MDDT: Model Driven Development Tool as Aid for
Learning Programming Fundamentals

Dy, Jeric Bryle
College of Computer Studies
De La Salle University
2401 Taft Avenue, Manila,
Metro Manila 1004
(632) 524-4611

jeric.exe@gmail.com

Syliongka, Leif Romeritch

College of Computer Studies
De La Salle University
2401 Taft Avenue, Manila,
Metro Manila 1004
(632) 524-4611

lairusi@gmail.com

ABSTRACT

In conventional ways, students, who are learning how to program,
struggle with learning the syntax conventions of a particular
programming language more rather than learning how to program
logically. As a solution, various institutions have incorporated
flowcharting as the main tool in teaching fundamentals of
programming. Nonetheless, a flowchart is only as good as a
design unless implemented to certain a programming language.
Hence, in the end, novice programmers still have to struggle with
the syntax conventions of a particular programming language.

This paper presents a system in learning how to program easier by
allowing the users to implement programs using flowcharts and
showing their implementations in various programming language.
By doing so, users are able to compare their implementation as to
what it would look like in an actual programming language. Based
on the survey conducted, the system shows potential in easing the
learning curve of learning how to program. Currently, the system
is still undergoing further development such as incorporating an
interpreter in the system, incorporating an intelligent code
generator for non-deterministic flowcharts and so on.

Keywords
language-oriented programming, model-drivel development, basic
programming, flowchart, code-generator, translator

1. INTRODUCTION

Flowchart is “a means of visually presenting the flow of data
through an information processing systems, the operations
performed within the system and the sequence in which they are
performed” [6]. It is one of the primary teaching tools used by
different institutions in teaching their students the fundamentals of
programming. Flowcharting is said to be an effective tool in

Laureano, Philip

College of Computer Studies
De La Salle University
2401 Taft Avenue, Manila,
Metro Manila 1004
(632) 524-4611

philip.laureano@gmail.com

Liu, Michael David

College of Computer Studies
De La Salle University
2401 Taft Avenue, Manila,
Metro Manila 1004
(632) 524-4611

michael_5569 @yahoo.com

Roxas, Rachel Edita

College of Computer Studies
De La Salle University
2401 Taft Avenue, Manila,
Metro Manila 1004
(632) 524-4611

rachel_roxas2001@yahoo.com

teaching introductory programming as it visual [3] and majority of
the people in the world are said to be visual learners [3].

Several tools have been developed by researchers and institutions
over the past years in order to integrate flowcharts into their
academe programs. Based on the surveys and tests conducted,
integrating flowcharts in teaching programming fundamentals are
very effective as students have shown promising results of
improvement in formulating their solutions and coding it as well.
However, for a flowchart design to be useful, it has to be
converted into some target code.

2. Flowchart as Teaching Aid

Currently, various institutions have included flowcharts in
teaching novice programmers how to program. Based on the
feedbacks and performances of the students, it is said that
flowcharting is an effective tool in teaching introductory
programming as it visual in nature. This is because students these
days are visual learners [3].

By allowing students to model their solutions using flowcharts, it
breaks the students away from struggling in syntax conventions of
a particular language [3]. In effect, students will have more time
to concentrate on learning how to program logically instead of
“struggling” how to program in a particular programming
language.

3. Language Oriented Programming
Language-Oriented Programming (LOP) or also known as
Domain-Specific Language (DSL) is a programming paradigm
wherein domain-related functions or solutions are mapped to
some general-purpose language (GPL) [4].

Based on the idea that LOP languages are mapped to GPLs, LOP
therefore contains abstracted functions and codes of the GPL. By
extension, it is also a subset of the GPL. Given the idea that LOPs
are abstracted and subsets of GPLs, programming in LOPs
therefore makes programming solutions faster as developers have
to code less and still be able to produce the solution. Furthermore,
by lessening the lines that one has to code for a certain program,
developers are hence, bound to commit lesser mistakes in coding
their solutions. In addition, since LOPs are “smaller” than GPLs,
users will also have to explore less of the programming language
and would immediately grasp the idea faster.

Flowcharts in the same manner, is an LOP. In this case, the
domain of the flowchart is programming languages. It gives its
users an abstracted form of programming languages allowing its
users to concentrate more on how to design a program logically
without having the deal with the issues on syntax conventions of
programming languages.

A flowchart may have various equivalent codes when translated.
However, based on the implementations done in RAPTOR, Visual
Logic and FLINT, the developers of these systems devised their
own way to force the translation to one-to-one. An example of
which can be found in Visual Logic, wherein the system included
a modified version of a flowchart which now incorporates the for-
loop and the while-loop consequently enabling the one-to-one
conversion of a flowchart to code.

