The Application of Distributed Discrete Event Simulation
Algorithms to Concatenated LOcal-area and Wide-area
Network (CLOWN) Simulator

Mario Carreon
Department of Computer Science
University of the Philippines Diliman
Diliman, Quezon City

mario.carreon@gmail.com

ABSTRACT

The Concatenated LOcal-area and Wide-area Network or
CLOWN simulator is a network simulator programmed us-
ing object-oriented C that runs on a single processor. This
study aims to take advantage of the inherent parallelism of
network models by implementing a distributed Java version
of CLOWN (D-CLOWN) that can operate in two modes:
one using the conservative Null Message protocol, the other
using the optimistic Time Warp protocol. This paper pin-
points issues arising from this new implementation, describes
the high-level system architecture for model programmers,
and provides benchmarks of the new system (and its differ-
ent modes) as compared to a non-distributed Java version
of CLOWN.
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1. INTRODUCTION

Simulation is defined to be the study of a model of a system.
This model is an approximation of the system, designed to
more or less mimic the behavior of the actual system when
exposed to the same scenario while being less expensive (in
terms of cost or time) than the actual system.

Due to the nature of the system model or the target objec-
tive, simulation may take an exceedingly long time to run.
Kuratti in [1] describes engineering simulations that involve
over a billion events and take days of simulation time to ex-
ecute. And that’s just for a single simulation run; dozens
simulation runs must be executed over a large set of scenar-
ios to effectively judge the system being modeled.

Increasing simulation speed can be done by increasing the
number of processors handling the simulation. There are two
strategies for this. One is by running on each processor an
instance of the simulation engine but running different test

data (Single Instruction, Multiple Data set). The second
strategy is by running a single simulation engine on mul-
tiple processors (Multiple Instruction, Multiple data set).
Literature defines the former as ”parallelizing” the simula-
tion while the latter is called ”distributing” the simulation.

2]

Distributing a machine into a set of logical processes [2]
requires an additional level of complexity. First there is
a need for message passing across a network, as data now
resides in several computers rather than shared memory. In
addition, synchronization protocols are now needed to keep
the system running as a single unit. Although this may
seem complicated as compared to parallel simulation, some
models may take up too many resources to be run on a
single machine: some simulations can only be executed on a
distributed system.

This paper discusses the re-implementation of the Concate-
nated LOcal-area and Wide-area Network (CLOWN) sim-
ulator into the distributed paradigm (D-CLOWN). First is
a discussion of the original CLOWN system. After that,
this paper tackles two synchronization protocols: the con-
servative Null Message and the optimistic Time Warp. As
D-CLOWN is implemented in Java, this paper surveys pre-
vious attempts of other researchers in creating their own
Java-based distributed simulations.

After the review of related literature, this paper delves into
D-CLOWN itself. In particular, this paper talks about the
distributed system architecture, followed a summary of the
D-CLOWN API, and finally some issues arising from the
port from C to distributed Java.

The final part of this paper presents benchmarks for D-
CLOWN. D-CLOWN is made to run on Null Message and
Time Warp with a non-distributed Java version of CLOWN
(as not to take programming language differences into ac-
count) over different network models to provide comparsion.
These network models target performance issues like mes-
sage passing delay vs shared memory and effects of changing
the number of computers running the simulation. Also, a
section is devoted on the theoretical aspect of D-CLOWN;,
how experimental data of a FIFO queue model matches
those predicted in Queueing theory.
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Figure 1: CLOWN System architecture

2. REVIEW OF RELATED LITERATURE

This section discusses the CLOWN system architecture and
the process by which a network model is loaded for simula-
tion. Converting CLOWN into the distributed paradigm in-
volves an entirely new framework, so a review of distributed
discrete event simulation is needed. Then this section delves
into the two synchronization protocols to be implemented in
D-CLOWN: Null Message protocol and the Time Warp al-
gorithm.

2.1 CLOWN simulator

The Concatenated LOcal and Wide Area Network (CLOWN)
[3, 4, 5] is an object-oriented simulation environment writ-
ten in C. This section discusses the system architecture of
CLOWN (shown in Figure 1) in relation to the process of
loading and running a network model.

CLOWN simulation model creation has two parts. The first
is though the creation of user-defined modules or by modi-
fying built-in network object libraries.

A CLOWN module defines how a module executes events
through function calls. It would follow that each simula-
tion event type has a corresponding handler function in the
module. Once defined, all these modules are then loaded
into the Model Database.

Next, CLOWN accepts an input file describing how the
network model is built up from the modules in the Model
Database. CLOWN parses the file and creates the model in
memory through the Model Builder. The Experimentation
Manager then checks the file for validity using the entries
in the Model Database. Once this has been verified, simu-
lation can begin. CLOWN and D-CLOWN input files are
discussed in greater detail in section 3.7.1.

