Using Rhetorical Structure Theory in Automatic Text
Summarization for Marcu-Authored Documents

Allan Borra, Almira Mae Diola, Joan Tiffany T. Ong Lopez, Phoebus Ferdiel Torralba, and

Sherwin So
College of Computer Studies
De La Salle University
2401 Taft Avenue, Manila

allan.borra@dlsu.edu.ph, [apany.ong.lopez, phoebustorralba]@gmail.com,
[sherwinso16, mhiagurl|@yahoo.com

ABSTRACT

An automatic text summarizer system using Rhetorical Structure
Theory (RST) is discussed. RST is a formalism developed by
Mann and Thompson (1988) that allows for discourse analysis of
multi-sentence text. The descriptive representation of RST to texts
was exploited for summarization. Some modules of the
summarizer were designed on Daniel Marcu’s composition style
primarily on technical papers but the system was also evaluated to
other domains. Preliminary test shows that the system may work
well regardless of domain, as long as it has similar composition or
writing styles with Marcu-authored documents. Subjective manual
evaluation shows higher quality of the system’s output compared
to Microsoft Word's Autosummarize and Copernic Summarizer.
Automated evaluation using Sentence Recall versus gold
standards was done although it was inconclusive due to disparity
between human-authored, which uses paraphrasing method, and
system-authored summaries, which uses extraction method.

Keywords:
Automatic text summarization, natural language processing,
keyword extraction, rhetorical structure theory, coherence.

1. INTRODUCTION

Given an information source, Automatic Text Summarization
(ATS) produces the cluster of information, which is most relevant
to the needs of the user [1]. The three approaches in ATS are the
shallow approach, the deeper approach, and the hybrid approach.
A common problem with these approaches is that they do not have
sufficient coherence. Coherence is the way the parts of the text
gather together to form an integrated whole. With today's
automatic text summarizers, statements are commonly non-
sequitur, meaning a statement that does not follow logically from
what preceded it. There is no smooth transition from one idea to
another. The driving force of the research is the development of a
system that will be able to summarize a given document while still
maintaining coherence and saliency in the text. To do this, the
system architecture integrated two main existing techniques in
ATS: keyword extraction and discourse analysis based on
Rhetorical Structure Theory (RST).

2. RELATED SYSTEMS

SUMMARIST [2] aims to generate both extracts and abstracts
from any domain. Its technique lies on the ‘equation’:
summarization = topic identification + interpretation + generation.
The first step is to identify the most important and central topics
in the paper. The interpretation stage processes the topics,
rephrases and compresses them, removes redundancies and
merges topics into more general ones (e.g. simple concept
generalization, script identification). Generation aims to
reformulate the interpreted data into new text.Its architecture is
designed such that the output you want depends on how much
processing you do on the text. SUMMARIST’s architecture is
designed such that the output depends on the amount of
processing that was done on the text.

Text Analyst [3] is a text analysis software which performs a
variety of natural language functions, among them text
summarization. It uses linguistic and neural network technologies,
which ensures high speed and accuracy in the analysis of
unstructured texts. It automatically generates a semantic network
of the text, which is used in scoring individual sentences.

Summons [1] is a multi-document summarizer for the news
domain. It uses a template with instantiated slots of predefined
semantics; from this, it generates the summary using a
sophisticated natural language generation phase. This includes a
content selection substage, a sentence planning substage and a
sentence generation stage. Because of the well-defined semantics
in the templates, this system is said to produce summaries of a
quality that approaches that of human abstracts.

PARE [4] describes a system of representation for ideas present in
a text. It is based on syntactic and semantic relationships between
words. It is used in the program called PARE (Pruer and
Redundancy Eliminator), which is a multi-document summarizer.
The system is based on the concept of a semantic network. It
creates a set of nodes—a graph, which represents the relationships
between single-word ideas. The nodes are connected by arcs
which contain information describing the relationship between the
words, These relationships are determined by using a link-
grammar based parser. Additionally, PARE also uses coloring
schemes—colors are assigned so that all nodes with the same
color are part of the same idea, thus creating larger groups of
words.

