
Solving the Subset Sum Problem Using Distributed
Tissue-like P Systems with Cell Division

Justin Granda and Samuel Jose and Kelvin Cui Buño
Department of Computer Science (Algortihms & Complexity)

University of the Philippines Diliman
Diliman 1101 Quezon City, Philippines

justingranda@gmail.com,gsamueljose@gmail.com,kcbuno@up.edu.ph

ABSTRACT
The Subset Sum Problem is a decision problem where given
a multiset of integers, a decision must be made on whether
a subset of said set can be found where the sum of its el-
ements is equal to a target value, or not. This problem is
NP-Complete. Membrane computing is one of the ways used
to approach these problems, using a computing model com-
monly referred to as P systems. In this work, we solve the
Subset Sum Problem using dP systems where the components
are tissue P systems with cell division. The 2-component so-
lution proposed can generate candidate solutions twice as fast,
as compared to the non-distributed solution it was based on.
However, computation time is increased with respect to the
target sum. Communication costs are analyzed and measured.
KEYWORDS: Membrane computing; dP systems; dP schemes;
Tissue P systems; Subset-sum problem

1 INTRODUCTION
Membrane computing, as initiated in [10], involves the use
of computational models that are inspired by biological struc-
tures and processes. These models are commonly referred to
as P systems. This type of system usually follows a membrane
structure where each membrane can contain objects, rules,
and even other membranes. P systems are able to carry out
computations by moving objects around the membranes with
the use of evolution rules, and when a halting configuration
is reached, the output is read from a predetermined output re-
gion. There are several variants of P systems, each with their
own advantages and disadvantages in approaching different
problems. Some of these variants can be seen in [5, 9, 12].

In tissue P systems, several systems known as "cells" com-
municate with each other through the use of symport/antiport
rules in order to carry out a computation. In addition, the cells
in this system have the ability to perform cell division. In
this process a cell is able to multiply, where each new cell
can be seen as an evolution of the previous cell. This leads
to the possibility to create an exponential number of cells
in linear time, and this space can be used in order to obtain
polynomial-time solutions to computationally hard problems.

There have been several studies shown solving NP-complete
problems with the use of these systems, as seen in [4].

As stated above, tissue P systems with cell division have
been used in creating solutions to NP-complete problems.
One example of an NP-complete problem is the Subset Sum
Problem. The problem involves having a finite set of integers,
and finding its subset whose elements sum up to a specific
value. What makes the Subset Sum Problem computationally
difficult to solve is that as the input set grows, the number
of possible subsets grows exponentially. When provided a
sufficiently large enough input, looking through all candidate
solutions would take an exponential amount of time. Several
solutions to this problem using other types of P systems al-
ready exist as presented in [6, 7], where the solution has been
improved to run in polynomial time.

Described by [13], distributed P systems(also known as dP
systems) approach problems in a distributed manner. dP sys-
tems uses P systems as components, wherein each P system
receives a partition of the input and performs computations
using the inputs given to each of them. In addition to this,
the components often communicate with each other through
the use of certain rules that allow the exchange of objects or
variables. The communication of these components can be
measured in various ways, such as the number of rules used
in a halting computation. Solutions to other NP-complete
problems using dP systems are presented in [1, 2].

In this paper we present our dP system solution to the Sub-
set Sum Problem, where the component P systems are tissue
P systems with cell division. Our proposed solution builds on
the P system solution presented in [3]. Given an input instance
of the Subset Sum Problem, each component system receives
a copy of the target value and a partition of the multiset. An
analysis of the computation time compared to non-distributed
solutions, as well as communication costs, are provided.

The rest of this work is organized as follows. Section 2
defines the terms used in this work. In Section 3, we present
our solution to the Subset Sum Problem. In Section 4, we

4

measure and analyze computation and communication com-
plexity of our solution, and compare it with a non-distributed
solution. Section 5 provides the summary of the findings of
our work and gives some insight on future works.

2 PRELIMINARIES
The reader is assumed to be familiar with the fundamentals
of formal language theory. Let Σ be an alphabet, then Σ∗

denotes the set of all finite length strings over Σ. The number
of symbols in a string 𝑠 is the length of the string, denoted
by |𝑠 |. The empty string will be denoted as _. A multiset 𝑀
over Σ is a mapping from Σ to the set of nonnegative integers.
Multisets are represented using strings over Σ.

DEFINITION 1. [13] Let 𝑃 be a non-empty finite set. A
collection of {𝑃1, . . . , 𝑃𝑛} is called a partition 𝑃 if and only
if for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑖 ≠ 𝑗 , 𝑃𝑖 and 𝑃 𝑗 are disjoint, and⋃𝑛

𝑖=1 𝑃𝑖 = 𝑃 . A partition {𝑃1, 𝑃2, . . . , 𝑃𝑘 } is called a balanced
partition if and only if for all 𝑖, 𝑃𝑖 have the same size or at most
have a difference of 1. Otherwise it is called an unbalanced
partition.

2.1 dP Scheme
In this section, the concept of a dP scheme and the commu-
nication complexity of P system are briefly presented, then
(recognizer) tissue P systems with cell division, as well as
distributed tissue P systems with cell division, are introduced.

DEFINITION 2. A dP scheme of a finite degree 𝑛 ≥ 1 is a
construct of the form [13]:

Δ = (𝑂,Π1, . . . ,Π𝑛, 𝑅),
where:

1. O is an alphabet of objects.
2. Π1, . . . ,Π𝑛 are cell-like P systems with O as the al-

phabet of objects and the skin membranes labeled
with 𝑠1, . . . , 𝑠𝑛 , respectively.

3. R is a finite set of inter-component communication
rules of the form (𝑠𝑖 , 𝑢/𝑣, 𝑠 𝑗), where 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑖 ≠ 𝑗 ,
and 𝑖, 𝑗 ∈ 𝑂∗, with 𝑢𝑣 ≠ _; |𝑢𝑣 | is called the weight
of the rule.

According to [13], the systems Π1, . . . ,Π𝑛 are called the
components of Δ. Each component can take in some input and
perform computations independently. The system accepts if
all components end in a halting computation, that is no more
rules can be applied in all components. Each component can
also communicate symbols with other components as defined
by the rules in R.

Rules are used as usual in the framework of membrane com-
puting, that is, in a maximally parallel way. In one timestep,
each object in a membrane can only be used for one rule (non-
deterministically chosen when there are several possibilities),

but any object which can participate in a rule of any form
must do it, i.e, in each step a maximal set of rules must be
applied.

A dP scheme computes in such a way that all its compo-
nent P systems are aware of the problem they need to solve.
Each component is assigned a partition of the input, and
performs computations using the input given to them. The
components may or may not differ from one another in terms
of membrane structure, rules, and how they process the input.
The concept of component “sameness” or “homogeneity” is
based from homogeneous spiking neural P systems[14]. Ho-
mogeneity is applied on a component-level, rather than at the
membrane/neuron-level, similar to the work done in [8].

DEFINITION 3. [8, 14] A dP scheme is said to have ho-
mogeneous components if and only if all the component P
systems have the same initial membrane structure and same
set of rules.

Since individual components can work with a partitioned
input encoded as objects with indices, the rules of the indi-
vidual components may just vary with which range of indices
they are working on. But the general process of each individ-
ual component is still the same.