Every simulation model is a specification of a physical sys-
tem in terms of a set of states and events. Discrete event
simulators like CLOWN have an Event List which chrono-
logically stores states. Simulation progresses when the ele-
ment at the front of the list is triggered, causing states to
change and/or add new events to the event list. These are
taken care of by the Event Handler subsystem.

Additional subsystems of CLOWN are as follows:
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Figure 2: Parts of a Simulation Engine
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e Message Handler - facilitates information exchange be-
tween network modules.

e Queue Manager - a library of different queue types
(FIFO, Shortest Job First, etc...) for use by network
modules

e Stochastic Manager - a library of different random
number generators that return numbers according to
a particular distribution. Clown provides a library for
exponential, Weibull, uniform, and normal distribu-
tion.

Converting CLOWN into a distributed version necessitates
some significant changes to its system architecture. For ex-
ample, as network modules now reside on different comput-
ers, the Message Handler must be able to transmit mes-
sages not only locally, but also across a network. The Model
Builder must be able to instantiate modules on remote com-
puters. Finally, the Event List and Experimentation Man-
ager must consider that some events are executed on remote
computers.

2.2 Distributed Discrete Event Simulation

Discrete event simulation (DES) divides simulation into a set
of events. These events are stored sequentially in an Event
List (EVL). The simulation progress when the Simulation
Engine (SE) chooses the next event from the EVL and acts
on it, causing a change in the state of the model represented
by State Table S and an advancement of Virtual Time (VT).
Figure 2 shows an illustration of the simulation engine.

Distributed discrete event simulation divides the model into
a set of logical processes (LP). Each LP represents a region
of the simulation. This region could be a subset of the whole
simulation in terms of its location in the system, or it could
be a sub-epoch of the whole scenario. [2]

Partitioning the model requires that each region simulate a
subset of the state variables. The model must be statisti-
cally divided into these regions taking into account that bad
partitioning may cause the entire simulation to slow down
due to message passing overhead (significantly slower over a
network than with just shared memory). [6]

Each logical process has its own simulation engine, with a
State Table representing the region the LP belongs to. The
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Figure 3: Distributed Discrete Simulation Engine
architecture

FEvent List of the Simulation engine contains internal events,
or locally generated events. And since events acting on the
local state table may come from other LPs, a communi-
cation interface (CI) contains these external events. Syn-
chronous LP simulation implements VT as a global clock
while asynchronous LP simulation implements a local vir-
tual time (LVT) which is the current time of that region of
the simulation. Figure 3 shows a basic system architecture
of a DES.

The simulation engine, as it does in a non-distributed DES,
processes internal events in the event list or external events
in the communication interface in chronological order, ad-
vancing its LVT and changing its state variables. However,
as some events generated by the state change affect states
in other LP’s; the communication interface must be able to
send these events via a Communication system.

Synchronization problems arise in asynchronous LP simula-
tion when an event affects already executed events in other
LP’s, as these other LP’s may have different local times.
This is what is termed as a causality error. [2]

Conservative DES protocols avoid this problem by triggering
the SE to only execute events that are considered “safe” to
execute. Optimistic protocols, on the other hand, allow the
SE to execute events regardless of local time in other LP’s
by allowing for a rollback of the simulation to a safe state if
a causality error occurs. This feature is implemented in the
CI for each protocol.

2.3 Conservative Logical Process Simulation
The Conservative Logical Process Simulation performs the
simulation in a way that totally avoids causality errors by
making sure that no events that cause this problem will be
executed. This section discusses the initial work of Chandy,
Misra and Bryant [7] and explores the Null Message Pro-
tocol which counters the problem of memory overflow and
deadlock.

2.3.1 Overview

In a system of N local processes, a conservative LP uses
the following data structures in its communication interface.
Figure 4 illustrates this structure.
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Figure 4: Conservative Local Process System Archi-
tecture

e Input Buffers IB[1..N] which queue all incoming event
messages from LP[1] to LP[N]

e Channel Clock CC[1..N] which is set to the time of the
element at the front of its respective input buffer.

e Output Buffers OB[1..N] which queue outgoing mes-
sages to LP[1] to LP[N]

e The Local Virtual Time Horizon (LVTH) which is set
to the minimum of CCJ ].

Simulation still proceeds in the same manner as with non-

distributed DES. The event with the lowest timestamp, whether

from the input buffer or the event list, is chosen for execu-
tion, causing a change of state which generates either in-
ternal and /or external events. However, the LP must follow
the following principles to guarantee that no causality events
ever occur.

