to certain tokens in a sequence, essen-
tially “paying more attention to important parts” [14]. Precisely, we
compute attention on a set of queries packed as a matrix Q on key
and value matrices K and V , respectively, as:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

where dk is the dimensions of the key matrix K. Attention allows
BERT to model not only sequences, but also the importance and
weight of each token in a sequence with respect to other sequences,
as well as itself.

In addition to leveraging Attention, it uses the Transformer [14]
architecture, to where BERT gains its bidirectionality. Transformers
are sequence models that do not use recurrent layers, instead leverag-
ing only feed-forward layers and attention mechanisms. The disuse
of recurrences provide two advantages: First, it allows transformers
to be parallelized as they are not sequential in nature unlike LSTMs
or GRUs. Second, they allow batches of text to be seen at once,
again due to its unsequential nature, which also in turn allows it to
leverage attention mechanisms and be bidirectional.

BERT is unique that it uses modified tasks for pretraining. Given
that its bidirectionality gives it access to left-context, the model
would be able to “peek” directly at the next words when following
a standard language modeling task. To alleviate this, the authors
propose the use of “masked-language modeling,” which masks a
number of words in the sentence with the model tasked to identify
them [5]. In addition, a second pretraining task called “next-sentence
prediction” was added to enforce stronger relationships between two
sentences. In this task, a target sentence is identified if it is likely to
precede a source sentence [5].

In addition to these augmentations, BERT also benefits from being
deep, allowing it to capture more context and information. BERT-

Base, the smallest BERT model, has 12 layers (768 units in each
hidden layer) and 12 attention heads for a total of 110M parameters.
Its larger sibling, BERT-Large, has 24 layers (1024 units in each
hidden layer) and 16 attention heads for a total of 340M parameters.

An overview schematic of BERT can be found in figure 2.

3. WIKITEXT-TL
A difficulty in adapting pretraining methods to low-resource lan-
guages is the lack of processed datasets large enough to train robust
pretrained models. Inspired by the original WikiText Long Term
Dependency Language Modeling Dataset [9], we introduce a bench-
mark dataset which we call WikiText-TL-39, where “TL” stands for
Tagalog and “39” refers to the dataset having 39 million tokens in
the training set. The corpus statistics for WikiText-TL-39 is shown
on table 1.

3.1 Construction and Pre-processing
Since Tagalog Wikipedia does not have a list of verified “good”
articles [9] and has far fewer content pages unlike its English coun-
terpart (5,800,000 in English vs. 75,000), we opted to instead scrape
the content from all the listed pages in the Tagalog Wikipedia table
of contents2, narrowing down to just articles with titles that start
with letters A-Z. Content was extracted using open-source Python
packages Requests3 and BeautifulSoup4.

All characters were normalized into unicode and all HTML markup
were unescaped. Normalization and tokenization were performed
via the Moses Tokenizer [7]. We split the corpus into training,
validation, and test sets with a ratio of 70%-15%-15%, respectively.
When constructing the vocabulary, we opted to not discard words
that had a vocabulary count of less than 3, unlike in [3]. This resulted
in a vocabulary size of 279,153 tokens. We replace all tokens in the
test set unseen in the training set with special <unk>tokens.

2https://tl.wikipedia.org/wiki/Natatangi:Lahat_ng_mga_pahina
3https://pypi.org/project/requests/
4https://pypi.org/project/beautifulsoup4/

2



Figure 2. Overall BERT pretraining and finetuning framework. Note that the same architecture in pretraining is also used in finetuning with
little-to-no modification in structure. After masked-language model and next-sentence prediction is pretrained, we transfer the weights of the
model to downstream tasks, with question answering and entailment shown in this example. Adapted from [5].

Split Documents Tokens Unique Tokens Num. of Lines
Training 120,975 39,267,089 279,153 1,403,147
Validation 25,919 8,356,898 164,159 304,006
Testing 25,921 8,333,288 175,999 298,974
OOV Tokens 28,469 (0.1020%)

Table 1: Statistics for the WikiText-TL-39 Dataset.