The complexity measure we focus in studying dP schemes
is the communication cost. The following defines the commu-
nication cost for a given computation step of the system:

DEFINITION 4. [13] Let Δ be a dP scheme, and 𝛿 : 𝛿0 ⇒
𝛿1 ⇒ . . . ⇒ 𝛿ℎ be a halting computation in Δ where 𝛿0 is the
initial configuration and 𝛿ℎ is a halting configuration, and R
the set of inter-component communication rules, with each
rule of the form (𝑠𝑖 , 𝑢/𝑣, 𝑠 𝑗). Then for each 𝑖 = 0, 1, . . . , ℎ − 1,
we have the following complexity measures:

• 𝐶𝑜𝑚𝑁 (𝛿𝑖 ⇒ 𝛿𝑖+1) = 1, if at least one inter-component
communication rule was used in this transition; 0 oth-
erwise;

• 𝐶𝑜𝑚𝑅(𝛿𝑖 ⇒ 𝛿𝑖+1) is the number of inter-component
communication rules used in this transition;

• 𝐶𝑜𝑚𝑊 (𝛿𝑖 ⇒ 𝛿𝑖+1) is the sum of the weights of all
inter-component communication rules used in this
transition.

DEFINITION 5. [13] Let the set of strings accepted by Δ
be denoted as L(Δ). For ComX ∈ {ComN,ComR,ComW}, we
define:

• 𝐶𝑜𝑚𝑋 (𝛿) = ∑ℎ−1
𝑖=0 𝐶𝑜𝑚𝑋 (𝛿𝑖 ⇒ 𝛿𝑖 + 1), for 𝛿 which is

a halting computation.
• 𝐶𝑜𝑚𝑋 (𝑤,Δ) =𝑚𝑖𝑛 {𝐶𝑜𝑚𝑋 (𝛿) | 𝛿 is a computation

of Δ that accepts the string 𝑤}.
• 𝐶𝑜𝑚𝑋 (Δ) =𝑚𝑎𝑥{𝐶𝑜𝑚𝑋 (𝑤,Δ) | 𝑤 ∈ 𝐿(Δ)}.

The idea of parallelizability is introduced in [13], with
respect to the communication measures described above.

5

DEFINITION 6. [13] A language 𝐿 ⊆ 𝑉 ∗ is said to be
(n,m)-weakly ComX parallelizable, for some 𝑛 ≥ 2,𝑚 ≥ 1,
and 𝑋 ∈ {𝑁, 𝑅,𝑊 }, if there is a dP system with 𝑛 components
and there is a finite subset 𝐹Δ of 𝐿 such that each string
𝑥 ∈ 𝐿 − 𝐹Δ can be written as 𝑥 = 𝑥1𝑥2 . . . 𝑥𝑛, each component
Π𝑖 of Δ takes as input the string 𝑥𝑖 , 1 ≤ 𝑖 ≤ 𝑛, and the string
𝑥 is accepted by Δ by a halting computation 𝛿 such that
𝐶𝑜𝑚𝑋 (𝛿) ≤ 𝑚.

A language 𝐿 is said to be weakly ComX parallelizable if it
is (n,m)-weakly ComX parallelizable for some 𝑛 ≥ 2,𝑚 ≥ 1.
A stronger version of parallelizability is also introduced.

2.2 Recognizing Tissue P Systems with Cell
Division

In this subsection, we briefly introduce the notions of a (recog-
nizer) tissue P system with cell division and how it performs
computations.

DEFINITION 7. Formally, a tissue P system with cell divi-
sion of initial degree 𝑞 ≥ 1 is a tuple of the form [3]:

Π = (Γ,𝑤1, . . . ,𝑤𝑞, 𝐸, 𝑅, 𝑖0),
where:

(1) Γ is a finite alphabet, whose symbols will be called
objects.

(2) 𝑤1, . . . ,𝑤𝑞 are strings over Γ, that describe the mul-
tisets of objects placed initially in the q cells of the
system.

(3) 𝐸 ⊆ Γ is the set of objects placed in the environment,
each one of them in an arbitrarily large amount of
copies.

(4) R is a finite set of rules of the following form:
(a) Communication rules: (𝑖, 𝑢/𝑣, 𝑗), for 𝑖, 𝑗 ∈ {0, 1,

. . . , 𝑞}, 𝑖 ≠ 𝑗, 𝑢, 𝑣 ∈ Γ∗.
(b) Division rules: [𝑎]𝑖 → [𝑏]𝑖 [𝑐]𝑖 , where 𝑖 ∈ {1, 2,

. . . , 𝑞} and 𝑎, 𝑏, 𝑐 ∈ Γ.
(5) 𝑖0 ∈ {1, 2, . . . , 𝑞} is the output region.

The main features of tissue P systems with cell division,
from the computational point of view, are that cells obtained
by division have the same labels as the original cell, and if
a cell is divided, then its interaction with other cells or with
the environment is blocked during the mitosis process. In
some sense, this means that while a cell is dividing it closes
the communication channels with other cells and with the
environment. This features imply that the underlying graph
is dynamic, as nodes can be added during the computation
by division and the edges can be deleted/re-established for
dividing cells.

The communication rule (𝑖, 𝑢/𝑣, 𝑗) can be applied over two
cells i and j such that u is contained in cell i and v is contained
in cell j. The application of this rule means that the objects of

the multisets represented by u and v are interchanged between
the two cells.

The division rule [𝑎]𝑖 → [𝑏]𝑖 [𝑐]𝑖 can be applied over a cell
i containing object a. The application of this rule divides this
cell into two new cells with the same label. All the objects in
the original cell are replicated and copied in each of the new
cells, with the exception of the object a, which is replaced by
the object b in the first new cell and by c in the second one.

Rules must be used in a maximally parallel way, but for
this type of P system there is one other restriction: when a cell
is divided, the division rule is the only one which is applied
for that cell in that step; the objects inside that cell do not
move in that step.

In this work, we define the representation of a configuration
and computation of the component tissue P systems of our
proposed dP scheme as the following:

DEFINITION 8. A configuration 𝛿𝑖 of Π at time step 𝑖 is a
string over Σ = {[,]ℎ | ℎ ∈ 1, . . . , 𝑞} ∪ Γ. The appearances of
the character [must be properly paired with]ℎ in 𝛿𝑖 .

A substring of 𝛿𝑖 of the form 𝑥 [𝑢]ℎ𝑦, where 𝑢, 𝑥,𝑦 ∈ Σ∗,
indicates that a membrane with label ℎ contains 𝑢 (possibly
with other membranes as well). The initial configuration of Π
is defined as 𝛿0. A halting of configuration of Π, denoted as
𝛿ℎ is a configuration where no more rules can be applied.

DEFINITION 9. A configuration 𝛿𝑖 yields a configuration
𝛿𝑖+1, denoted as 𝛿𝑖 ⇒ 𝛿𝑖+1, if and only if 𝛿𝑖+1 is obtained
from 𝛿𝑖 by applying division and communication rules in a
maximally parallel manner.

DEFINITION 10. A computation in Π is the transition of
configurations represented by a sequence 𝛿 : 𝛿0 ⇒ 𝛿1 ⇒
. . . ⇒ 𝛿ℎ , where 𝛿0 is the initial configuration and 𝛿ℎ is the
final or halting configuration.

To study computational efficiency, a class of tissue P system
with cell division is introduced in [11]. It is formally defined
as follows:

DEFINITION 11. A recognising tissue P system with cell
division of degree 𝑞 ≥ 1 is a tuple Π = (Γ, Σ,𝑤1, . . . ,𝑤𝑞, 𝐸, 𝑅,
𝑖𝑖𝑛, 𝑖0) where [3]:

• Γ has two distinguished objects yes and no;
• Σ ⊆ Γ is the input alphabet;
• 𝑖𝑖𝑛 ∈ {1, . . . , 𝑞} is the input cell;
• 𝑖0, the output cell, is the environment;
• all computations halt;
• either an object yes or no(but not both) must be re-

leased into the environment, and only in the last step
of any computation.