4. Flowchart Interpreter

Flowchart interpreter is a tool that allows flowcharts to be
simulated [1]. It allows its users to model and receive immediate
feedback regarding their program without the need o translate
their flowcharts to codes.

5. Code Generators

Using the keywords “Code Generators” in Google, there are
indeed many code generators present in the Internet alone — CSS
generators, JavaScript generator, HTML generator and so on.
However, the one we are concern with for this project is the UML
to source code generator. Currently, it is one of the most used
code generators in the industry to increase productivity. It is also
used as one of the teaching aids for students who are starting to
learn how the basics of Object-Oriented Programming (OOP) [8].

[5] proposed a UML to source code generator system called
Metamodel Engine (ME). As shown in Figure 1, given a
development cycle, ME is found between the formulation of the
design and the coding phase.

Figure 1: Position ME in the Development Cycle [5]

In converting the UML to source code, ME uses XMI standard
format as most of the UML tools support this standard. Given the
XMI, ME then imports the XMI file and converts it to the target
code based on the rules of conversion incorporated in the system
in the form of a DLL [6].

Similarly, another UML to code generator developed by [7] takes
the same disposition in the development cycle of a program.
However, instead of converting the flowchart to XMI files, before
converting it to the target code, the system directly converts the
flowchart based on the XML rules included in its repository.

6. System Testing

Based on the testing conducted by [2] for RAPTOR and by [3] for
FLINT, the developed system is mandated in the introductory
courses of their respective institutions. Then, at the end of their
academic term, the effectiveness of the system is evaluation by
observing the students’ performance based on the examinations
conducted and comparing it to the previous academic terms. In
addition to observing the performance of the students, RAPTOR
was also evaluated by means of letting the students answer some
survey questions at the end of the course. Table 1 shows the
survey question used for RAPTOR.

Based on the survey questions of RAPTOR, the developers
evaluated the usability, usefulness, effectiveness of the system [2].
The survey conducted was only confined to finding out the
effectiveness of it only in the modeling or designing level. Since
the aim of this research is to help find out how useful it is to be
able to let the users see the code version of the flowchart, survey
questions in Table 1 are not as helpful for this research; however,
some of the questions that will be formulated for the evaluation of
the system will be patterned in similar manner.

Table 1: RAPTOR Survey Questions [2]

I had few problems learning how to use RAPTOR to create my
programs.

I had few problems getting my programs to run once I had
created them.

I found the Help System in RAPTOR to be useful.

I used the Help System in RAPTOR frequently.

RAPTOR helped me to develop and improve my problem
solving skills.

RAPTOR helped me to better understand how computer
programs operate.

I enjoyed programming in RAPTOR.

Being able to view the contents of variables helped me to test
and debug my programs

My teacher gave me enough instruction on using RAPTOR so
that I could use it effectively to create programs.

7. MDDT System

7.1 System Overview

The system developed is a tool that aims to aid users how to
program from one language to another. Users are to utilize a
model-driven development tool, flowchart, wherein they can code
programs and allow the system to translate it to different
programming languages base on the rules available for the system.
Java was the primary tool used in the development of the system.

7.2 System Architecture

Figure 2 illustrates the system architecture of MDDT. As shown,
the system is composed of an IDE, Syntax Tree Converter and
Code Generator.

XML S Syntax Tree Code Target
Converter Generator Language
Figure 2: System Architecture

7.2.1 Integrated Development Environment (IDE)
The IDE serves as an environment wherein users will be able to
interact with the system such as saving and loading of flowchart,
invoking the system to generate code, view the generated code
and so on.

In addition, using the IDE component of the system, users will
input their implementation in the form of a flowchart through the
IDE. Despite the flowchart being envisioned as a drag and drop
type of programming, nonetheless, users should follow the
flowchart conventions. One may argue that the convention of the
flowchart has the potential to limit its users syntactically;
however, “the flowchart convention is not as limiting as the
convention of a programming language” [6].

Figure 4: Sample Flowchart

Curent Tak Opened Fie: tere. 0%

Figure 3: System Integrated Development Environment

7.2.2 Syntax Tree Generator (STG)

Based on flowchart input of the user, the system converts the
flowchart to a syntax tree. The generated syntax tree from the
flowchart will be used as a basis of conversion of the flowchart to
the target programming language by the code generator.