3.2 Model-specific Pre-processing
Pretraining with BERT requires a trained WordPiece vocabulary. We
opted to use the Byte-Pair Encoding (BPE) [13] model in Google’s
SentencePiece5 library to train our own vocabulary as Google did not
release the original WordPiece code due to it having dependencies
with their own internal libraries.

We experiment with two fixed vocabulary sizes in pretraining BERT.
We generate a vocabulary with 290,000 tokens, following the origi-
nal vocabulary size of the dataset. We also generate a vocabulary
with a fixed size of 30,000 tokens, following the original specifica-
tions of Google’s own pretrained English BERT models6.

For use in ULMFiT, we followed a light preprocessing scheme that
involves converting all words to lowercase, with a special <maj
>token added in front of words that originally start with a capital
letter. We likewise change all unknown words to the <unk >token,
and limit the vocabulary to the top 30K words.

4. EXPERIMENTS
4.1 BERT Pretraining
We pretrain BERT Base models with 12 layers, 768 neurons per
hidden layer, and 12 attention heads (a total of about 110M parame-
ters) on our prepared corpus and SentencePiece vocaularies using
Google’s provided pretraining scripts7.

We experiment by varying the casing (cased and uncased models),
the vocabulary size (full 290K vs 30K), and the number of training
5https://github.com/google/sentencepiece
6https://github.com/google-research/bert
7https://github.com/google-research/bert

and warmup steps (1M steps with 10K warmups and 500K steps
with 5K warmups).

For the masked language model pretraining objective, we follow the
original specifications and use a 0.15 probability of a word being
masked. We also set the maximum number of masked language
model predictions to the original 20. We use a batch size of 256 and
a learning rate of 1e-4 for all models.

All models are pretrained on Google Cloud Compute Engine using
Google’s Tensor Processing Units (TPU) versions 2.8 and 3.8.

4.2 AWD-LSTM Pretraining
For ULMFiT, we train an AWD-LSTM language model using our
prepared corpus. We train a 3-layer model and use an embedding
size of 400 and a hidden size of 1150. We set the dropout values for
the embedding, the RNN input, the hidden-to-hidden transition, and
the RNN output to (0.1, 0.3, 0.3, 0.4) respectively. We use a weight
dropout of 0.5 on the LSTM’s recurrent weight matrices.

The model was trained for 30 epochs with a learning rate of 1e-3,
a batch size of 128, and a weight decay of 0.1. We use the Adam
optimizer and use slanted triangular learning rate schedules. We
train the model on a machine with one NVIDIA Tesla V100 GPU.

4.3 Sentiment Classification Task
We finetune on a privately held sentiment classification dataset
containing 10K positive and 10K negative reviews on electronic
products.

To simulate low-resource settings, we randomly sample splits from

3



the original dataset: a full 10K-10K split of positive and negative
reviews, a 5K-5K split, a 1K-1K split, and a 100-100 split. For both
BERT and ULMFiT, we finetune the pretrained models to each split
to evaluate performance given the scarcity of data.

To evaluate the performance, we use a validation set of 1500 positive
and 1500 negative reviews from the same source. For each split,
we use the same validation split without reducing it. This ensures
consistency when evaluating the changes in validation accuracy
once the number of training examples is reduced.

The dataset is lightly preprocessed using the Moses tokenizer [7],
keeping casing and placing spaces around punctuation. Contractions
with an apostrophe (ie. cannot → can’t) are not given special tokens
nor are preprocessed further as such contractions are rare in Filipino.

4.4 Finetuning
For BERT, we finetune our best cased and uncased BERT models
on each sentiment classification split. For each finetuning setup,
we finetune for 3 epochs with a learning rate of 2e-5. We use a
maximum sequence length of 128 and a batch size of 32.

For ULMFiT, we finetune our pretrained AWD-LSTM language on
each of the sentiment classification splits. We first perform language
model finetuning with the sentiment classification dataset for 10
epochs, using a learning rate 1e-2. For the original 10k-10k split,
we use weight decay of 0.1 and a batch size of 80, and for all other
splits we use weight decay of 0.3 and a batch size of 40. We use this
final language model to finetune a sentiment classification model in
the final stage of ULMFiT.