For an input 𝑤 ∈ Σ∗, 𝑤 is added to the initial multiset of
𝑤𝑖𝑖𝑛 . The input 𝑤 is said to be recognized by Π if and only

6

if the object yes is sent to the environment in the last step of
its associated halting computations. A halting computation is
said to be accepting if the yes object is released to the envi-
ronment, while a halting computation is said to be rejecting if
the no object is released to the environment.

In this work, we propose a dP system with recognizer tissue
P systems with cell division as components to solve the Subset
Sum Problem, where the input multiset will be partitioned
with respect to the component systems. We define a so-called
distributed tissue P system will cell division as follows:

DEFINITION 12. A k-Distributed Tissue P System with
Cell Division, or k-DTP for short, is defined as follows:

𝑘-Δ𝐷𝑇𝑃 = (Γ,Π1,Π2, . . . ,Π𝑘 , 𝐸, 𝑅Δ)
where:

• Γ is the set of all objects in the system Δ;
• Π1,Π2, . . . ,Π𝑘 are recognizing tissue P systems with

cell division. Each Π𝑖 has the alphabet of objects
in Γ. Each cell of Π𝑖 will be labelled (𝑖, 𝑗), where
𝑗 = 1, 2, . . . , 𝑑𝑖 , and 𝑑𝑖 denotes the number of cells in
Π𝑖 ;

• E is the shared environment of all Π𝑖 , 𝑖 = 1, 2, . . . , 𝑘
• 𝑅Δ is a finite set of inter-component communication

rules of the form ((𝑖, 𝑥), 𝑢/𝑣, (𝑗, 𝑦)), for 𝑖, 𝑗 ∈ {1, 2,
. . . , 𝑘},𝑖 ≠ 𝑗 , 𝑥 ∈ {1, . . . , 𝑑𝑖 }, 𝑦 ∈ {1, . . . , 𝑑 𝑗 }, and
𝑢, 𝑣 ∈ Γ∗.

The inter-component communication rule functions as fol-
lows. Given two component systems Π𝑖 and Π 𝑗 , if a multiset
of objects 𝑢 is found in cell 𝑥 in Π𝑖 , and a multiset of objects
𝑣 is found in cell 𝑦 in Π 𝑗 , then the inter-component communi-
cation rule can be invoked, and the multiset 𝑢 is transferred to
cell 𝑦 in Π 𝑗 while the multiset 𝑣 is transferred to cell 𝑥 in Π𝑖 .

3 SOLVING SUBSET SUM USING 2-Δ𝐷𝑇𝑃

3.1 Subset Sum Problem
The Subset Sum Problem (or 𝑆𝑆𝑃 for short), is defined as
follows:

DEFINITION 13. Given a finite set 𝑆 ⊆ N, a weight func-
tion 𝑤 : 𝑋 ↦→ N and a constant 𝑇 ∈ N, determine whether or
not there exists a set 𝐵 ⊂ 𝑋 such that 𝑤 (𝐵) = 𝑇 .

In this work, an instance of the problem will be represented
as a tuple (𝑛, (𝑤1, . . . ,𝑤𝑛),𝑇), where 𝑛 stands for the cardi-
nality of set 𝑋 = {𝑥1, . . . , 𝑥𝑛}, 𝑤𝑖 = 𝑤 (𝑥𝑖) and 𝑇 is the target
value.

3.2 Solution
In this section, a 2-Δ𝑑𝑇𝑃 is presented that solves any instance
𝜙 of SSP as defined earlier. An overview of the computation is
also provided. The proposed dP system will use the encoding

used in [3] and will solve in a similar manner modified in
such a way to solve 𝑆𝑆𝑃 in a distributed manner.

THEOREM 1. Let 𝜙 be any instance of the SSP with n
elements and T as the target. Then there exists a solution
using 2-Δ𝑑𝑇𝑃 under a balanced partition of 𝐴.

Let 𝑋 = 𝑥1, . . . , 𝑥𝑛 be a finite set, 𝑤 : 𝑋 → N a weight
function with 𝑛 = |𝑋 | and 𝑇 ∈ N. 𝑋 is partitioned into 𝑋1
and 𝑋2 with {𝑋1, 𝑋2} a balanced partition. Let 𝑛1 = |𝑋1 | and
𝑛2 = |𝑋2 |. Component Π𝑘 will receive the input instance
𝑢𝑘 = (𝑛𝑘 ,𝑊𝑘 , (𝑤𝑘,1, . . . ,𝑤𝑘,𝑛𝑘),𝑇) where 𝑤𝑘,𝑖 = 𝑤 (𝑎𝑘,𝑖), 1 ≤
𝑘 ≤ 2, 1 ≤ 𝑖 ≤ 𝑛𝑘 where 𝑥𝑘,𝑖 ∈ 𝑋𝑘 , and 𝑊 is the maximum
between the sum of weights of 𝐴1 and 𝐴2.

For 𝑘 = 1, 2, given the input instance 𝑢𝑘 = (𝑛𝑘 ,𝑊 , (𝑤𝑘,1, ...,
𝑤𝑘,𝑛𝑘),𝑇), the input alphabet Σ𝑘 = {𝑞} ∪ {𝑣𝑖 | 1 ≤ 𝑖 ≤ 𝑛𝑘 }.
For 𝑋𝑘 = {𝑥1, ..., 𝑥𝑛𝑘 }, the number of copies of 𝑣𝑖 represents
the weight value of the element 𝑥𝑖 , for 1 ≤ 𝑖 ≤ 𝑛𝑘 . The
number of copies of 𝑞 represents the target sum 𝑇 . The input
multiset that is added to the input region of each component
Π𝑘 is {{𝑣 𝑗𝑖 | 𝑗 = 𝑤𝑘,𝑖 , 1 ≤ 𝑖 ≤ 𝑛𝑘 }} ∪ {{𝑞𝑇 }}.

We formally define a family of dP systems for solving the
𝑆𝑆𝑃 as follows:

DEFINITION 14. For every (𝑛,𝑇) ∈ N2, 2-Δ𝑑𝑇𝑃 (𝑛,𝑇) =
(Γ,Π1,Π2, 0, 𝑅Δ), is a construct where:

• Γ = Γ1 ∪ Γ2,
• 0 is the shared environment of Π1 and Π2,
• Π𝑘 , for 𝑘 = 1, 2 are recognizer tissue P systems with

cell division defined as:

Π𝑘 = (Γ𝑘 , Σ𝑘 ,𝑤𝑘,1,𝑤𝑘,2, 𝐸𝑘 , 𝑅𝑘 , 𝑖𝑘𝑖𝑛 = (𝑘, 2),
𝑖𝑘𝑜𝑢𝑡 = 0),

where:
– Σ𝑘 = {𝑞} ∪ {𝑣𝑖 : 1 ≤ 𝑖 ≤ 𝑛}
– 𝑤𝑘,1 = 𝑆𝑘𝑎1𝑎1𝑏𝑐1𝑦𝑒𝑠𝑛𝑜
– 𝑤𝑘,2 = 𝐷𝐴1 . . . 𝐴𝑛𝑘
- Γ𝑘 = Σ𝑘 ∪ {𝐴𝑖 , 𝐵𝑖 , : 1 ≤ 𝑖 ≤ 𝑛𝑘 }
∪ {𝑎𝑖 : 1 ≤ 𝑖 ≤ 𝑛𝑘 + ⌈log2 𝑛𝑘⌉ + ⌈log2 (𝑇 + 1)⌉ +
𝑇 + 11}
∪ {𝑎𝑖 : 1 ≤ 𝑖 ≤ 𝑛𝑘 + ⌈log2 𝑛𝑘⌉ + ⌈log2 (𝑇 + 1)⌉ +
𝑇 + 11}
∪ {𝛽𝑖 : 0 ≤ 𝑖 ≤ 2}
∪ {𝑐𝑖 : 1 ≤ 𝑖 ≤ 𝑛𝑘 + 1}
∪ {𝑑𝑖 : 1 ≤ 𝑖 ≤ ⌈log2 𝑛𝑘⌉ + ⌈log2 (𝑇 + 1)⌉ + 4}
∪ {𝑒𝑖 : 1 ≤ 𝑖 ≤ ⌈log2 𝑛𝑘⌉ + 1}
∪ {𝐵𝑖, 𝑗 : 1 ≤ 𝑖 ≤ 𝑛𝑘 ∧1 ≤ 𝑗 ≤ ⌈log2 (𝑇 +1)⌉ +1}
∪ {𝑠𝑖 : 0 ≤ 𝑖 ≤ 𝑇 }
∪ {𝑏, 𝐷, 𝑝, 𝑟, 𝑔1, 𝑔2, 𝑓1, 𝑌 , 𝑆, 𝑁 , 𝛿, 𝛼, 𝑆1, 𝑆2, 𝑦𝑒𝑠, 𝑛𝑜}

– 𝐸𝑘 = Γ − {𝑦𝑒𝑠, 𝑛𝑜}
– 𝑅𝑘 is the set of rules of each 𝑘 = 1, 2 component.

(1) Division Rules:
𝑟1,𝑖 ≡ [𝐴𝑖]2 → [𝐵𝑖]2 [_]2 for 𝑖 = 1, . . . , 𝑛𝑘

7

(2) Communication Rules
𝑟2𝑎,𝑖 ≡ (1, 𝑎𝑖/𝑎2

𝑖+1, 0) for 𝑖 = 1, . . . , 𝑛𝑘
𝑟2𝑎,𝑖 ≡ (1, 𝑎𝑖/𝑎𝑖+1, 0) for 𝑖 = 1, . . . , 𝑛𝑘
𝑟2𝑏,𝑖 ≡ (1, 𝑎𝑖/𝑎𝑖+1, 0) for 𝑖 = 𝑛𝑘 + 1, . . . ,
⌈log2 𝑛𝑘⌉ + ⌈log2 (𝑇 + 1)⌉ + 10 +𝑇
𝑟2𝑏,𝑖 ≡ (1, 𝑎𝑖/𝑎𝑖+1, 0) for 𝑖 = 𝑛𝑘 + 1, . . . ,
⌈log2 𝑛𝑘⌉ + ⌈log2 (𝑇 + 1)⌉ + 10 +𝑇
𝑟3,𝑖 ≡ (1, 𝑏𝑐𝑖/𝑏2𝑐2

𝑖+1, 0) for 𝑖 = 1, . . . , 𝑛𝑘
𝑟4 ≡ (1, 𝑐𝑛+1/𝐷, 2)
𝑟5 ≡ (2, 𝑐𝑛+1/𝑑1𝑒1, 0)
𝑟6,𝑖 ≡ (2, 𝑒𝑖/𝑒2

𝑖+1, 0) for 𝑖 = 1, . . . , ⌈log2 𝑛𝑘⌉
𝑟7,𝑖 ≡ (2, 𝑑𝑖/𝑑𝑖+1, 0) for 𝑖 = 1, . . . , ⌈log2 𝑛𝑘⌉+
⌈log2 (𝑇 + 1)⌉ + 3
𝑟8,𝑖 ≡ (2, 𝑒 ⌈log2 𝑛𝑘 ⌉+1𝐵𝑖/𝐵𝑖1, 0) for 𝑖 = 1,
. . . , 𝑛𝑘
𝑟9,𝑖, 𝑗 ≡ (2, 𝐵𝑖 𝑗/𝐵2

𝑖 𝑗+1, 0) for 𝑖 = 1, . . . , 𝑛𝑘 ,
𝑗 = 1, . . . , ⌈log2 (𝑇 + 1)⌉
𝑟10,𝑖 ≡ (2, 𝐵𝑖 ⌈log2 (𝑇+1) ⌉+1𝑣𝑖/𝑝𝑟, 0), for 𝑖 =
1, . . . , 𝑛𝑘
𝑟11 ≡ (2, 𝑝𝑞/_, 0)
𝑟12 ≡ (2, 𝑑 ⌈log2 𝑛⌉+⌈log2 (𝑇+1) ⌉+4/𝑔1 𝑓1, 0)
𝑟13 ≡ (2, 𝑓1𝑝/_, 0)
𝑟14 ≡ (2, 𝑓1𝑞/_, 0)
𝑟15 ≡ (2, 𝑔1/𝑔2𝑠0, 0)
𝑟16 ≡ (2, 𝑔2 𝑓1/𝑌, 0)
𝑟17 ≡ (2, 𝑌/_, 1)
𝑟18 ≡ (1, 𝑏𝑌/𝑆, 0)
𝑟19 ≡ (1, 𝑆𝑘𝑆𝑦𝑒𝑠/_, 0)
𝑟20 ≡ (1, 𝑎𝑛+⌈log2 𝑛⌉+⌈log2 (𝑇+1) ⌉+𝑊 +11𝑏/𝑁,
0)
𝑟20𝑎 ≡ (1, 𝑎𝑛+⌈log2 𝑛⌉+⌈log2 (𝑇+1) ⌉+𝑊 +11/𝛼, 0)
𝑟21,𝑖 ≡ (2, 𝑠𝑖/𝑁, 1) for 𝑖 = 0, . . . ,𝑊𝑘

𝑟22,𝑖 ≡ (2, 𝑟𝑠𝑖/𝑠𝑖+1, 0) for 𝑖 = 0, . . . ,𝑊𝑘 − 1
𝑟23 ≡ (1, 𝛼/𝛽0𝛿, 0)
𝑟24 ≡ (1, 𝑢𝛿𝑦𝑒𝑠/_, 0) where𝑢 = 𝑆2 if 𝑘 = 1,
else 𝑢 = 𝑆1
𝑟25,𝑖 ≡ (1, 𝛽𝑖/𝛽𝑖+1, 0) for 𝑖 = 0, 1
𝑟26 ≡ (1, 𝛽2𝛿𝑛𝑜/_, 0)

• 𝑅Δ is the set of inter-component communication rules:
𝑟𝑐 ≡ ((1, 1), 𝑆1𝑠𝑥/𝑆2𝑠𝑦, (2, 1)) for 𝑥 + 𝑦 = 𝑇

3.3 Overview of the Computation
First of all, we recall the solution to the SSP discussed in [3].
We will describe briefly how each stage works. For 𝑘 = 1, 2,
let 𝑋𝑘 = {𝑥1, ..., 𝑥𝑛𝑘 } be the input set to Π𝑘 , encoded as the
input instance 𝑢𝑘 = (𝑛𝑘 , (𝑤𝑘,1, ...,𝑤𝑘,𝑛𝑘),𝑇).