7.2.1 Code Generator (CG)

The code generator uses the syntax tree generated by the STG
alongside with a set of formulated rules as its input (Please see
Figure 5 for the subset of rules in generating codes in C). The
system then produces the target source code of the user’s program
and returns it to the IDE so that the user can view their
implementation on the target language. Figure 4 shows the
flowchart input of the user, Figure 5 shows the rules (a subset of
the rules) triggered by the sample input in Figure 4. Figure 6
shows the generated code of the flowchart in the target code, C.

<body>
/limports

//methods

#include <stdio.h>

int main()

{
&generatedCode
return 0;

</body>
<whileLoop>
while(&condition){
&true
}
&false
</whileLoop>

<printText>
printf(" &text");
</printText>

Figure 5: Subset of Rules for Generating Codes in C

Figure 6: Generated Code

8. RESULTS AND DISCUSSIONS

8.1 Code Generation

It is important that the system is able to produce codes that are
syntactically correct as one of the main objectives of the system is
to be able to bridge the gap of its users from flowcharts to
implementing it in using a programming language. In order to do
S0, test cases were used in order to test the system.

Various flowcharts with different structures were used as test
cases in testing the system’s code generator. Examples of which
include nested loops, nested if’s, declaration of variables, and so
on. After which, the system was asked to the code equivalent of
the flowchart in the languages that the system currently supports.
Then, codes were then inputted to an IDE where the language of
the code generated is supported to determine the syntax errors are
present. Base on the test conducted, the system is therefore, able
to produce codes that are syntactically correct.

No code quality testing was conducted because the code generated
is dependent on the rules incorporated in the system. Hence, if the
rules included are subpar, the code generated will also be subpar
and vice versa. For this research, the system was only aimed to
produce syntactically correct codes.

8.2 Survey Questions

Table 2 shows the survey questions used for the evaluation of the
system. As discussed earlier, the survey questions formulated
were patterned on RAPTOR’s survey question. The questions for
the evaluation of the system aims to determine whether the
MDDT was able to help the users in gaining new knowledge of
programming, potentially helped its users to ease the learning
curve of syntax conventions, and determine the user friendliness
of the system.

The first question in the survey determines whether the
respondent was oriented properly before they were left to use the
system. Questions 2 and 5 on the other hand determine the user
experience in the system as they were using it and whether or not
they will consider using it in the future for learning purposes.
Questions 3 and 4 determine whether the user was able to gain

knowledge after using the system in terms of creating and
designing programs. Lastly, question 6 determines whether the
system was able to help the user to ease the learning curve of
jumping from designing a program using flowcharts to actually
encoding it. For each question, users were asked to rate them
from the scale of 1 to 5 where 5 being the highest.

A total of 30 respondents were gathered to evaluate the system.
Respondents of the system were non-computer science university
students. All of the evaluators of the system knows only a few
programming concepts and has some knowledge in flowcharting.

In the first phase of the system evaluation, respondents were first
oriented as to what the system does and how to create programs
using the available tools in the system. After the orientation,
respondents were asked to create simple programs such as testing
whether the input was equal to some value, simple guessing game,
and so on.

Table 2: Survey Questions and Results

1. I was oriented enough on how to use MDDT so that | 2.83
I could use it to effectively create programs

2.1t was easy to create program designs using MDDT 220

3. MDDT was able to help me develop and improve my | 2.30
problem solving skills

4. MDDT helped me to better understand how | 2.83
computer programs operate

5. T enjoyed programming in MDDT, and I will | 3.10
consider using it in future.

6. Being able to see the generated code from my | 3.80
flowchart allowed me to understand how to program
using standard codes (particularly in C and/or Java)

Table 2 shows the results of the survey conducted. The first
question shows that the orientation made by the respondents to the
system evaluators were not enough before letting them use the
system. In addition, the results for question 1 probably yielded
average results because it was simply conducted online. In
question 2, most of users find it hard to create programs using the
tool. The analysis for this is that they have to manually connect
the nodes from one to another. It requires respondents to perform
many clicks before they are able to do so. In question 3, the tool
seems to not have helped the respondents to improve in the
problem solving skills. This was because the respondents were not
knowledgeable with programming to begin with. The respondents
might have not seen that programming can be used to solve
problems. In question 4, the tool seem to have helped the
evaluators to better understand how to program. This is probably
because they were able to experience programming first hand and
even design one using visual representations. For question 5, most
of the evaluators gave a high score for this. The analysis for this is
that, the respondents may have enjoyed using shapes to develop
and design a program. For question 6, the respondents believe that
being able to relate their created flowchart to the generated code
has allowed them to understand programming more. The best
analysis for this is that since they have already known the logic
behind their program, they no longer have to struggle in
understanding the program function, but only has to struggle how
to understand the syntax conventions of the programming
language.