For the final ULMFiT stage, we finetune via gradual unfreezing. We
finetune for five epochs, gradually unfreezing the last layer until all
layers are unfrozen on the fourth epoch. We use a learning rate of
1e-3 and set Adam’s α and β parameters to 0.8 and 0.7 respectively.

We then evaluate on a fixed validation set and record changes in the
model performance.

5. RESULTS AND DISCUSSION
5.1 Pretraining Results
For BERT pretraining, we were able to train eight models, varying
across vocabulary size, casing, and pretraining steps. Our best un-
cased model (reach- ing a final loss of 0.0935) was trained for 500K
steps with 5K steps of finetuning on the smaller 30K SentencePiece
vocabulary. The best cased model (reaching a final loss of 0.0642),
on the other hand, needed 1M pretraining steps with 10K warmup
steps on the same 30K SentencePiece vo- cabulary. We surmise
that this is due to the model needing more steps to learn and get
accustomed to casing.

The full results of BERT pretraining can be found on Table 2.

For ULMFiT, our AWD-LSTM language model reached a final
validation loss of 4.4857 (which equals to 1.5009 perplexity). The
model finished training for 30 epochs after around 11 hours.

5.2 Finetuning Results
For BERT finetuning, the uncased model performed marginally
better than the cased model with a 0.006 increase in accuracy when
finetuning on the original 10K-10K split. We can see that when we
reduce the training examples from 10K to 1K, we incur at most a

0.0617 increase of error in the cased models, and a 0.0954 increase
of error in the uncased models. The error significantly increases
once the number of training examples drop to the 100-100 split,
with an increase of 0.1484 error in the cased model, and an increase
of 0.2554 error in the uncased model.

When evaluating on the validation set of the original 10K-10K split,
we can see similar results as with evaluating on the validation set
of each respective split. For the cased models, we only incur a
0.038 increase of error when finetuning on the 1K-1K split, and a
0.23 increase of error when finetuning on the 100-100 split. For the
uncased models, we get a 0.0437 and 0.248 increase of error on the
1K-1K split and 100-100 split, respectively.

The full results of BERT finetuning can be found on table 3.

For ULMFiT finetuning, our best model was unsurprisingly the
one finetuned on the entire 10K-10K split, getting a final validation
accuracy of 0.9018. Reducing the number of examples down to the
1K-1K split incurred only a 0.0835 increase in error. On the 100-100
split, on the other hand, we can see that the error increased by a
very large margin of 0.4628, reducing the accuracy from 0.9018 to
0.4390.

Like in the BERT finetuning setups, we can see that the finetuned
classifiers give consistently robust results even when evaluated on
the larger 10K-10K split validation set. We can see that reducing the
examples down to the 1K-1K split increases error by 0.0782, com-
parable to evaluating on the 1K-1K split’s validation set. Likewise,
we suffer a large increase in error of 0.4114 when evaluating on the
100-100 split.

The full results of ULMFiT finetuning can be found on table 3.

5.3 Discussion
We can see that language model pretraining can aid in low-resource
settings as empirically shown in the experiments above. The fine-
tuned models were shown perform consistently even when the num-
ber of training examples were reduced by evaluating on the same
validation set.

ULMFiT performed marginally better than BERT (a difference
of 0.0201) when finetuned on the full dataset. ULMFiT has the
advantage that it requires less computational power and resources
to effectively train end-to-end. An AWD-LSTM language model
can be trained in a relatively-modern GPU and can be finetuned
with relative speed to BERT. This makes ULMFiT ideal in most
low-resource cases when pretrained models are unavailable as it is
cheaper to produce AWD-LSTM language models than pretrained
BERT models.

On the other hand, it is worth to note that BERT performed more
consistently on average than ULMFiT. BERT experienced a lower
error increase on average compared to ULMFiT, with BERT-Cased,
BERT-Uncased, and ULMFiT experiencing an average validation
error increase of 0.0719, 0.1201, and 0.1840, respectively. BERT is
also more resilient to drastic reduction in training examples. When
reducing the splits from 1K-1K to 100-100, BERT (evaluated on the
full 10K-10K split validation set) experienced an increase of error
by 0.192 on the cased models and 0.2043 on the uncased models.
ULMFiT, on the other hand, experienced an error increase of 0.3332.