In the Generation Stage, The input cell (𝑘, 2) is divided us-
ing the division rules 𝑟1,𝑖 which will produce 2𝑛𝑘 cells, which
represents all possible subsets of the input set. Each cell will
contain some 𝐵𝑖 objects, for 1 ≤ 𝑖 ≤ 𝑛𝑘 . If a cell contains

𝐵𝑖 , then it represents a subset that contains 𝑥𝑖 ∈ 𝑋𝑘 . For
example, a cell containing 𝐵1, 𝐵3, 𝐵5, represents the subset
of {𝑥1, 𝑥3, 𝑥5}. Likewise this cell would also contain 𝑣𝑤 (𝑥1)

1 ,
𝑣𝑤 (𝑥3)

3 , 𝑣𝑤 (𝑥5)
5 , representing the weight values of the elements

𝑥1, 𝑥3, 𝑥5 respectively. This stage runs for 𝑛𝑘 steps. For each
time step 𝑖, 1 ≤ 𝑖 ≤ 𝑛𝑘 of the generation stage, using rule 𝑟1,𝑖 ,
for 𝑖 = 1, ..., 𝑛, 𝐴𝑖 is used as a trigger to perform a division of
cell (𝑘, 2), with one cell containing 𝐵𝑖 , and the other cell does
not.

In the Pre-Checking Stage, 𝑝 and 𝑟 objects are produced in
each cell. The rule 𝑟4 interchanges 𝐷 and 𝑐𝑛+1 between the cell
(𝑘, 2) and (𝑘, 1). Rule 𝑟5 then transforms 𝑐𝑛+1 in each cells into
𝑑1𝑒1. After the transition, 𝑟6,𝑖 and 𝑟7,𝑖 evolves 𝑑1 and 2 ⌈log2 𝑛⌉

copies of 𝑒 ⌈log2 𝑛⌉+1 are produced. Using 𝑟8,𝑖 , the 𝑒 ⌈log2 𝑛⌉+1
and 𝐵𝑖 pairs creates 𝐵𝑖,1. Rule 𝑟9,𝑖, 𝑗 creates 2 ⌈log2 (𝑇+1) ⌉ copies
of 𝐵𝑖,1+⌈log2 (𝑇+1) ⌉ in ⌈log2 (𝑇 + 1)⌉ steps. These 𝐵𝑖,1+⌈log2 (𝑇+1) ⌉
objects, together with 𝑣𝑖 , are exchanged for copies of 𝑝 and
𝑟 objects using rule 𝑟10,𝑖 . The multiplicity of the 𝑝 and 𝑟 ob-
jects represents the weight of the subset represented by each
cell. The 𝑝 objects will be used to check if the weight of the
subset is equal to the target sum, represented by the number
of copies of 𝑞 during the checking stage. In case the number
of copies of 𝑝 and 𝑞 are not equal, the 𝑟 objects will be used
later to introduce the sum objects 𝑠𝑖 , for 0 ≤ 𝑖 ≤ 𝑇 for the
communication stage.

In the Checking Stage, using rule 𝑟11, each cell (𝑘, 2) will
remove pairs of 𝑝 and 𝑞 objects (sent to the environment) to
check if the weight of the subset is equal to the target sum.
The 𝑑𝑖 objects, for 𝑖 = 1, ..., ⌈log2 𝑛𝑘⌉ + ⌈log2 (𝑇 + 1)⌉ + 4, acts
as a counter to later on introduce the objects 𝑓1 and 𝑔1 using
rule 𝑟12. The object 𝑔1 is exchanged for 𝑔2 and 𝑠0. For 𝑓1, the
following can occur:

• If the number of copies of 𝑝 and 𝑞 are equal, 𝑓1 to-
gether with 𝑔2, will be exchanged for a copy of 𝑌 .
This means that component Π𝑘 has a subset whose
weight is equal to the target sum, hence a solution
exists. Rules 𝑟17 through 𝑟19 are then used to send a
yes object to the environment.

• Otherwise, if the number of copies of 𝑝 and 𝑞 are not
equal, 𝑓1 will be removed from the cell, together with
any one copy of 𝑝 or 𝑞. The system will then enter
the communication stage.

In the Communication Stage, using rule 𝑟22,𝑖 each compo-
nent will first produce in cell (𝑘, 1) sum objects, denoted by
𝑠𝑖 , for 𝑖 = 0, ...,𝑊 , which represents the possible weights from
the subsets of each cell (𝑘, 2). For each cell (𝑘, 2), if there are
𝑖 copies of 𝑟 , then this cell would produce 𝑠𝑖 , for some 𝑖 = 0,
...,𝑊 . This would take at most𝑊 steps. Cell (𝑘, 1) will then
produce 2𝑛𝑘 copies of 𝑁 objects, and an 𝛼 object using rules

8

𝑟20 and 𝑟20𝑎 respectively. The 𝑁 objects are used to transfer
the sum objects to cell (𝑘, 1) from cell (𝑘, 2) using rule 𝑟21,𝑖 .
Once all 𝑠 objects are present in cell (𝑘, 1), Π𝑘 is now ready
for inter-component communication. Π1 will check with Π2
if cell (1, 1) and cell (2, 1) contains sum objects, 𝑠𝑥 , and 𝑠𝑦
respectively, such that 𝑥 + 𝑦 = 𝑇 . Now,

• If there exists 𝑠𝑥 and 𝑠𝑦 such that 𝑥 + 𝑦 = 𝑇 , these
sum objects, along with the token objects 𝑆1 and 𝑆2
are exchanged between the two components. Com-
ponent Π1 will then use rule 𝑟24 to send a yes to the
environment, along with 𝑆2 and object 𝛿 , ending the
accepting computation. Likewise, Π2 does the same,
but using 𝑆1. This is done using rule 𝑟24.

• Otherwise, no communication occurs. The 𝛼 object
would have been used to introduce 𝛽0 and 𝛿 using
rule 𝑟23. The 𝛽𝑖 , for 𝑖 = 0, 1, 2, acts a counter. When
𝛽2 is produced and 𝛿 is still present, each component
will then send a no to the environment, indicating a
rejecting computation.

An example is given to demonstrate how the proposed
distributed P system computes SSP.

EXAMPLE 1. Consider 2-Δ𝐷𝑇𝑃 working on an instance of
the problem where 𝑋 = {1, 2, 3, 4}, 𝑛 = 4,𝑇 = 8. Suppose the
partition {𝑋1, 𝑋2} is a balanced partition of 𝑋 , where 𝑋1 =
{1, 2}, 𝑋2 = {3, 4}. Π1 and Π2 will solve for the instances,
𝑢1 = (2, 7, (1, 2), 8) and 𝑢2 = (2, 7, (3, 4), 8) respectively. For
brevity, we only give the computation of Π1 as shown in Table
1.

EXAMPLE 2. Consider 2-Δ𝐷𝑇𝑃 working on an instance
of the problem where 𝑋 = {1, 2}, 𝑛 = 2,𝑇 = 4. Suppose
the partition {𝑋1, 𝑋2} is a balanced partition of 𝑋 , where
𝑋1 = {1}, 𝑋2 = {2}. Π1 and Π2 will solve for the instances,
𝑢1 = (1, 2, (1), 4) and 𝑢2 = (1, 2, (2), 4) respectively. Again,
for brevity, we only give the computation of Π1 as shown in
Table 2. For this example, we only highlight the important
objects and time steps.

4 ANALYSIS OF THE COMPUTATION
COST

4.1 Running Time
Given an instance of the SSP, a set 𝑋 , target sum 𝑇 , and𝑊
being the maximum of the weights between the sets of the
partition, if communication does not occur, then our solution

takes
⌈
𝑛

2

⌉
+

⌈
log2

𝑛

2

⌉
+ ⌈log2 (𝑇 + 1)⌉ +𝑊 + 9 time steps to

complete. If communication was required and a subset sum

pair exists (i.e. case 4), then our solution takes
⌈
𝑛

2

⌉
+
⌈

log2
𝑛

2

⌉
+

⌈log2 (𝑇 +1)⌉ +𝑊 +13 time steps to complete; if no pair exists

(i.e case 5), the solution takes
⌈
𝑛

2

⌉
+
⌈

log2
𝑛

2

⌉
+ ⌈log2 (𝑇 +1)⌉ +

𝑊 + 14 time steps.