1. The LP processes events only up to an LVT for which
it is guaranteed not to receive external event messages
with timestamp in the future. This is called the local
virtual time horizon (LVTH).

2. Events, both internal and external, are processed in
chronological order. This guarantees that the sequence
of external event messages produced by this LP will
also be in chronological order.

3. The communication system preserves the order of mes-
sages sent, ensuring that all LP’s receive messages in
chronological order.

Given the LVTH, an LP processes local and external events
until its LVT reaches LVTH. Upon reaching this state, the
LP blocks until new external messages® arrive to extend the

L This paper will be using the terms “event” and “message”
interchangeably



LVTH. As LVTH is the lowest timestamp of all incoming
events, and that no out of order events arrive, it follows
that an LP running with these principles does not execute
events that have the potential to be out of order.

However, this blocking behavior is ripe for deadlock when
LP’s cyclically wait for each other. In addition, an LP that
blocks may reach a point where local memory may not be
able to buffer the backlogged events. The Null Message Pro-
tocol, discussed in the next section, discusses a systematic
way to advance LVTH and avoid the blocking behavior of
the basic protocol.

2.3.2  Null Message Protocol

In essence, an LP blocks when it has processed all events up
to its LVTH. Only though external messages can its LVTH
be extended. And external messages are only received by an
LP when the simulation requires processing in that LP.

A relatively unused LP does not move past its LVTH, even
though it has pending events, becuase it is not notified that
other LP’s have moved on with their processing until it gets
an external message. The Null Message Protocol [7, 2] guar-
antees that all LP’s are aware of the continuing simulation
occuring in other LP’s via the exchange of Null Messages.

All external messages exchanged by LP’s come in the form
<ee@t> where ee is a description of the event and t is the
timestamp of the event based on the LVT of the LP where
the event originated. A null message used in the null mes-
sage protocol is a special external message in the form <0QLVT>.
This null message has nothing to do with the simulation, it
is used for the exchange of synchronization information.

If an LP does not have a transaction with some remote LP
at a certain time T, then it sends this null message to the
remote LP. This indicates to the remote LP that this LP will
not be sending any other message smaller than the times-
tamp T, which can be used by the remote LP to advance its
LVTH.

An optimization to this is to send the null message with
timestamp T plus a lookahead value. The lookahead signals
a time of concurrent events where two LP’s can execute their
events in parallel without having to consider causality errors
at all. It can be seen that making the lookahead as far
into the future as possible allows for more parallelism in the
simulation execution and fewer null messages needed to be
sent across the network. [§]

2.4 Optimistic Local Process Simulation

As described in the previous section, conservative local pro-
cesses move in lock step to one another to ensure that no
causality errors occur. This next section discusses the Time
Warp algorithm [2, 9, 10], an optimistic process which sim-
ulate events regardless of the chance of causality errors by
providing a rollback mechanism to recover from such events.

2.4.1 Time Warp Algorithm

An LP using the Time Warp Algorithm proceeds to ad-
vance its LVT, processing its internal and external events
regardless of the local time of other LP’s. When an exter-
nal event occurs with time stamp less than LVT (affecting
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Figure 5: Time Warp System Architecture

already executed events in the LP’s local past), the LP rolls
back simulation to the most recently saved state, and then
proceeds a re-simulation, this time taking account of the
straggler message.

As such, LP’s using this protocol needs to be able to store
state information. This includes not only the state variables
and the event list at each LVT but both incoming and out-
going messages as well. The State of the system, consisting
of the local state variables and event list at a given LVT,
is stored in a State Stack (SS). In addition, incoming and
outgoing messages are stored in an Input Queue (IQ) and
Output Queue (OQ) respectively. Figure 5 illustrates this
architecture.

It can be seen that a rollback not only involves a rollback in
state, but also a rollback in the messages sent out by the LP,
affecting other LP’s. The next section discusses how Time
Warp handles this scenario.

2.4.2 Messages and Anti-messages

Event exchange between Time Warp LP’s still follow the
same message form as in the Conservative LP. <ee@t> indi-
cates an external event generated from some remote LP at
a certain time T, which is the LVT where the event orig-
inated. Time Warp, however, adds an additional term to
the event format to indicate whether it is a positive message
m+ = <ee@t,+> or a negative or antimessagem- = <ee@t,->.

Positive messages m+ are the usual event messages being
sent out by an LP to remote LP’s. During rollbacks, an-
timessages m- are sent to cancel out the corresponding posi-
tive message (ala matter-antimatter reactions in the physical
realm).

