Developing Class Scheduler
using Genetic Algorithm

Dave E. Marcial

College of Computer Studies,
Silliman University
Dumaguete City
63 — 035 - 4226033

demarcial@su.edu.ph

ABSTRACT

This paper discusses the applicability of Genetic Algorithm asa
solution in developing an automated class scheduler system.
Constraints like time conflicts, room conflicts, and profesor
information were organized, considered and solved in the study.

Three types of iterations were done to investigate how much
looping the algorithm would need to get the lowest amount of
conflicts possible. For the 500 iterations, there was an average
of 10.43 conflicts. These conflicts were the total of conflcts
from the faculty and the room. For the 1000 iterations, an
average of 9.28 conflicts, and the 1500 iterations resulted in an
average of 12.78 conflicts. These findings suggest that the
higher the iteration rate, the more conflict is acquired. The
same occurrence has happened on an iteration that is too low.
Thus, an iteration of 1000 is embedded since it has the lowest
conflict rate among the three tests.

The resulting schedules varied since the data was generated
randomly. Also, there wasn’t an occurrence when both of the
faculty and room did not have a conflict at the same time. This
just proves that for a college with many courses to generae, a
100% conflict-free schedule may not be possible.

Keywords: Genetic Algorithm, Class Scheduler

1. INTRODUCTION

A class schedule is one of the most important things in any
university. The schedule would determine the tasks of the
faculty, and it will be carried on for a whole semester. The
process of scheduling is difficult and intricate, since many
factors are to be considered. A schedule would usually take one
to two weeks to finish by the secretary, since it is very complex.
It is interesting to know if a scheduling process that is usually
done by a person could really be solved by using an algorithm.

An algorithm is defined as a step-by-step problem solving
procedure, used in order to solve a problem in a finite number
of steps. However, many problems still exist wherein no

Albert Geroncio Rivera

College of Computer Studies,
Silliman University
Dumaguete City
63 — 035 - 4226033

alrivs@yahoo.com

algorithms can solve in a reasonable number of steps. Many
interesting problems known are classified as Nondeterministic
Polynomial-complete (NPC).

One of the features that make NP-complete problems so
difficult is that the search space for potential solutions is
sometimes so large that not every possible solution can be
checked. A genetic algorithm narrows down this potentially
large search space by using iteration and evolution techniques
to jump over large patches of unlikely candidate solutions.

This presents the applicability of Genetic Algorithm (GA) asa
solution in the development of a class scheduler. Accordingly,
GA can be applied with great success on a wide range of
problems, including class scheduling problems. Organizing a
class schedule for a college or a department is a difficult
endeavor. Time conflicts, room conflicts, and professor
preferences all have to be organized and solved. In many cases
an ideal solution may not exist, but in genetic algorithm,
settling for suboptimal solution may be the best option.

1.1 Theoretical Background

Genetic Algorithms (GA) are intelligent heuristic methods that
follow a process that simulates evolution in the computer. For a
specific problem the solution is represented as a chromosome,
which generally contains a sequence of Os and 1s, indicating
the values of a vector of decision variables. For this sting of
chromosomes, the objective value can be completed. A genetic
method starts with a randomly generated population of
solutions, and randomly combined portions of chromosomes
together to form new solutions with an occasional notation. The
new solutions are tested for feasibility. The best feasible ones
from the previous and current generations are selected to
survive to reproduce. After several combination iterations, the
best solution is typically near an optimal solution to the
decision making problem. Genetic algorithms have been
applied to many large scale combinatorial mathematical
programming problems such as large scale scheduling
problems. Further, the “basic goal of genetic algorithms (aso
known as evolutionary algorithms) is to develop systems that
demonstrate self-organization and adaptation on the sole basis

of exposure to the environment, similar to biological organsms.
Attaining such a goal would provide special capabilities in
pattern recognition, categorization, and association; that &, the
system would be able to learn to adapt to changes.” (Turban,
Efraim and Aronson, Jay E. (1998).