4.2 Communication Cost and Parallelizability
Communication only occurs during one time step in the entire
computation, so 𝐶𝑜𝑚𝑁 = 1. The inter-component communi-
cation rules are only used once since only one copy each of 𝑆1
and 𝑆2 exist in the system. Thus we have 𝐶𝑜𝑚𝑅 = 1. Four ob-
jects in total are exchanged for each time the inter-component
communication rule is used. Since the inter-component com-
munication rule is used once, then we have 𝐶𝑜𝑚𝑊 = 4. Thus
in terms of parallelizability we can say that:

THEOREM 2. The SSP is (2,r)-weakly ComX paralleliz-
able, where (𝑟,𝐶𝑜𝑚𝑋) ∈ {(1,𝐶𝑜𝑚𝑁), (1,𝐶𝑜𝑚𝑅), (4,𝐶𝑜𝑚𝑊)}.

We denote the worst case scenario, that is the case where
communication was required, as 𝑇 𝐼𝑀𝐸Δ (𝑛,𝑇). From Theo-
rem 2, we know that our solution to the SSP is weakly par-
allelizable. We compare its running time with the solution
presented in [3]. The worst case running time of the non-
distributed solution presented is 𝑛+⌈log2 𝑛⌉+⌈log2 (𝑇+1)⌉+12,
which will be denoted as 𝑇 𝐼𝑀𝐸Π (𝑛,𝑇). Taking the limits of
the ratio of the two running times:

lim𝑛,𝑇→∞
𝑇 𝐼𝑀𝐸Π (𝑛,𝑇)
𝑇 𝐼𝑀𝐸Δ (𝑛,𝑇) =

𝑛 + ⌈log2 𝑛⌉ + ⌈log2 (𝑇 + 1)⌉ + 12⌈
𝑛

2

⌉
+

⌈
log2

𝑛

2

⌉
+ ⌈log2 (𝑇 + 1)⌉ +𝑊 + 14

=
2
𝑊

This indicates that the proposed distributed P system solu-
tion actually runs slower than the solution presented in [3].
This slow down further increases when the sum of weights𝑊
increases. The proposed solution does not perform well on
input instances with large weight values.

5 CONCLUSION
In this work, we presented a solution to the SSP using a
distributed tissue P system with cell division. The solution is
a distributed system where components solve independently
in a similar manner as presented in [3]. In this way we can
observe the effects of partitioning the input and the addition
of inter-component communication rules. By partitioning the
input multiset into 2 parts, the generation stage only takes half
the time to complete compared to the generation stage in the
non-distributed solution. But whatever time steps saved from
the generation stage is largely offset by the need to produce
the sum objects, which takes additional time steps equal to
the total weight of the input set. Now since one component
of the distributed system is equivalent to the tissue P system
solution in [3], this would also mean that we used double
the number of cells in the distributed solution without any

9

Time Rules Applied Π1 Configuration
0 - [𝐷𝐴1𝐴2𝑣1𝑣

2
2𝑞

8] (1,2) [𝑆1𝑎1𝑎1𝑏𝑐1 yes no] (1,1)
2(𝑛 = 2) 𝑟1,𝑖 , 𝑟2𝑎,𝑖 , 𝑟 2̄𝑎,𝑖 , 𝑟3,𝑖 [𝐷𝐵1𝐵2𝑣1𝑣

2
2𝑞

8] (1,2) [𝐷𝐵1𝑣1𝑣
2
2𝑞

8] (1,2) [𝐷𝐵2𝑣1𝑣
2
2𝑞

8] (1,2) [𝐷𝑣1𝑣
2
2𝑞

8] (1,2) [𝑆1𝑎
4
3𝑎3𝑏

4𝑐4
3 yes no] (1,1)