An LP responds to m+ and m- in the following ways:



e Messages m+ in the local future (timestamp > LVT)
are processed the usual way: The message’s event is
placed in the input queue and is processed when the
LVT reaches the timestamp of m+

e Messages m+ in the local past (timestamp < LVT) are
straggler messages and would mean that a rollback is
needed. State data from the LVT nearest m+’s times-
tamp is loaded into the state variables as well as the
corresponding event list for that time.The IQ’s LVT
pointer is rolled back to take into account past ex-
ternal events, this time including the errant message.
And for every message in the OQ that have been sent
out (as it appears) erroneously, an antimessage is sent
out in order to cancel the wrong message.

e If an antimessage m- whose corresponding m+ is in
the local future, then m+- is annihilated from the input
queue. As m+ hasn’t been executed yet, no additional
steps are required.

e If an antimessage m- whose corresponding m+ is in the
local past, a rollback occurs as described above, and a
re-simulation occurs with the m+ message cancelled.

e If an antimessage m- does not have a corresponding
m+ in the input queue, it is placed in the input queue
in order to annihilate the delayed m+.

Since antimessages can initiate rollbacks in other LP’s, which
in turn may send more antimessages in the system, then
there is the chance of rollback chains and even recursive
rollbacks. However, the protocol guarantees that all such
events will eventually terminate, despite consuming a lot of
time and communication resources. [2, 9, 10]

2.4.3 Fossil Collection

As the algorithm is described so far, the longer the simula-
tion runs, the more memory resources are needed to store
previous state information. A solution to this is to erase
state information that is no longer needed by the simula-
tion. Ferscha in [2] describes a strategy which defines a
Global Virtual Time or GVT.

GVT is the minimum timestamp of the entire simulation.
This comes from the least timestamp of LVTs of the system,
as well as the timestamp of messages in transit. An LP only
rollbacks if it receives a straggler message whose timestamp
is less than that of its LVT. Since GVT is the timestamp
of the simulation that is farthest back in time, it therefore
follows that GVT is the farthest back in time that an LP
can be rolled back.

It would follow then that events with timestamp less than
that of GVT are irrevocably committed [2] and the LP can
safely remove all state information from that time. This re-
moval not only affects the State Stack, but also all outdated
information in the Input and Output Queues.

Although there are many algorithms for GVT computation
as described in [2, 11, 12] DCLOWN would only use a simple
querying mechanism wherein an LP can ask other LP’s for
their least timestamp and computes its GVT given all the
minimum timestamps. Although this is not an exact value
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Figure 6: D-CLOWN system architecture

for GVT, even suboptimal values of GVT provide fossil col-
lection.

3. METHODOLOGY

This section is divided into three parts. First is the system
architecture of D-CLOWN. Next is a description of how a
simulation is run. The last part of this section is a discussion
of D-CLOWN’s performance on certain models.

3.1 D-CLOWN system architecture

D-CLOWN was implemented using a layered system archi-
tecture. Each layer abstracts the layer above it from imple-
mentation issues so that in the simulation layer the modules
making up the simulation are not aware of the distribution
of the model. Each layer is tackled in turn, discussing the
interface methods it provides to the layer above it. This
section concludes with a discussion of the classes in the top-
most layer which are used by model programmers to create
their simulation model.

3.2 Java RMI

D-CLOWN uses Java Remote Method Invocation (Java RMI).
Similar to Remote Procedure Calls but in the Java applica-
tion environment, Java RMI gives the programmer an illu-
sion of a simple local method call to an object in reality
existing in a separate system. Java RMI already handles
socket creation, data exchange across the network, packag-
ing parameters and returning values, eliminating the need
for implementation by the application programmer.

The main remote object in DCLOWN is the Virtual Machine
Groups (VMGroups), following the nomenclature of [13, 6]
which will discussed in a later section.

3.3 Communication Layer

The communication layer attempts to abstract the upper
layers from remote method invocation. All inter-VMGroup
communication (and thus all D-CLOWN communication)
are via methods of the CommSystem class which resides in
this layer.

The CommSystem class maintains a table of references to
VMGroups, both the local VMGroup, and remote references



to other VMGroups, all properly linked during simulation
startup. In addition, this class has a PartitionTable, which
stores the simulation model’s distribution: which modules
(indicated by module id) are on which hosts in the network.

3.4 Logical Process Layer

The VMGroup (borrowing from the naming convention of
FATWa [13, 6]) is the core class of the Logical Process Layer.
It is the backbone class of the D-CLOWN network. All
hosts of the D-CLOWN network each run an instance of
VMGroup. Simulation engine instantiation, message receiv-
ing, initialization of network modules are all handled by this

group.