Genetic algorithm is described as an iterative procedure
maintaining a population of structures that are candidate
solutions to specific domain challenges. Like in biological
systems, a chromosome can make a copy of itself. The copy
might be slightly different from its parent. During each
generation, the structures in the current population are rated for
their effectiveness as domain solutions, and on the basis of
these evaluations, a new population of candidate solutions is
formed using specific ‘genetic operators’ such as reproduction,
crossover, and mutation. (Grefenstette, 1982)

Genetic algorithm systems start with a fixed size population of
data structures which are used to perform some given tasks.
After requiring the structure to execute the specified tasks some
number of times, the structures are rated on their performance
and a new generation of data structures is then created. The
new generation is created by mating the higher performing
structures to produce offspring. These offspring and their
parents are then retained for the next generation while the
poorer performing structure is discarded. (Patterson, 1990)

1.2 Definition of Terms

The following terms are described for a better
understanding in this paper:

® Chromosome — this represents a string of data which
contains the solutions. For example, a chromosome
could represent the string 14324 or 42153. Its length
will depend on the constraints.

® Candidate Solution — refers to a possible solutions

e Fitness — this represents the value which is assigned
to a chromosome. The value is based on how far or
close the chromosome is to the solution. A greater
fitness value would represent a better solution.

e Gene — it is considered as a part of a chromosome,
which also contains a part of the solution. For
example, in the chromosome 14324, the genes are 1,
4,3, 2 and 4.

® Mutation — this refers to the process of randomly
changing a gene in a chromosome.

e Nondeterministic Polynomial-complete(NPC)
problems- a problem is said to be NP if its solution
comes from a finite set of possibilities

e Optimization — is deciding for the best alternative
among a given set of choices

® Population — this represents a group of chromosomes,
all having the same length

e Search Space — a space for all possible solutions.

® Selection — this refers to the process of selecting two
new chromosomes for creating the next generation

2. THE RESEARCH COMPONENT
2.1 Complexity and Its Merits

Making a class schedule from scratch is possible by
systematically going through every single combination of
faculty, time, days, and room choices for every single chss
(course) and evaluating them to a large list of constraints. Then
picking the choice with the smaller number of constraint
violations. However for even a small number of classes,
faculties, and rooms, the combinations to choose from rapidly
ascend into the hundreds. And each of those hundreds of
schedule needs to be checked for all violations. As additional
classes are added, the search space increases exponentially. But
by using genetic algorithm techniques these problems can be
solved.

Genetic Algorithm (GA) is considered as the best-fitting
algorithm to solve the class scheduler system since there are
many existing schedules which use GA. A scheduler has many
constraints to be considered and there are various possible
candidate solutions. Therefore, it produces a large search space.
GA is a helpful tool in solving problems with a large search
space since it has the ability to narrow it down to be able t
find the best solution for a problem. Additionally, the GA
approach gives the ease of handling random kinds of
constraints which is present in a scheduling problem. The
chromosomes containing the constraints can be assigned with a
fitness value, making it easy for the GA scheduler to producea
wider range of better alternative solutions.

The Class Scheduler System has the ability to automatically
produce alternative class schedules based on the faculty,
course, and room information. Everything will be handled by
the application; all that the secretary would do is to supply al
the necessary information. In that case, it lessen the burden of
the college secretary in assigning schedules and checking if
there are classes that conflict with each other.

2.2 Constraints

The variables in generating alternative class schedules include
the field of expertise of the faculty, the time preference, unit
load of the faculty, part or full-time faculty, class siz, class
section, availability of the room, room capability, and sevice
units requested by other colleges.

Only the College of Computer Studies was used as the pilot far
the development of the system in proving the applicability of
genetic algorithm.

2.3 Search Techniques

Genetic Algorithm is a search technique used in computing to
find exact or approximate solutions to optimization and search
problems. Genetic Algorithm could be applied in a class
scheduler system in order to create a system that would be able
to translate human thinking into an effective program. Also,
this algorithm is a way of mimicking the same process of a
human intelligence.