9. Future Works and Developments

This research could be extended by examining MDDT’s real
effects in a classroom setting such as in the exam results of the
students, programming projects, performance and so on. Should
the system reach a satisfactory working level, it could then be
mandated into the university’s basic programming classes and
other institutions as well.

In addition, the system could be extended to incorporate Object-
Oriented concepts such as classes, etc. The system could
accommodate more functions like source code to flowchart,
interpreter, and so on. Additionally, a design analyzer could also
be added in order to assist the learner as well. That way, the
students could learn how to programming logically without the
need of an expert.

A study could be conducted in order to examine the quality of the
code that the system is currently providing and how to improve it.
Furthermore, since a flowchart could produce one or more codes,
intelligence or heuristics could be implemented to determine
which will be the best out of the possible codes that can be
generated. The system could also be implemented as a module to
existing programming tutoring systems that incorporates basic
programming tutorials.

10. Conclusions and Recommendations

Based on the experiment conducted by various studies, using of
flowcharts for introductory programming courses is beneficial for
students. Hence, it is no surprise that many institutions such as
those in Taiwan and India incorporate flowcharting as part of their
academe.

The system was able to produce codes that are syntactically
correct based on the test cases used in evaluating the system.
From the flowchart input, the system converts it to syntax tree,
and based on the syntax tree, the system then uses the rules of
conversion along with the generated syntax tree to produce the
target code equivalent of the flowchart. One of the limitations of
the system is that not much validation was incorporated in the
system. Hence, should the user be inputting an invalid or buggy
design, the generated code will also be invalid and buggy.

In addition, rules formulated were only aimed to produce
syntactically correct codes. Thus, should the rules be included are
subpar, codes that will be generated by the system will also be
subpar.

Given an input flowchart, it is possible to generate multiple
versions of codes. However, this will not be supported by the
system as it will not incorporate artificial intelligence to determine
the best code to generate. This idea was adapted from the system
developed by [6], Visual Logic. To be able to produce multiple
codes given a non-deterministic flowchart may also be
incorporated in future development of the system.

Based on the survey conducted, it was found out that allowing
novice programmers to relate their formulated design to some
code will help them in easing to learn how to program. More so, it
was also found out that novice programmers are really visual
learners as they enjoy programming using shapes or flowcharts.
For future works, developers may add syntax validation for the

flowchart and allow the flowchart to be interpreted similar to
RAPTOR and FLINT. Moreover, add more capabilities and
functions to it. It is also recommend that future developers should
include compilers in the system so that user programs may be
compiled and run it in real time.

11. REFERENCES
[1] Bowling Green. (2001). Visual Logic 2.2. Retrieved
November 0, 2009, from Visual Logic:
http://www .visuallogic.org/

2] Carlisle, M. C., Wilson, T. A., Humphries, J. W., &
Hadfield, S. M. (2004). Raptor: Introducing Programming to Non-
majors with Flowcharts. Journal of Computing Sciences in
Colleges ,52 - 60.

[3] Crews, T., & Ziegler, U. (1998). The Flowchart Interpreter
for Introductory Programming Courses. 28th Annual Frontiers in
Education (pp. 307 - 312). Tempe: IEEE Computer Society.

[4] Dmitriev, S., & JetBrains. (2004, November). Language
Oriented Programming: The Next Programming Paradigm.
Retrieved September 27, 2009, from OnBoard:
http://www.onboard.jetbrains.com/is1/articles/04/10/lop/

[5] Guisset, J., & Mascherpa, L. (2004, September 9).
Metalmodel Engine. Retrieved November 21, 2009, from
Sourceforge: http://m-engine.sourceforge.net/doc/index.xml

[6] National Institute of Open Schooling. (n.d.). Flowcharting.
Retrieved December 4, 2009, from NOS : Certificate in Computer
Applications: http://www .nos.org/htm/basic2.htm

[7] Park, D. H., & Kim, S. D. (2001). XML Rule Based
Source Code Generator for UML CASE Tool. APSEC
Proceedings of the Eighth Asia-Pacific on Software Engineering
Conference (p. 53). Washington, DC, USA: IEEE Computer
Society.

[8] University of Paderborn. (2009, November 18). About
Fujaba. Retrieved December 10, 2009, from Fujaba Tool Suite:
http://www .fujaba.de/projects/education-with-life3 teaching-
object-oriented-concepts-and-design-with-eclipse.html