The Java RMI section talked about a server object that

waits for clients remotely accessing its methods. In D-CLOWN,

VMGroups act as these servers. To load VMGroup into

memory, the user needs to run the executable class ClownServer,

which registers VMGroup with a network-accessible name.
Then this class waits for incoming method calls.

Although the CommSystem is on a layer below the Logical
Process Layer, the CommSystem actually calls VMGroup
methods, it mearly abstracts the upper layers from the RMI
interface. The sendEvent method in CommSystem actually
calls a particular VMGroup’s receiveEvent method for ex-
ample.

The VMGroup contains a RuntimeLibrary object. This ob-
ject contains the simulation model itself: all the network
modules that was loaded into this host are stored here. It
also contains a reference to a SimulationEngine object. More
on SimulationEngine objects in section 3.5

3.5 Simulation Layer

The Simulation layer holds the classes that are primarily
responsible for running the simulation. In this layer, the
SimulationEngine class runs the simulation without any syn-
chronization protocols; it is a non-distributed Java version
of the original Clown Simulation engine which is only used
for single processor simulation runs. The TimeWarpSE class
and the NullMessageSimulationEngine class are subclasses
of SimulationEngine, which run a distributed simulation fol-
lowing the distributed discrete event protocols. The Simu-
lationEngine that is loaded for this VM Group is determined
by the initializeSimulationEngine() method of VM Group.

3.6 Model Layer

The topmost layer of D-CLOWN, the Model Layer holds
the Network Model itself. Network modules are instances
of BasicModule and all transmission between modules is
through BasicPackets. Module interconnectivity is handled
via IFEnv classes, following the original CLOWN implemen-
tation. State information is stored via ModuleData objects.

3.6.1 Model Layer Components

BasicModules represent modules in the model to be simu-
lated. Model programmers would need to extend this class
and implement certain abstract methods to determine the
behavior of their model’s BasicModules. One such method
is the processPacket() method which will be discussed in a
later section.

void processPacket(BasicPacket packet) {

if (packet instanceof SendPktToServerPkt) {
\\packet is a user-defined
\\subclass of BasicPacket
sendPacket (); \\direct method call

} else if (packet.getHandler().equals("Handler")) {
\\use BasicPacket’s handlertext field

} else if (in_interface.hasHandler(packet)) {
\\ packet is processed by an IFEnv object
in_interface.executeAction(packet);

Figure 7: Different ways of handling packets

BasicModules also come with predefined methods to aid the
model programmer. One such method is the sendPacket(double
time, BasicPacket packet) method, which is called by sub-
classes when a module needs to transmit a packet at a given
time.

BasicPackets are the main information exchange between
modules in the Model Layer. BasicPackets store source
and destination module ids, which allow for proper rout-
ing within the model. BasicPackets also contain methods
that handle timestamping, which provide information for
the model programmer on the behavior of the system.

Intermodule connection is handled via ClownlInterfaces, or
IFEnv classes. IFEnv classes in the original CLOWN im-
plementation acted as an interface between two modules.
IFEnv classes are discussed in detail in a later section.

State information in each module is stored via the Module-
Data object. ModuleData objects store information via a
<key, value> pair; key is a textual description of the field,
value is that field’s value. Module programmers can choose
to use their own classes to store state data. However, us-
ing ModuleData or a subclass thereof allows for consistent
information storage across the Model Layer and allows for
retrieval and storage of data without knowing implementa-
tion specific information.

3.6.2 Handling packets

The BasicModule’s processPacket(BasicPacket packet) method
is called whenever a BasicModule needs to handle a packet.
This is an abstract method; module programmers are re-
quired to implement behavoir for this method for their sub-
classes.

There are three ways for processPacket() to process a packet.
First is via the use of BasicPacket subclasses and the Java
instanceof operation. Second is via the handler string of
a BasicPacket. Lastly, the module programmer can use the
IFEnv EventPair class. See Figure 7 for an illustration of
these three strategies.

The use of the IFEnv EventPair class warrants further dis-
cussion. In the original CLOWN implementation, every ac-
tion is linked to a function which handles that action via
function pointers[3, 5]. Function pointers allowed for a non-



:: Set global parameter ; Set SEngine ; Time Warp
:: Set global parameter ; Max message number ; 10000
:: Select a module ; ROUTINGAPPL ; 1
source id; 1
message arrival distribution ; exponential
mean time between messages ; 0.2
:: End of definition
:: Select a module ; ROUTINGRECEIVER ; 2001
: End of definition
: Connect two modules ; 1 2001
:: End of definition

Figure 8: D-CLOWN datafile highlighting the three
main command types

1 ; 192.168.10.105
501 ; 192.168.10.106
1001; 192.168.10.110
2001; 192.168.10.111

Figure 9: D-CLOWN partition file

static function mapping: an action handler can change dur-
ing runtime. Additionally, function pointers allowed mod-
ules to have a generic runAction command, which allowed
for polymorphism despite being implemented in a non-object-
oriented programming language. D-CLOWN improves on
this by following the event handling paradigm of Java: each
action has a corresponding actionListener which can be de-
fined during runtime.