3. RHETORICAL STRUCTURE THEORY

Rhetorical Structure Theory (RST) was initially developed by
Mann, Thompson and Matthiessen in 1983 to allow a formal
representation of discourse structure to texts. This also provides
for representing coherence in texts. Originally, this was developed
as part of studies for automatic text generation systems. It
conceives a variety of possible structures, which could be
considered as “building blocks” that a text document might have.
These "blocks" may be classified into two levels, the principal one
dealing with "nuclearity" and "relations" (often called coherence
relations in the linguistic literature,) and second level of
structures, called schemas [5].

3.1 Nucleus and Satellite Relations

Nucleus and Satellite Relations is the first level of representation
of RST. Given two spans of texts (usually adjacent, but there are
exceptions), a relation can be established between the two spans
where one has a specific role relative to the other. An example of a
structure is: "Claim" which is followed by "Evidence". RST
claims that a "Claim" is more essential to the text than the
"Evidence". Given this, a "Claim" is labeled as a nucleus while
the "Evidence" is labeled as a satellite. The ordering of the text
spans do not matter but the relations normally dictates the likely
ordering of text spans. Figure 1 shows Mann and Thompson’s list
of relations. These identified relations are relatively
comprehensive but is still being expanded to address newer and
unique relations.

elaboration
circumstance
solripnhood ol
o volitional result
condiion non-volitional cause
stherwise non-volitional result
subject marter ; : purpose
interpretation
evaluaion
TCSIECHTE metivation
saumary anithesis
Ll background
comras engblement
evidence
Justify
presentational coneession

Figure 1. List of RST Relations

3.2 Schemas

Given the Nuclearity and coherence relations that holds between
text spans, schema provides the structural constituency
arrangements of these spans. There are different types of schema
but a certain text span is fitted to a schema using schema
applications.

The diagram in Figure 2 shows horizontal lines that represents the
text spans, the labelled lines represent the relations between the

spans, the nuclei can be distinguished by the vertical line (for
multinuclear relations, diagonal lines are used), and the other
spans are satellites

R R JOINT

Figure 2. Types of Schemas in RST

For the following example of text spans (Listing 1), Figure 3 is the
equivalent RST Tree with corresponding schema applications:

1) Farmington police had to help control traffic recently

2) when hundreds of people lined up to be among the first
applying for jobs at the yet-to-open Marriott Hotel.

3) The hotel's help-wanted announcement - for 300
openings - was a rare opportunity for many
unemployed.

4) The people waiting in line carried a message, a
refutation, of claims that the jobless could be
employed if only they showed enough moxie.

S) Every rule has exceptions,

6) but the tragic and too-common tableaux of hundreds
or even thousands of people snake-lining up for any
task with a paycheck illustrates a lack of jobs,

7) not laziness.

Listing 1. Sample Text Spans for RST

17 Tha Hartord
Bactgiund | Lottt
= Tl
1 4

Vitanaesult L Eviteica

L —————_
1) Farmingtan 4) T2 people 57
police had o Cicurnelance twating i1 line Emnrevsmu“
help cantrol — . camieda -
treic racarth Qwhen 3 Thehotel's message.a 51 Evenyrile has b7

fundredaof helpwanted — retistion, of - eecephone,

Antthesis
pecpleliredup announcement- claims that the e
mheancngthe far300openings jobless could be by butthetrage 7) notlaziness

frstepphinafor -wasarare emplyyediforly and
jobsatihe opporurityfor ey showed torcoriimior
ye-do-open mafy enough moxie tableaucof
MamattHotel — unerployed hundreds or
ever thousands
o pecple
snakedining up
for vy tash. it
apaycheck
illustietes @ lack

of jobs,

Figure 3. Sample RST Tree given the example in Listing 1.

Given the RST Trees as a result of schema applications, the study
exploits the possibility of removing the satellites in the projection
that the resulting remaining nuclei is enough to serve as summary
to a given paragraph.