3 𝑟4, 𝑟2𝑏,𝑖 , 𝑟2𝑏,𝑖 [𝑐3𝐵1𝐵2𝑣1𝑣
2
2𝑞

8] (1,2) [𝑐3𝐵1𝑣1𝑣
2
2𝑞

8] (1,2) [𝑐3𝐵2𝑣1𝑣
2
2𝑞

8] (1,2) [𝑐3𝑣1𝑣
2
2𝑞

8] (1,2) [𝑆1𝑎
4
4𝑎4𝑏

4𝐷4 yes no] (1,1)
4 𝑟5, 𝑟2𝑏,𝑖 , 𝑟2𝑏,𝑖 [𝑑1𝑒1𝐵1𝐵2𝑣1𝑣

2
2𝑞

8] (1,2) [𝑑1𝑒1𝐵1𝑣1𝑣
2
2𝑞

8] (1,2) [𝑑1𝑒1𝐵2𝑣1𝑣
2
2𝑞

8] (1,2) [𝑑1𝑒1𝑣1𝑣
2
2𝑞

8] (1,2) [𝑆1𝑎
4
5𝑎5𝑏

4𝐷4 yes no] (1,1)
5(⌈log2 𝑛⌉ = 1) 𝑟6,𝑖 , 𝑟7,𝑖 , 𝑟2𝑏,𝑖 , 𝑟2𝑏,𝑖 [𝑑2𝑒

2
2𝐵1𝐵2𝑣1𝑣

2
2𝑞

8] (1,2) [𝑑2𝑒
2
2𝐵1𝑣1𝑣

2
2𝑞

8] (1,2) [𝑑2𝑒
2
2𝐵2𝑣1𝑣

2
2𝑞

8] (1,2) [𝑑2𝑒
2
2𝑣1𝑣

2
2𝑞

8] (1,2) [𝑆1𝑎
4
6𝑎6𝑏

4𝐷4 yes no] (1,1)
6 𝑟7,𝑖 , 𝑟8,𝑖 , 𝑟2𝑏,𝑖 , 𝑟2𝑏,𝑖 [𝑑3𝐵1,1𝐵2,1𝑣1𝑣

2
2𝑞

8] (1,2) [𝑑3𝑒2𝐵1,1𝑣1𝑣
2
2𝑞

8] (1,2) [𝑑3𝑒2𝐵2,1𝑣1𝑣
2
2𝑞

8] (1,2) [𝑑3𝑒
2
2𝑣1𝑣

2
2𝑞

8] (1,2) [𝑆1𝑎
4
7𝑎7𝑏

4𝐷4 yes no] (1,1)
10(⌈log2 (𝑇 + 1)⌉ = 4) 𝑟7,𝑖 , 𝑟9,𝑖, 𝑗 , 𝑟2𝑏,𝑖 , 𝑟2𝑏,𝑖 [𝑑6𝐵

16
1,5𝐵

16
2,5𝑣1𝑣

2
2𝑞

8] (1,2) [𝑑6𝑒2𝐵
16
1,5𝑣1𝑣

2
2𝑞

8] (1,2) [𝑑6𝑒2𝐵
16
2,5𝑣1𝑣

2
2𝑞

8] (1,2) [𝑑6𝑒
2
2𝑣1𝑣

2
2𝑞

8] (1,2) [𝑆1𝑎
4
11𝑎11𝑏

4𝐷4 yes no] (1,1)
11 𝑟7,𝑖 , 𝑟10,𝑖 , 𝑟2𝑏,𝑖 , 𝑟2𝑏,𝑖 [𝑑7𝐵

15
1,5𝐵

14
2,5𝑝

3𝑟 3𝑞8] (1,2) [𝑑7𝑒2𝐵
15
1,5𝑝𝑟𝑣

2
2𝑞

8] (1,2) [𝑑7𝑒2𝐵
14
2,5𝑣1𝑝

2𝑟 2𝑞8] (1,2) [𝑑7𝑒
2
2𝑣1𝑣

2
2𝑞

8] (1,2) [𝑆1𝑎
4
12𝑎12𝑏

4𝐷4 yes no] (1,1)
12 𝑟7,𝑖 , 𝑟11, 𝑟2𝑏,𝑖 , 𝑟2𝑏,𝑖 [𝑑8𝐵

15
1,5𝐵

14
2,5𝑟

3𝑞5] (1,2) [𝑑8𝑒2𝐵
15
1,5𝑟𝑣

2
2𝑞

7] (1,2) [𝑑8𝑒2𝐵
14
2,5𝑣1𝑟

2𝑞6] (1,2) [𝑑8𝑒
2
2𝑣1𝑣

2
2𝑞

8] (1,2) [𝑆1𝑎
4
13𝑎13𝑏

4𝐷4 yes no] (1,1)
13 𝑟12, 𝑟2𝑏,𝑖 , 𝑟2𝑏,𝑖 [𝑔1 𝑓1𝐵

7
1,5𝐵

14
2,5𝑟

3𝑞5] (1,2) [𝑔1 𝑓1𝑒2𝐵
15
1,5𝑟𝑣

2
2𝑞

7] (1,2) [𝑔1 𝑓1𝑒2𝐵
14
2,5𝑣1𝑟

2𝑞6] (1,2) [𝑔1 𝑓1𝑒
2
2𝑣1𝑣

2
2𝑞

8] (1,2) [𝑆1𝑎
4
14𝑎14𝑏

4𝐷4 yes no] (1,1)
14 𝑟14, 𝑟15, 𝑟2𝑏,𝑖 , 𝑟2𝑏,𝑖 [𝑔2𝑠0𝐵

7
1,5𝐵

14
2,5𝑟

3𝑞4] (1,2) [𝑔2𝑠0𝑒2𝐵
15
1,5𝑟𝑣

2
2𝑞

6] (1,2) [𝑔2𝑠0𝑒2𝐵
14
2,5𝑣1𝑟

2𝑞5] (1,2) [𝑔2𝑠0𝑒
2
2𝑣1𝑣

2
2𝑞

7] (1,2) [𝑆1𝑎
4
15𝑎15𝑏

4𝐷4 yes no] (1,1)
17 𝑟22,𝑖 , 𝑟2𝑏,𝑖 , 𝑟2𝑏,𝑖 [𝑔2𝑠3𝐵

15
1,5𝐵

14
2,5𝑞

4] (1,2) [𝑔2𝑠1𝑒2𝐵
15
1,5𝑣

2
2𝑞

6] (1,2) [𝑔2𝑠2𝑒2𝐵
14
2,5𝑣1𝑞

5] (1,2) [𝑔2𝑠0𝑒
2
2𝑣1𝑣

2
2𝑞

7] (1,2) [𝑆1𝑎
4
18𝑎18𝑏

4𝐷4 yes no] (1,1)
24(𝑊 = 7) 𝑟2𝑏,𝑖 , 𝑟2𝑏,𝑖 [𝑔2𝑠3𝐵

15
1,5𝐵

14
2,5𝑞

4] (1,2) [𝑔2𝑠1𝑒2𝐵
15
1,5𝑣

2
2𝑞

6] (1,2) [𝑔2𝑠2𝑒2𝐵
14
2,5𝑣1𝑞

5] (1,2) [𝑔2𝑠0𝑒
2
2𝑣1𝑣

2
2𝑞

7] (1,2) [𝑆1𝑎
4
25𝑎25𝑏

4𝐷4 yes no] (1,1)
25 𝑟20, 𝑟20𝑎 [𝑔2𝑠3𝐵

15
1,5𝐵

14
2,5𝑞

4] (1,2) [𝑔2𝑠1𝑒2𝐵
15
1,5𝑣

2
2𝑞

6] (1,2) [𝑔2𝑠2𝑒2𝐵
14
2,5𝑣1𝑞

5] (1,2) [𝑔2𝑠0𝑒
2
2𝑣1𝑣

2
2𝑞

7] (1,2) [𝑆1𝛼𝑁
4𝐷4 yes no] (1,1)

26 𝑟21,𝑖 , 𝑟23 [𝑔2𝑁𝐵15
1,5𝐵

14
2,5𝑞

4] (1,2) [𝑔2𝑁𝑒2𝐵
15
1,5𝑣

2
2𝑞

6] (1,2) [𝑔2𝑁𝑒2𝐵
14
2,5𝑣1𝑞

5] (1,2) [𝑔2𝑁𝑒2
2𝑣1𝑣

2
2𝑞

7] (1,2) [𝑆1𝛽0𝛿𝑠0𝑠1𝑠2𝑠3𝐷
4 yes no] (1,1)

27 𝑟𝑐 [𝑔2𝑁𝐵15
1,5𝐵

14
2,5𝑞

4] (1,2) [𝑔2𝑁𝑒2𝐵1,578𝑣2
2𝑞

6] (1,2) [𝑔2𝑁𝑒2𝐵
14
2,5𝑣1𝑞

5] (1,2) [𝑔2𝑁𝑒2
2𝑣1𝑣

2
2𝑞

7] (1,2) [𝑆2𝛽1𝛿𝑠0𝑠7𝑠2𝑠3𝐷
4 yes no] (1,1)

28 𝑟24 [𝑔2𝑁𝐵15
1,5𝐵

14
2,5𝑞

4] (1,2) [𝑔2𝑁𝑒2𝐵
15
1,5𝑣

2
2𝑞

6] (1,2) [𝑔2𝑁𝑒2𝐵
14
2,5𝑣1𝑞

5] (1,2) [𝑔2𝑁𝑒2
2𝑣1𝑣

2
2𝑞

7] (1,2) [𝛽2𝑠0𝑠7𝑠2𝑠3𝐷
4 no] (1,1) 𝑆2𝛿yes

Table 1: Sample computation for Π1 in Example 1. To summarize the computation table: For the first 𝑛 steps (𝑛 = 2), the
system generates all possible subsets, e.g., the cell with label (1, 2) containing 𝐵1𝐵2 represents the subset that contains the
first and second elements. In this case, the values 1 and 2, respectively. By step 11, the system is now prepared to do the
checking stage. Note here that the number of copies of the 𝑝 and 𝑟 objects represent the sum of the subset, e.g., the subset
containing the values 1 and 2 has 3 copies of 𝑝 and 𝑟 (𝑝3, 𝑟 3). The number of copies of 𝑝 will then be checked against the
number of copies of 𝑞 (which represents the target sum). Since there is no cell with an equal number of 𝑝 and 𝑞 objects,
by step 26, the system will produce all the possible sums from the given input. With input {1, 2}, the possible sums are
{0, 1, 2, 3}, represented by the sum objects {𝑠0, 𝑠1, 𝑠2, 𝑠3}, respectively. At step 27, Π1 will check with Π2 if there is a sum
object from Π1, denoted as 𝑠𝑥 , and a sum object from Π2, denoted as 𝑠𝑦 , such that 𝑥 +𝑦 = 𝑇 . In this case, Π1 has 𝑠1, and Π2
has 𝑠7 (since Π2 has {3, 4}). Hence, a inter-component communication occurs. Π1 receives 𝑆2𝑠7 from Π2, while Π2 receives
𝑆1𝑠1 from Π1. Both components will then conclude that there is a solution to the input instance 𝑋 = {1, 2, 3, 4}, 𝑇 = 8.

gain (and actually performing worse). One could consider a
method on how we can generate the correct sum object from
the 𝑟 objects in a single step, hence not requiring𝑊 steps.