3.7 Model Building

This section discusses the sequence of steps that occur when
D-CLOWN begins a simulation. In particular, this section
talks on tackle the D-CLOWN input files, classes responsible
for model creation, the process of setting up a distributed
simulation, up to the beginning of simulation execution.

3.7.1 D-CLOWN input files

D-CLOWN accepts two input files, a data file describing the
network model, and a partition file, which describes the dis-
tribution of the modules in the D-CLOWN network. Figure
8 shows an example of a CLOWN data file while Figure 9
shows an example partition file for use in D-CLOWN.

The datafile format has not changed from CLOWN to D-
CLOWN. All commands in the datafile follow the format:

: :<commandtype>;<command name>;<additional params>

The list of all possible commands is stored in the Comman-
dList class. Model programmers seeking to create their own
command sets must modify this class to include additional
commands. The CommandList class converts a textual de-
scription of a command into a numeric value which is pro-
cessed by the ModelBuilder. This allows for multiple textual
descriptions of the same command. See Figure 10 for an ex-
ample CommandList class definition.

3.7.2  Model Building

public static final int SOURCEID = 1048;
public static final int BANDWIDTHSHARE = 1049;
public static final int PROPDELAY = 1050;

private static Command commlist[ ] = {
new Command("set source id" , SOURCEID ),
new Command("bandwidth share" , BANDWIDTHSHARE),
new Command("packet delay" , PROPDELAY),
new Command("propagation delay", PROPDELAY),

Figure 10: Excerpt of D-CLOWN’s CommandList
file

—— _|read|by
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Figure 11: Setting up the D-CLOWN network

To begin simulation, the ClownCore class must first be ex-
ecuted. This would begin the process of parsing the input
files, loading BasicModules into their respective VM Groups
accross the network, and then starting the simulation.

When the ClownCore first starts, it creates an instance of
the Overseer class, which is responsible for model building.
First the Overseer class reads the partition file and deter-
mines which hosts in the network will take part in the simu-
lation. The Overseer connects with these remote hosts and
sets up the CommSystem. The CommSystem is responsi-
ble for the interchange of information across the simulation
hosts. See Figure 11 for an illustration of this process.

After the Overseer sets up the network, the ClownCore cre-
ates a ModelBuilder object. The ModelBuilder class is a
re-implementation of the old

HPSIM_LoadModule() method of CLOWN, which is respon-
sible for the creation of the simulation’s Modules. However,
unline CLOWN, D-CLOWN’s ModelBuilder allows for the
creation of Modules on remote hosts.

The ModelBuilder’s primary task is to parse the data file.
First it determines what BasicModules to load via a tex-
tual description in the data file. The conversion of a tex-
tual description of a BasicModule into an actual BasicMod-
ule object is handled by the BasicModuleFactory class. Its
BasicModule createModule(String moduletype) accepts the
string description, and then returns an appropriate Basic-
Module subclass. Model programmers must modify this
class to allow their custom BasicModules to be loaded into
the simulation model. Figure 12 shows an example of a Ba-
sicModuleFactory implementation.

Once an appropriate BasicModule has been initialized, Mod-
elBuilder calls its editModule() method. This method is
used in conjunction with the CommandList class in order to



class BasicModuleFactory {

pendent on these functions to allow for a particular distribu-

public BasicModule createModule(String moduletype) { tion of packets. Queueing theory defines theoretical metrics

if (moduletype.equals("ROUTINGAPPL")) {
return new ROUTINGAPPL();

} else if (moduletype.equals("ROUTINGSERVER")) {
return new ROUTINGSERVER() ;

} else {
return null; \\ no such moduletype

33}

Figure 12: BasicModuleFactory
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Figure 13: D-CLOWN simulation setup

properly initialize the BasicModule as defined by the data
file.

In addition to BasicModule creation and initialization, the
ModelBuilder also connects a BasicModule with other Basic-
Modules in the simulation network. Also, the ModelBuilder
is responsible for setting global parameters as defined in the
data file.

Figure 13 shows a summary of this process of setting up the
D-CLOWN system.