4. SUMMARIZER ARCHITECTURAL
DESIGN : SUMMERRXT

Initially, the system was designed to contain the distinct phases of
Natural Language Understanding, Information Extraction and
Natural Language Generation. But as automatic text
summarization had been classified within the scope of Natural
Language Generation, the architecture design and structure was
constructed contained the major components of an NLP system.
The major system components were defined more clearly. The
sub-modules were rearranged to ensure that that inter-module
inputs and outputs are correctly connected. The design was
continually refined, even through the coding and debugging
stages, to reflect the actual issues experienced during
implementation. Additional phases were also added to better
achieve the objectives of the system and of the research. In
addition to the refinement of the summarization system itself, the
proponents also implemented a standalone program that is able to
do automatic RST annotation of plain text. The output of the
system is a rhetorical structure, represented by an XML file that
follows the schema defined in Mick O'Donnell's RSTTool [6].
This module is integrated in the system. The result of this
integration in is that the system is now able to accept both
XML/RS3 as well as plain TXT files.

Figure 4 outlines the architecture of the automatic text summarizer
system. Subsequent sub-sections discuss the details of each of the
modules. The domain of documents accepted by the system is
technical documents authored by Daniel Marcu. The reason for
this domain is that the proponents have read and found Marcu
documents consistent in structure, but more importantly, in
addressing also the complexity of quantitatively evaluating the
system’s performance. Evaluation of the system’s output, which is
the summary, entails comprehension of the original text. Since
Marcu documents were reviewed and comprehended as part of the
research and related literature, summaries produced by the system
can readily be evaluated. In the same manner, since manual
tagging of documents are also needed for the gold standard or
evaluation, it was decided that it would be a good exercise that
tagging is done, alongside reading the Marcu-authored documents,
which are relevant to the research.__

The system employs the use of discourse structures and keywords
which translates the source text into tokens; includes the Parts-of-
Speech Tagger module using an existing parts-of-speech tagger;
the RST Analyzer module which uses RST in identifying the
corresponding discourse structure of the units of sentences; the
Keyword Extracting module which identifies and extracts
keywords from sentences; the Consolidation module, which is
responsible for consolidating the results of the RST Analyzer
module and the Keyword Extracting module; the Reduction
module, which is responsible for reducing the generated results of
the consolidation module; the Referring Expression Analyzer
module which is responsible for determining and resolving
anaphors in the summary produced; and the Coherence Checker
module, which will evaluate the coherence of the generated
summary derived from Rhetorical Structure Analyzer and the
Sentence Keyword Analyzer components simultaneously.

SOURCE FILE

XML/RS3

ARSTA
Auto Annotation

RSA SKA POS Tagger
Rhetorical Structure Sentence Keyword Part-Of-Speech
Analyzer Analyzer Tagger

Consolidator

Sentence
Realizer

e

REA
Referring Expression
Analyzer

Coherence
Checker

SUMMARY

Figure 4. SummerRXT System Architecture

4.1. ATS SKA (Sentence Keyword Analyzer)

Component

This module connects the system with KEA [7], an open source
keyphrase extractor based on the Naive Bayes algorithm. The
KEW was trained using Marcu-authored document and the
various pre-fed documents that comes with KEA (the CSTR
Training set).

To help in deciding the number of keywords to be extracted by
KEA, the proponents tested the quality of the resulting summary
generated. The keyphrases have a 30% role in affecting the
summary generated as discussed later in Section 4.5 ATS
Reduction Components. The proponents compiled the system with
100, 90, 80, 70, 60, 50, 40, 30, 20, 10 and 5 keywords to be
extracted. The source text used for this testing was the D. Marcu
conference paper [10]. Each time, the resulting summaries were
manually read and analyzed. The resulting analysis was that:

* 5-,10-, 20- and 30-keyphrase summaries are exactly the
same;

* 40- and 50-keyphrase summaries are exactly the same;

* 60-, 70-, 80- and 90-keyphrase summaries are exactly
the same; and

* 100-keyphrase is unique.

Having determined the four unique summaries, each summary
was compared against each other to find out which amount
generated the better summary. There were several differences in

the document, in terms of the inclusion and omission of sentences.

4.2. ATS RSA (Rhetorical Structure Analyzer)

Component

This module is responsible for reconstructing the system
representation of the RSTrees and later on determining the units
important for the summary. The output of the module has been
designed to work seamlessly with Mick O’Donnell’s RSTTool.

To outline the operation of the RSA Component, consider the text
units below in Listing 2 as input:

1. For the annotation phase, we were unable to collect data for
two essay prompts

2. because of our annotators' availability.

3. This means that we only have inter-annotator agreement
statistics on 4 prompts,

4. although some data from all six prompts was available for
training and testing our models (with the extra two prompts
being represented in the training phase of annotation).