For future works on the topic of distributed tissue P sys-
tem solving SSP, we could analyze how the system would
perform given an unbalanced partition (e.g. one component
receives two-thirds of the input set, while the other receives
only one-third). One of the issues to consider would be the
timing of the counters. The component with the larger input
would run longer than the component with the smaller in-
put. Hence, the running time of the generation stage would
approach that of the non-distributed solution in [3]. This is
still not taking into account the running time introduced by
the additional communication stage. What would not change
however would be the communication cost, as it would still
require one communication step, rule, and the same number
of objects communicated. What would affect the communica-
tion cost would be increasing the number of components of
the distributed tissue P system solving SSP. We would need
additional communication steps to coordinate the candidate
sum values from all components. We could lessen the com-
munication cost if only one component is assigned the role of
deciding the input instance as accept or reject.

Now in terms of communication cost, we have shown that
SSP is weakly ComX parallelizable. It takes only one commu-
nication step and rule, and as few as four objects needed for
communication. In contrast to another distributed P system
solution for an NP-hard problem[1, 2], the communication
costs are mostly the same. But what is good about this pro-
posed distributed tissue P system solution to SSP is that it
only needs a linear number of inter-component communica-
tion rules to solve SSP, as opposed to the distributed P system
solution to the satisfiability problem (SAT) which requires
an exponential number of inter-component communication
rules. This indicates that there are some NP-hard problems
in which a distributed P system solution does not require
an exponential amount of resource. This would mean that it
could be possible to design a more efficient inter-component
communication protocol for problems such as SAT, or there
could be easier or harder NP-hard problems for distributed P
systems.

10

Time Π1 Configuration
0 [𝐴1𝑣1𝑞

4] (1,2) [𝑆1𝑎1𝑎1𝑏𝑐1 yes no] (1,1)
1 [𝐵1𝑣1𝑞

4] (1,2) [𝑣1𝑞
4] (1,2) [𝑆1𝑎1𝑎1 yes no] (1,1)

8 [𝐵7
14𝑝𝑟𝑞

4] (1,2) [𝑣1𝑞
4] (1,2) [𝑆1𝑎

2
9𝑎9 yes no] (1,1)

9 [𝐵7
14𝑟𝑞

3] (1,2) [𝑣1𝑞
4] (1,2) [𝑆1𝑎

2
10𝑎10 yes no] (1,1)

17 [𝑠1𝐵
7
14𝑞

2] (1,2) [𝑠0𝑣1𝑞
3] (1,2) [𝑆1𝑎

2
18𝑎18 yes no] (1,1)

21 [𝐵7
14𝑞

2] (1,2) [𝑣1𝑞
3] (1,2) [𝑆1𝛽2𝛿𝑠1𝑠0 yes no] (1,1)

22 [𝐵7
14𝑞

2] (1,2) [𝑣1𝑞
3] (1,2) [𝑆1𝑠1𝑠0 yes] (1,1) 𝛽2𝛿no

Table 2: Sample computation for Π1 in Example 2. This instance has no solution hence the system outputs a no. Similar
to Example 1, since there is no local subset whose sum is equal to the target sum, until time step 17, Π1 will produce all
possible sum it can obtain from input instance {1}. That is 𝑠0, 𝑠1. When the 𝛽 counter is introduced, it will wait for two
time steps. Since no communication occurs between the two components, i.e., there is no local sum from Π1 and Π2 that
when added is equal to 𝑇 = 4, then with 𝛽2, the system outputs a no.

ACKNOWLEDGEMENTS
This work is a result of the CS 199 research of Justin Granda
and Samuel Jose, with adviser Kelvin Buño, from the Algo-
rithms and Complexity lab of the Department of Computer
Science, UP Diliman.

K. Buño is thankful to the support from the Atty. Raul C.
Villanueva Professorial Chair since 2019 until present.

REFERENCES
[1] Adorna, H.N., Pan, L., Song, B.: On distributed solution to sat by

membrane computing. Int. J. Comput. Commun. Control 13(3), 303–
320 (2018)

[2] Buño, K.C., Cabarle, F.G.C., Calabia, M.D., Adorna, H.N.: Solv-
ing the n-queens problem using dp systems with active mem-
branes. Theoretical Computer Science 736, 1 – 14 (2018).
https://doi.org/https://doi.org/10.1016/j.tcs.2017.12.013

[3] Díaz-Pernil, D., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-
Núñez, A.: Solving subset sum in linear time by using tissue p systems
with cell division. In: Mira, J., Álvarez, J.R. (eds.) Bio-inspired Mod-
eling of Cognitive Tasks. pp. 170–179. Springer Berlin Heidelberg,
Berlin, Heidelberg (2007)

[4] Díaz-Pernil, D., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-
Núñez, A.: A uniform family of tissue p systems with cell division
solving 3-col in a linear time. Theoretical Computer Science 404(1), 76
– 87 (2008). https://doi.org/https://doi.org/10.1016/j.tcs.2008.04.005,
membrane Computing and Biologically Inspired Process Calculi

[5] Gheorghe, M., Ipate, F., Dragomir, C.: A kernel p system. Membrane
Computing, Tenth Brainstorming Week, BWMC (01 2012)

[6] Gheorghe, M., Ipate, F., Konur, S.: Solutions to the subset sum and par-
tition problems using kernel p systems. Annals of Bucharest University,

Computer Science pp. 37–46 (2015)
[7] Macababayao, I.C.H., Amores, E.M.L., Hernandez, N.H.S., Cabarle,

F.G.C.: Deterministic and Uniform Solutions to NP-Complete Prob-
lems using Numerical P Systems with Lower Thresholds. pp. 253–272.
Pre-proc. 18th International Conference on Membrane Computing
(CMC18), 24 to 28 July 2017, University of Bradford, U.K. (2017)

[8] no, K.C.B., Cabarle, F.G.C., Torres, J.G.Q.: Spiking neural dp systems:
Balance and homogeneity. Philippine Computing Journal 14(2), 1–10
(2020)

[9] Păun, A.: On p systems with active membranes. In: Antoniou, I.,
Calude, C.S., Dinneen, M.J. (eds.) Unconventional Models of Compu-
tation, UMC’2K. pp. 187–201. Springer London, London (2001)

[10] Păun, G.: Introduction to Membrane Computing, pp. 1–42. Springer
Berlin Heidelberg, Berlin, Heidelberg (2006). https://doi.org/10.1007/3-
540-29937-8_1

[11] Păun, Gh., Pérez-Jiménez, M.J.: Tissue p systems with cell division.
International Journal of Computers Communications & Control 3(3),
295–303 (2008). https://doi.org/10.15837/ijccc.2008.3.2397

[12] Păun, G., Păun, R.: Membrane computing and economics: Numerical
p systems. Fundam Inf 73(1,2), 213–227 (Apr 2006)

[13] Păun, G., Pérez-Jiménez, M.J.: Solving problems in a distribut-
edway in membrane computing: dp systems. International Journal
of Computers Communications & Control 5(2), 238–250 (2010).
https://doi.org/10.15837/ijccc.2010.2.2478

[14] Zeng, X., Zhang, X., Pan, L.: Homogeneous spiking neu-
ral p systems. Fundamenta Informaticae 97, 275–294 (2009).
https://doi.org/10.3233/FI-2009-200, 1-2

11

	PCJ Vol. 16, No. 1 (2021, corrected)