BERT also has the advantage of being bidirectional, which allows

4



Steps / Warmup Casing Vocab Size Loss MLM Acc NSP Acc Train Time
500K / 5K Cased 290K 0.3198 0.9158 0.9950 22H
500K / 5K Cased 30K 0.1046 0.9865 1.0000 33H
500K / 5K Uncased 290K 0.3396 0.9176 0.9986 24H
500K / 5K Uncased 30K 0.0935 0.9862 1.0000 33H
1M / 10K Cased 290K 0.1607 0.9563 0.9988 44H
1M / 10K Cased 30K 0.0642 0.9971 1.0000 66H
1M / 10K Uncased 290K 0.0716 0.9965 1.0000 168H
1M / 10K Uncased 30K 0.2600 0.9426 1.0000 22H

Table 2: BERT Pretraining Results. MLM Acc refers to Masked Language Modeling objective accuracy. NSP Acc refers to Next Sentence
Prediction objective accuracy. Figures in bold pertain to the best performing cased and uncased models.

Model Type Splits Val Loss Val Acc 10K Val Acc Err Increase 10K Err Increase
BERT-Cased 10k-10k 0.3492 0.8817 - - -
BERT-Cased 5k-5k 0.3841 0.8760 0.8976 +0.0057 -0.0159*
BERT-Cased 1k-1k 0.4746 0.8200 0.8437 +0.0617 +0.0380
BERT-Cased 100-100 0.6122 0.7333 0.6517 +0.1484 +0.2300

BERT-Uncased 10k-10k 0.3401 0.8887 - - -
BERT-Uncased 5k-5k 0.3727 0.8793 0.8970 +0.0094 -0.0083*
BERT-Uncased 1k-1k 0.5667 0.7933 0.8450 +0.0954 +0.0437
BERT-Uncased 100-100 0.6606 0.6333 0.6407 +0.2554 +0.2480

ULMFiT 10k-10k 0.2496 0.9018 - - -
ULMFiT 5k-5k 0.2489 0.8961 0.8887 +0.0057 +0.0194
ULMFiT 1k-1k 0.4193 0.8183 0.8236 +0.0835 +0.0782
ULMFiT 100-100 0.7020 0.4390 0.4904 +0.4628 +0.4114

Table 3: Finetuning Results. 10K Val Acc refers to validation accuracy when evaluating on the validation set of the original 10K-10K split.
Err Increase refers to the increase in error when number of training examples were reduced to a particular split. 10K Err Increase refers to the
increase in error when evaluating on the original 10K-10K split validation set once training examples are reduced. * pertains to instances when
the 10K Val Acc is higher than the Val Acc of a particular split.

it to look at both left and right context as needed, compared to
ULMFiT, where the AWD-LSTM language model only used left
context. BERT is also significantly more deep than ULMFiT’s
AWD-LSTM, with BERT-Base having 12 layers and 12 attention
heads as opposed to an AWD-LSTM’s 3 layers. This allows it to
learn more complex relationships within the data.

While the advantages of the much-larger BERT are evident, it is
important to note that it requires compute resources orders of magni-
tude greater than needed when training an AWD-LSTM. Pretraining
BERT requires at least a TPU in order to meet the memory require-
ments. It also takes much longer to train than an AWD-LSTM. The
pretrained models in this work are all BERT-Base models, using
one whole TPU in order to train and at least a little over a day to
achieve robust results. Larger datasets and model configurations
would naturally require more time and memory. This makes scal-
ing up to BERT-Large hard. The original BERT implementation
used 4 cloud TPUs for BERT-Base and 16 TPUs for BERT-Large.
Finetuning BERT likewise has sizeable memory requirements, with
BERT-Base requiring at least a modest-to-high-end GPU. BERT-
Large will have a difficulty in GPU-finetuning8, requiring the use of
gradient accumulation and other techniques to simulate larger batch
sizes as small batch sizes will hurt finetuning performance. While
powerful, the resources needed to use BERT make it restrictive.

6. CONCLUSION
We show that language model finetuning methods aid in low-resource
settings, especially when the number of expert-annotated examples
is scarce.