Listing 2. Example Text Units for RSA Processing

The result for the above units is as follows:
2 is a Cause of 1
4 is a Concession of 4
Units 3 and 4 is an Interpretation of Units 1 and 2

Simply put, the main operation of the RSA Component is
determining the text units and relationships these units have with
each other as well as determining which nodes are the nucleus and
which are satellites.

Marcu’s instructions outlined in [8] where then applied
automatically to determine which units are viable and significant
by calculating the score of a certain textual unit in relation to the
properties of the whole tree in general. Based on these scores,
nodes were promoted from bottom up and will be used later to
build the summary.

4.3. ATS Part-Of-Speech Tagger Component

This component connects the system with QTag [9], a
probabilistic part-of-speech (POS) tagger.

It is freely distributable and downloadable, and it comes in a JAR
file (qtag.jar). It uses two additional files, a lexicon (qtag-eng.lex)
and a matrix (qtag-eng.mat) file, which is also included in the
download package. QTag is directly executable, so one can use
these commands independently in the command line interface.
Using the tag method returns an array of the same size as tokens,
containing the part-of-speech tags of each corresponding element.
When running the ATS program, remember to always include the
QTag package in the classpath. The POS Tagger module accepts a
source text and returns the POS tag for each corresponding token
in the text. It uses QTag, a freely available part-of-speech tagger
that comes in a JAR package. The system first tokenizes the text
into words.

4.4. ATS Consolidation Components
The Consolidator module is responsible for incorporating the
results of the SKA and the RSA modules and storing relevant

information in a Vector instances of

ConsolidatedObject as its elements.

containing

Since the results of RSA will be used as the backbone, the
structure of ConsolidatedObject will be containing most elements
of an RSA data structure (Noder), which are the following:
Noder.id, Noder.unit, Noder. Each key concept and keyword will
be matched to all units contained in the RST Vector. Its score,
which is a variable in the data structure ConsolidatedObject, is
incremented The consolidator module accepts the results of the
SKA and the RSA modules and consolidates the results into a
variable of type ConsolidatedObject.

4.5. ATS Reduction Components

The Reduction module is responsible for determining which units
are significant in creating a summary.

The study involved determining the best ratio to use in combining
the RSA and SKA scores to obtain the overall score. Since the
results of RSA are to be used as the structure of the summary.

To determine what ratio to use, the study involved studying every
summary produced with intervals of 5, meaning summaries were
tested from 50-50, 55-45, 60-40 up until 90-10. In other words,
manually evaluating and reading through the summary outputs,
the “best” ratio was established. And, although subjectively, the
test yield the best result with the following ratio: 70% RSA and
30% SKA.

This was decided because after comparing each summary output,
it was found out that below this ratio e.g. 60-40, the effect of RSA
scores significantly decreases because most of the important units
that RSA scores deemed important were removed. And if the ratio
goes above 70-30, e.g. 80-20, the effect of SKA scores is not
reflected on the output summary. Therefore it was decided that a
ratio of 70-30 best maximizes the strengths of both modules. From
this theory the reduction formula was developed:

Reduction Formula = 0.70 * RSA Scores + 0.30 *
SKA Scores

Equation 1. Reduction Formula

Another responsibility of this module, aside from determining the
most important units, is to determine how many of these units
should remain in the summary. This is where the conciseness of
the summary is determined. One major issue was the percentage
of summarization, or the amount of compression. Because of this,
the system provides options to allow the user to specify the
percentage of summarization he needs. To determine the default
rate of summarization, generated summaries of varying
percentages ranging from 10% to 50% were tested. Testing, once
again, involves manual reading and subjective evaluation of the
outputs mainly by the proponents. The explanation for the range
was that anything below 10% is not a summary but resembling an
abstract, and anything above 50% is no longer a summary. After
analyzing the summaries the proponents agreed to set the default
percentage of summarization to 20%. The reduction module
accepts the results of the Consolidator module, which is a Vector
containing ConsolidatedObject. It reduces the Vector using the
reduction algorithm and returns the reduced Vector.