The general algorithm that is being used is as follows:

START

Generate initial population.

Assign fitness function to all individuals.

DO UNTIL best solution is found
Select individuals from current generation
Create new offspring with mutation and/or
breeding
Compute new fitness for all individuals
Kill all the unfit individuals to give space to
new offspring
Check if best solution is found

LOOP

END

The basic idea of GA is to randomly generate an initial
population which consists of possible solutions. Each of these
solutions is represented by chromosomes, and is assigned with
a fitness function. The fitness determines how far or close a
chromosome is from a solution. The greater the fitness vdue,
the better solution it contains. At this point a couple of
solutions are chosen from among the relatively better ones in
the population, and a form of gene-splicing occurs. In other
words a random part of one solution is grabbed and placed
within another. With every iteration, the algorithm creates new
solutions from parts of existing ones. These new solutions are
then placed into the population replacing some of the worst
solutions that currently reside there, thereby slowly giving favor
to better and better fitness values.

The generation of successors in a GA is determined by a set of
operators that recombine and mutate selected members. These
operators correspond to idealized version of genetic operations
found in biological evolution. The two most common operators
are crossover and mutation. Crossover is a genetic operator
used to vary the programming of a chromosome from one
generation to the next. It is analogous to reproduction and
biological crossover, upon which genetic algorithms are basad.
This operator produces two new offspring from two parent
strings, by copying selected bits from each parent. On the other
hand, mutation operator is used to maintain genetic diversity
from one generation of a population of chromosomes to the
next. It is analogous to biological mutation. Mutation operaor
produces small random changes to the bit string by choosing a
single bit at random, then changing its value. (Mitchell, 1997)

2.4 GA’s Pseudocode
Presented below are the pseudocodes of the GA applied in the
generation of a class schedule:

START

Generate initial population.

Assign fitness function to all individuals.

DO UNTIL best solution is found
Select individuals from current generation
Create new offspring with crossover and
mutation
Compute new fitness for all individuals
Kill all the unfit individuals to give space to

new offsprings

Check if best solution is found
LOOP
END

Pseudocode for the operation testfitness()

BEGIN testfitness() operation

DO UNTIL all Schedules checked
IF Schedule Violates Constraints THEN

INCREMENT Fitness_value

END IF

LOOP

END testfitness() operation

The following are the specific constraints applied in the making
of the class scheduling system, which is the basis in the genetic
algorithm:
e A faculty can only teach one class at a time.
e Aroom can only hold one class at a time.
e A faculty can only teach classes that he/she is capable
of.
e A class may only be held in a room that has the
correct equipment.
e A faculty may prefer not to teach MWF, TTH, in the
morning, afternoon or evening classes.
e A class may only be held in a room that has enough
number of seats.

Pseudocode for the operation useGenOperators()

BEGIN crossover operation

FIND a random crossover point

FOR i = 0 to crossover point 1
child A gene[i] = parent A gene[i]
child B genel[i] = parent B geneli]

END FOR

FOR i = crossover point 1 to crossover point 2
child A gene[i] = parent B geneli]
child B genel[i] = parent A geneli]

END FOR

FOR i = crossover point 2 to gene length
child A gene[i] = parent A gene[i]
child B genel[i] = parent B genei]

END FOR

RETURN children

END crossover operation

BEGIN mutation operation

FOR i=1 to gene length

IF random number is less than the mutation rate

THEN
child A gene[i] = random value
child B gene[i] = random value

END FOR

END mutation operation

2.5 GA’S Operation

7.4.1 Crossover Operation

Crossover operation generates two random numbers in the
range of the total number of classes. Then every course
between those two values will be swapped and all the rest stays

the same. The class with the low fitness value is the one that is
likely to be picked.