Once the datafile has been read and all the BasicModules
have been loaded into their VMGroups, ClownCore gives
a signal to the CommSystem to start simulation. Once a
VMGroup receives this signal, it runs the initializeModule()
method of each BasicModule in its RuntimeLibrary to set
the initial state of the system. Then it flushes the output
buffers to send the initial events caused by the initial state.

After waiting for a few seconds to finish initial event send-
ing, the simulation begins in ernest, following the distributed
DES protocols. Simualtion ends when a BasicModule calls
the stopAllSimulation() method of the SimulationEngine.
When this happens, VMGroups stop simulation as soon
as possible, and call each BasicModule’s finalizeModule()
method for any last minute processing.

3.8 Implementation Issues
This section discusses issues that came up during the imple-
mentation of the distributed DES algorithms in D-CLOWN.

3.8.1 Starting Seed Problem

The original CLOWN implementation had as one of its global
parameters an option to set the starting seed. This value was
very important to the Stochastic Manager whose libraries
had functions that returned random numbers following a
particular distribution. Traffic generating modules are de-

for a particular distribution of elements arriving at a queue,
and the correctness of network models can be determined
from these formulae.

Setting an initial seed allowed replication of what otherwise
be an unreplicable simulation run. A traffic generating mod-
ule will produce the same distribution of packets given the
same initial seed.

This advantage came as a drawback in a distributed system.
Two traffic generating modules produce different packet dis-
tributions on the same host because alternating calls to
the Stochastic Manager produce different results. However,
these same two traffic generating modules, when placed on
two different hosts but with the same initial seed, call on
the random number generating methods of ClownRandom
in exactly the same order, resulting in identical packet dis-
tribution. When these two applications route packets to a
single queue, the resulting distribution does not fall into the
documented distribution categories: no theoretical metrics
can be easily determined from such a system. Also, this
would entail that a different simulation results would come
out of different distribution schemes.

As a result, D-CLOWN does not support a single global
simulation starting seed. A possible future implementation
can allow for the specific assignment of starting seeds to each
host. However, the purpose of assigning a starting seed to be
able to exactly replicate an experiment does not occur in the
system. The transmission of data over a network opens up
variables such as transmission order, traffic collisions, phys-
ical data propagation delay, among others. Experiments on
a distributed network become very hard to exactly replicate.

3.8.2  Simultaneous Events

Events that have the same timestamps are considered to
be simultaneous events. Unlike regular events that are exe-
cuted according to increasing timestamp, the order by which
simultaneous events are executed can have an effect on the
simulation. Consider a basic protocol where a node retrans-
mits a packet if it does not receive an acknowledgement. If
the retransmission event has the same timestamp as a just
arrived acknowledgement event, then the order of execution
of these two events will produce different results [14].

CLOWN simply uses an arbitrary [14] mechanism for si-
multaneous event tie-breaking, meaning it does not enforce
any particular order in the execution of simultaneous events.
Time Warp is also not affected adversely by simultaneous
events and follows the same arbitrary mechanism as CLOWN.

However, simultaneous events have a great dfect on the Null
Message Protocol[2]. Thus, D-CLOWN using Null Message
Protocol will first execute all simultaneous events before
transmitting any resulting events to other parts of the sim-
ulation.

3.9 Test cases

This section tackles the different network modules used to
test and give benchmarks for the performance of D-CLOWN.
All tests were run on a 10Mbps network using four Pentium
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Figure 14: Test Model running on 4 hosts

4 computers running at 3.0GHz with 1GB of ram. These
computers run Fedora Core 5 and run D-CLOWN on the
Java Virtual Machine included in the Java v1.5.0.06 SDK.

The test network model is shown in Figure 14. This test
network is made up of packet generating applications A that
send packets at a defined rate to the servers S. Servers trans-
mit data at a fixed rate to the Receivers R. If a packet ar-
rives at a server, and the server is currently transmitting,
that packet gets entered into a FIFO queue. The simulation
model itself will be distributed among 4 computers.

Applications, however, have a preferred server (indicated by
the solid line in Figure 14). At simulation start, all applica-
tions are given a weight value which indicates the percentage
of packets sent to the preferred server. For example, an ap-
plication whose preferred server weight is set to 30 sends 30
percent of its packets to the preferred server and the remain-
ing 70 percent is distributed among the three other servers
in the model.

4. RESULTS

This section discusses the metrics gathered from Java CLOWN
and D-CLOWN runs using Null Message and Time Warp.
The network load section shows the overall performance of
D-CLOWN using the weighted server network model. Next
metrics gathered from a degenerate version of the model will
be discussed.