4.6. ATS Sentence Realizer Component

This module is responsible for arranging the important units in
order by first determining as to which sentence each unit belongs.
This process is not that complicated since the system uses the
original text as its reference. After finding out the sentence where
the unit occurred, it uses the sentence numbering to arrange the
units in ascending order. It is also necessary to enforce structure in
the overall summary. Therefore, each section should be properly
divided and included into the correct heading. To do this it was
necessary to determine the heading each sentence belongs to.
Since this information is included in the ConsolidatedObject.
Initially, the unit numbers were used as the main sorting variable.
However, since textual units may not be whole sentences,
sentence numbers replaced unit numbers as the main sorting
variable. Using unit numbers for sorting would cause factual and
information fragmentation which will surely affect the readability
of the resulting text. Arranging the sentences in order is not
enough to be able to get a structured text, which is a characteristic
of a coherent document. It studies each sentence and uses
information which has been collected from the preceding
modules. It outputs an organized vector which it then passes to the
next module, which is REA.

4.7. ATS REA (Referring Expression Analyzer)

This module is responsible for resolving dangling pronouns in the
document. The proponents tested 5 summaries and found out that
only 2 out of the 4 pronouns needed to be resolved, which are
"they" and "their." In the system's algorithm of anaphora
resolution, the first step is to determine the focus of each sentence.
The proponents tried to use preexisting syntactic parsers, however,
the parsers investigated asked for requirements such as
dictionaries, English rule grammar, etc, that the proponents found
it more convenient to implement a simpler syntactic parser that
would perform only the operations required. This module first
uses the results of the POS Tagger Module to determine which
word in the sentences are pronouns and which are nouns.

4.8. ATS Coherence Checker

This module is responsible for checking whether the summary is
able to achieve coherence, at least the minimum definition of
coherence as stated by [11].

Although there is no computationally formal definition for
coherence in texts, the criteria set by [11] provided the guidelines
of this module in enforcing the coherence in generated texts.

The first definition of coherence is that the text should have a
structure. This module checks whether main sections headings
were correctly extracted by the Sentence Realizer module. If a
structure is missing, it passes back the summary to the Sentence
Realizer module to allocate the corresponding structure into the
summary. Aside from the structure, the second definition of
coherence is that a text document should have unity. There are
three ways on how the system can ensure that a text is united:

1. the grouping or sectioning of sentences with similar
topics or focus;

2. checking for transition keywords;
3. and resolving anaphors.

The last item had been addressed by REA. The first item,

determining or grouping the sentences according topics, was not
much of an issue because REA also is responsible for determining
the focus of each sentence. These units of similar focus only
needed to be grouped together to form a single paragraph. The
second item, transitional keywords, are also added to enforce
smooth transitions between text spans (phrases or sentences).

4.8. ARSTA (Automatic Rhetorical Structure
Theory Annotator)

This module takes the source text, automatically annotates and
creates a representation of discourse structure based on RST
relations. The module could only automatically annotate a text
using only a subset of the RST relations. Table 1 provides the
listing of relations handled by the module. The module determines
elementary units of text using cue phrases and punctuation and
these cue phrases in turn determine what rhetorical relation to tag.

Table 1. Subset of RST Relations handled by the System
Cause

because

due to

Since

as a result
consequently

as a consequence
hence

Thus
Concession | although

even though

in spite of
notwithstanding
regardless

Result

5. TESTING AND EVALUATION

The system output was subjected to both manual and automatic
evaluation. Two different documents and the corresponding
summary outputs from SummerRXT were evaluated alongside the
ouputs of Copernic Summarizer and Microsoft Word
AutoSummarize. 30 respondents of various backgrounds
evaluated the 2 sets of three ouptuts based on the following
criteria:

1. The elements of the summary work towards a
common goal.

2. The structure of the summary helps facilitate
the smooth flow of ideas.

3. The summary is grammatically correct.

4. The summary does not contain unnecessary
nor insignificant information.

5 Overall, the summary is an adequate substitute

of the original text.

Questions 1 and 2 tackles on coherence and is rated highly if the
summary shows sentences that juxtaposed in a logical flow as
well as in a logical relation to the whole. Question #3 is on
grammaticality and is rated according to correct spelling and
grammar which includes, but not limited to, proper punctuation,
use of parts of speech and sentence construction. Question #4

deals with informativeness and establishes if the summary
maintains important information from the original document as
well as if it constructed redundant or insignificant information.
Question #5 addresses substitutability of the summary to the
original document. A sixth question about comprehension is also
provided also to measure if SummerRXT’s output summaries are
comprehensible although not all respondents answered this survey
question and is therefore inconclusive.