8https://github.com/google-research/bert#out-of-memory-issues

Language model pretraining offers two advantages: first, performing
pretraining only requires unlabeled text corpora, which is virtually
abundant even in low-resource settings. Second, once pretraining is
done, finetuning is inexpensive and can be performed multiple times
on the same pretrained model. This allows researchers to use only a
fraction of resources to create robust baselines even in low-resource
settings.

Choosing the finetuning technique involves a cost-consistency trade-
off. We propose the use of ULMFiT as a general-case finetuning-
based baseline as it’s pretraining step is relatively less expensive than
BERT. While BERT is powerful, it’s compute and memory require-
ments make it restrictive, and should only be used if a pretrained
model exists or if the resources available permit it’s use.

Acknowledgments
The authors would like to thank the TensorFlow Research Cloud
(TFRC) program, which allowed the pretraining of BERT models
more accessible.

7. REFERENCES
[1] O. Adams, A. Makarucha, G. Neubig, S. Bird, and T. Coh.

(2017). Cross-Lingual Word Embeddings for Low-Resource
Language Modeling. Proceedings of the 15th Conference of
the European Chapter of the Association for Computational
Linguistics: Volume 1, Long Papers, 937–947.

[2] D. Bahdanau, K. Cho, and Y. Bengio. (2014). Neural machine
translation by jointly learning to align and translate, arXiv
preprint arXiv:1409.0473.

[3] C. Chelba, T. Mikolov, M. Schuster, Q. Ge, T. Brants and
Phillipp Koehn. (2013). One Billion Word Benchmark for

5



Measuring Progress in Statistical Language Modeling. CoRR,
abs/1312.3005.

[4] R. Cotterell and K. Duh. (2017). Low-Resource Named Entity
Recognition with Cross-lingual, Character-Level Neural
Conditional Random Fields. In: Proceedings of the Eighth
International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), Asian Federation of
Natural Language Processing, Taipei, Taiwan, 91–96

[5] J. Devlin, M.W. Chang, K. Lee, and K. Toutanova. (2018).
Bert: Pre-training of deep bidirectional transformers for
language understanding. arXiv preprint arXiv:1810.04805.

[6] J. Howard and S. Ruder. (2018). Universal Language Model
Fine-tuning for Text Classification. In: Proceedings of the 56th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), 328–339.

[7] P. Koehn, H. Hoang, A. Birch, C. Callison-Burch, M.
Federico, N. Bertoldi, B. Cowan, W. Shen, C. Moran, R. Zens,
C. Dyer, O. Bojar, A. Constantin and E. Herbst. (2007).
Moses: Open Source Toolkit for Statistical Machine
Translation. In: Proceedings of the 45th Annual Meeting of
the ACL on Interactive Poster and Demonstration Sessions,
177–180.

[8] B. McCann, N.S. Keskar, C. Xiong and R. Socher. (2018).
The natural language decathlon: Multitask learning as
question answering. arXiv preprint arXiv:1806.08730.

[9] S. Merity, C. Xiong, J. Bradbury, and R. Socher. (2016).
Pointer Sentinel Mixture Models. CoRR, abs/1609.07843.

[10] S. Merity, N.S. Keskar, and R. Socher. (2017). Regularizing
and Optimizing LSTM Language Models. arXiv preprint
arXiv:1708.02182.

[11] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I.
Sutskever. (2019). Language models are unsupervised
multitask learners, OpenAI Blog, 1(8).

[12] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S.
Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. Berg,
and L. Fei-Fei. (2015). ImageNet Large Scale Visual
Recognition Challenge. Intl J, Comp. Vis., 115(3), 211–252.

[13] R. Sennrich, H. Barry, and A. Birch. (2016). Neural Machine
Translation of Rare Words with Subword Units. In:
Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers),
1715–1725.

[14] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.
Gomez, L. Kaiser, and I. Polosukhin. (2017). Attention is all
you need, In Advances in neural information processing
systems, 5998–6008.

[15] B. Zoph, D. Yuret, J. May, and K. Knight.(2016). Transfer
Learning for Low-Resource Neural Machine Translation.
Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing, 1568–1575.

6