4.1 Network load test

This section describes the results of running the weighted
server model on Java CLOWN and D-CLOWN. Applica-
tions send exponentially distributed packets (with a mean
of 2 packets / second) to the server, which can send out pack-
ets to the receiver at the rate of 100 packets / second to the
receiver. This test varies the preferred server weight from
0 to 100 percent with a model distribution shown in Fig-
ure 14. As can be derived from the illustration, the model
running at 0 percent server weight sends all of its traffic
to other hosts in the simulation, while the model running
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Figure 15: Non-degenerate weighted server execu-
tion times

at 100 percent server weight reduces to a completely par-
allelized simulation. Figure 15 shows execution time versus
preferred server weight.

It can immediately be determined from Figure 15 that Null
Message performs an order of magnitude slower than both
Time Warp and non-distributed CLOWN. Time Warp itself
also performs slower than the non-distributed version, as
transmission of events over memory is significantly faster
than over the network.

It is of note that the performance of Null Message decreases
as the system becomes more parallelized. In a highly decou-
pled system, Null Message moves forward only at the rate
of its lookahead. A null message with lookahead is sent to
a target LP when no external events are to be sent to that
LP. If the system is completely parallelized, then no exter-
nal events are sent to any system except for null messages,
which advance the LVT of all systems by lookahead each
time the model is run. Contrast to that coupled execution,
where frequent messages to remote LPs advance LVT with
a timestamp greater than that of the lookahead.

4.2 Degenerate test

In the degenerate case, server input exceeds its output, thus
queue lengths increase indefinitely. This puts an added load
to the system in terms of memory allocation and additional
processing for all the extra packets alive in the model. This
section discusses the behavior of D-CLOWN under such a
situation, which also gives an indication of how D-CLOWN
performs in similar models with high processing load.

In this test, applications still release 2 packets per second
on an exponential distribution. However, server bandwidth
is now reduced to just 1 packet per second. The network
modules are modified to print to terminal instead of to file
to add processing load to the simulation execution. Figure
16 shows the results of the degenerate test.

With all twelve modules being processed by a single proces-
sor, and the backlog of printing to the terminal, simulation
execution time of the non-distributed version is slowed down
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Figure 16: Execution times of D-CLOWN on the
degenerate model

considerably as can be seen in Figure 16.

Null Message performs with a low variance among the differ-
ent weights, taking advantage of parallel processing. While
a single host must process all incoming packets, thus lead-
ing to simulation delays, Null Message, albeit slow, manages
to use distribution to divide processing load among several
hosts, thus avoiding the bottleneck of event processing and
terminal screen printing.

On the other hand Time Warp performs spectacularly, run-
ning at a faster rate than that of the non-distributed runs
at the high parallelization of the higher preferred server
weights. Time Warp takes advantage of the model’s par-
allelization just like Null Message but does not have the
drawback of having to broadcast null events which delay
simulation.

5. CONCLUSION

This paper has explored the implementation of distributed
discrete event simulation algorithms to the non-distributed
Concatenated LOcal and Wide-area Network simulator. This
paper discussed the conservative Null Message protocol and
the optimistic Time Warp algorithm and addressed issues
regarding the implementation of CLOWN into the object-
oriented Java programming language as D-CLOWN.

D-CLOWN provides a simple way of instantiating network
modules on remote hosts and abstracts inter-host communi-
cation, providing for seamless view of the whole simulation
model at the level of the model programmer, and also pro-
viding an API to assist model programming. In addition,
D-CLOWN users can choose between running their simula-
tion on a single host or to run their distributed simulation
using either Time Warp or Null Message.

Distributing network simulation raises some issues. This
paper has explored the need for the synchronization proto-
cols to keep the distributed system running as a single unit.
Also, a serious setback to simulation execution time is the
significant delay of network message transmission to that of
shared memory, topped off with a high variance in execu-

tion times due to network transmission uncertainties. The
loss of a global initial seed is a severe hindrance, particularly
for simulation debugging, as distribution precludes exactly
replicable results.

However, D-CLOWN shows promise in certain simulation
models, particularly those with high model parallelism and
processing load. Time Warp was shown to perform better
than the non-distributed version in such a case, overcom-
ing the network transmission lag time and produce faster
results.

6. RECOMMENDATIONS

Literature is full of research on optimizations to distributed
discrete event simulation algorithms, and it is recommended
to explore the implementation of these into the D-CLOWN
framework. Another possible avenue of improvement is to
port D-CLOWN into a version that runs directly on the
underlying processor instead of a virtual machine. Although
this implementation loses some of the portability that Java
provides, increased simulation speed may come out of it.
Graphical add-on packages to D-CLOWN;, such as a way to
visualize the currently executing simulation, or a click-and-
drag system for model creation would be a welcome feature
in future D-CLOWN implementations.
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