The output of SummerRXT garnered the highest averages in all
criteria compared to the other two systems’ outputs. This is true
for both documents involved in the survey as shown in Figure 5 &
Figure 6.

Overall Score

0 SUWER
o Copernic Summarizer
o Microsoft Word

0 100 200 300 400 500

Figure 5. Overall Scores of Summarizers for Set A (1st
Document)

Overall Score

O SUMVER
0 Copernic Summarzer|
O Mcrosoft Word

1/’

0 100 200 300 400 500

Figure 6. Overall Scores of Summarizers for Set B (2nd
Document)

In automatic evaluation, sentence recall was performed by
providing and comparing the output with a gold standard. The
gold standard were provided manually by one of the researchers
and a computer science graduate. The results were inconclusive to
establish informativeness of the summary outputs due to the
following factors:

- The two reference summaries were made with

different levels of competence.

- Each person has his or her own style in

creating a summary.

- It is difficult to distinguish between many

possible summaries.

5.1. Further Testing on non-Marcu Documents
Further testing was also conducted to the system by subjecting it
to non-Marcu-authored documents, i.e., documents not part of the
domain. This was just an initial/preliminary test for robustness
and/or domain independence.

Two main constraints are considered in this test:
1. The keyword extraction module of summarizer is
trained on Marcu-authored documents
2. The summarizer takes Daniel Marcu’s composition style
into consideration:

* Header format

* Use of pronouns

* Document structuring
Considering these constraints, in theory, given any technical
paper, which manifests similar constraints regardless of the author,
the summarizer could still generate a summary that is up to
standard.

In validating the theory, two papers were evaluated which
manifested the similar constraints. [12] presents a discourse
parser named D-LTAG, and even compares their work with
Marcu’s rhetorical parser in [13]. On the other hand, [14]
discusses integrating cohesion and coherence for ATS.
SUMMERRXT was able to generate summaries out of both
papers. Additionally, the group decided to test SUMMERRXT
with a paper from a domain unrelated to Computer Science. [15]
describes CMEX Mars, a comprehensive set of concept maps
describing all aspects of Mars exploration. A summary was
likewise generated from this paper.All these papers were
automatically tagged by the ARSTA module. Ratherthan give
these summaries away for evaluation, the proponents decided to
evaluate these summaries themselves, due to the complexity and
time requirement of having the evaluators read and analyze all
these documents. Although the evaluation is not ideal and not
performed through to a survey with ample number of respondents,
upon evaluation of the proponents to the summaries produced, the
output and the result is still relatively decent: both informativeness
and coherence are inherent.

6. CONCLUSION AND

RECOMMENDATION

The study focused on combining two approaches in ATS -
keyword extraction and nuclearity, with the latter forming the bulk
of the work.

The group found that the use of discourse structure proved to be
effective in building summaries. Above all, it attends to an
essential characteristic of a good summary - informativeness.
Another discovery was that keyphrases have a 30% role in
affecting the summary generated. Just as Marcu asserted in [10],
the study recognized that nuclearity alone was not sufficient in
creating summaries of very high quality. Particularly, the
summary's coherence - a primary goal in the research, was not
addressed. To sort out this issue, a formal and computable
definition or specification of coherence had to be made.

The highlight of the research was the formulation of the reduction
formula that establishes the recommendable percentage of
keyphrases and rhetorical structure units in generating summaries.
Moreover, the development of an automatic annotation and
tagging of RST components and relationships from textual units
removed the laborious manual tagging, as well as, truly allowing
fully automated summary generation using RST.

The proponents performed a preliminary test for domain
independence. Although the test produced positive results, it still
was not a sufficient basis for concluding that SummerRXT is
domain independent. Therefore, the proponents suggest further
tests to be conducted in this aspect.

The research supposes that the ways of summarizing documents
vary for each domain, and that specializing in a specific field

makes the summarizer more efficient in producing summaries
under that said field. However, it would be an advantage if
SummerRXT could be able to successfully analyze and
summarize texts from arbitrary fields, regardless of its structure
and form. SummerRXT may also be extended to acquire
knowledge autonomously and automatically, without prior
development of a subject-specific dictionary by a human expert.
Possible areas of improvement may also focus on some modules
of SummerRXT, mainly ARSTA and REA. In ARSTA, the
following extensions could be made: 1. dealing with the
ambiguity of cue phrases; 2. dealing with cue phrases signaling
more than 1 RST relation; and 3. moving beyond shallow
processing As for REA, it could be extended to include more
pronouns in its domain. Further work could also include multi-
document summarization. At this day and age wherein
information keeps on growing and time is a critical resource, it is
important to explore methods of allowing people to access and
browse information quickly within a multitude of documents.

7. REFERENCES

[1] Wan, S. (2003) Summarization. [online]. Available:
http://www.ics.mq.edu.au/~swan/summarization/ (January
21,2010)

[2] Hovy, H. & Lin, C.Y. (1998) Automatic Text Summarization
and the SUMMARIST system. Proceedings of a Workshop
on the Annual Meeting of the ACL. Baltimore, Maryland.
[online] Available: http://www.isi.edu/natural-
language/projects/ SUMMARIST.html (January 21, 2010)

[3] Text Mining or Text Analysis Software: Text Analyst.
http://www.megaputer.com/products/ta/index.php3

[4] T.Johnson, S. Thede, A. Vlahov. PARE: An Automatic Text
Summarizer. First Midstates Conference for Undergraduate
Research in Computer Science and Mathematics, 2003.

[5] Mann, William C. and Sandra A. Thompson (1988)
Rhetorical Structure Theory: Toward a functional theory of
text organization. Text, 8 (3): 243-281.

[6] O’Donnell, M. RSTTool—An RST Markup Tool. [online]
Available: http://www.wagsoft.com/RSTTool/ (January 20,
2010)

[71 Witten L.H., Paynter G.W., Frank E., Gutwin C. and Nevill-
Manning C.G. (1999) KEA: Practical automatic keyphrase
extraction. [online]. Available:
http://www.nzdl.org/Kea/Nevill-et-al-1999-DL99-poster.pdf
(March 18, 2005)

[8] Marcu, D. (1999) Instructions for Manually Annotating the
Discourse ~ Structure of Texts. [online] Available:
http://www.isi.edu/~marcu/discourse/AnnotationManuals.ht
ml (January 20, 2010)

[91 O. Mason, (2003). Qtag 3.1. Department of English, School
of Humanities, University of Birmingham,
http://web.bham.ac.uk/O.Mason/s oftware/tagger/

[10] Marcu, D. (1998) To build text summaries of high quality,
nuclearity is not sufficient. The Working Notes of the AAAI-
98 Spring Symposium on Intelligent Text Summarization.
[online] Available:
http://www.isi.edu/~marcu/papers/summarization-aaai98.ps
(February 20, 2010)

[11] Low, C. & Pan, D. (2004) The Write Right Guide. [online]
Available: http://www.cdtl.nus.edu.sg/wrg/default.htm
(February 7, 2010)

[12] Forbes, K., Joshu, A., Miltsakaki, E., Prasad, R. Sarkar, A. &
Webber, B. (2001) D-LTAGSystem - Discourse Parsing with
a Lexicalized Tree Adjoining Grammar. [online] Available:
http://www.sfu.ca/~anoop/papers/pdf/esslli-2001-final.pdf
(February 26, 2010)

[13] Marcu, D. (1997) The rhetorical parsing, summarization, and
generation of natural language texts. [online] Available:
http://www.isi.edu/~marcu/papers/phd-thesis.ps.gz (February
20, 2010)

[14] Alemany, L.A. & Fort, M.F. (2003) Integrating cohesion and
coherence for Automatic Summarization. [online] Available:
http://www.coli.uni-sb.de/conf/eacl03-
student/Alonso_Fuentes.pdf (February 26, 2010)

[15] Briggs, G., Caiias, A.J., Carft, R., Novak, J., Scargle, J., &
Shamma, D.A. (2004) Concept Maps Applied to Mars
Exploration Public Outreach. [online]
Available:http://infolab.northwestern.edu/
infolab/downloads/papers/paper10140.pdf (February 26,
2010)