EXAMPLE of a crossover operation

Parent A-abcdef

Parent B-ghijkl

random number's = 2,5

ChildC-ablijklIf

ChildD-ghlcdell

7.4.2 Mutation Operation

Crossover alone is not enough to create a good schedule.
Mutation operation is simple but important because it
introduces new population that may have been made impossible
with the initial population. Mutation just takes class randomly
and moves it to another randomly chosen slot. The simplest
way to do mutation is when it is encoded in binary because its
just a matter of flipping the bits.

EXAMPLE of a mutation operation: 1111001001 => 1101001001

3. DESIGN ARCHITECTURE

Figure 1 shows the design architecture of the proposed system.
It starts with the adding of the needed data. The Course
Information (which is composed of the course code, course tile,
course type, class size, units and course category), Room
Information (which is composed of the room number, room
capability, room capacity, name of the building) and Faculty
Information (composed of the faculty's first name, last nane,
subjects to teach, status, type and time preference) will be used
to create the schedules, which would make up the population.
Each schedule in the population will be tested for its fitness
value.

A schedule with the fitness value of zero would state that the
schedule does not violate any of the given constraints, thus
giving it a non-conflicting schedule. Otherwise, if the schedule
would have a higher fitness value, crossover, and mutation
operators (also known as genetic operators) will be applied to
it. That makes up the reference population After passing
through the crossover and mutation operators, the bad schedule
in the reference population will be deleted, and the good
schedules will be retained. After the execution of the genetic
operators, the new schedule will be tested again for its fimess
value. This process will be repeated until the system finds a
schedule which is equal to zero. The final schedule will be
displayed. The manual override feature allows the secretary or
the college dean to modify the generated schedule.

4. ACTIVITY DIAGRAM
4. 1 creatSchedules() operation

First is to put all of the data needed for a class scheduler into
look up tables. Then create an empty object array with the size
of total number of courses offered for a particular semeser. Get
all courses from the look up tables and put them all in the
object array according to their course category. The firg ones to

get in the object array are the course classified as the ‘core’
then the course classified as ‘foundation’.

Then one by one, the course stored in the object array will be
assigned to a faculty that will have an expertise that is equal to
that course. Their priority number and unit overload will also
be prioritized. If the most prioritized faculty will exceed with
his/her the maximum overload then the course will be assigned
to the next prioritized faculty with his expertise equal to that
course and his unit overload will not reach the maximum
overload. If there are more than one faculty that is prioritized
for that subject it will randomly select from that faculty given
that their units overload has not yet reached the maximum. If
there are no more faculties to be assigned to that course, then it
will be assigned as “TTBA” meaning “Teacher to be assigned”.
After that, it will repeat the process of assigning courses to a
faculty until all courses are assigned. These data will also be
placed into the object array.

It will now randomly pick a room and a time slot and will be
placed into the object array.

Testing the fitness of a particular schedule is done by simply
checking if a faculty will have a conflict in his/her time. The
same checking is done for the room. If there will be a conflct,
the fitness value of that particular schedule will be added with
1. After the testing, if the schedule has a fitness value of zero,
the program will automatically stop, and the final schedule will
be displayed. But, if there are no schedules that have a fitness
value of equal to zero, the Genetic Operators will be applied.
See figure 2 how the activity diagram was generated.

4.2 testfitness() Operation

Testfitness() operation’s activity diagram is shown in figire 3.
Testing the fitness of a particular schedule is done by simply
checking if a faculty will have a conflict in his/her time. The
same checking is done for the room. If there will be a conflct,
the fitness value of that particular schedule will be added with
1. After the testing, if the schedule has a fitness value of zero,
the program will automatically stop, and the final schedule will
be displayed. But, if there are no schedules that have a fitness
value of equal to zero, the Genetic Operators will be applied.

4.3. useGenOperators() Operation

This operation as shown in figure 4 will randomly select 4
schedules from the population and will be paired. The first and
second will compete with each other. The schedule with the
lesser fitness value will be placed in an object array called the
‘best_fit’. There is also a ‘worst_fit’ object array. It is for the
schedule that will lose the competition. This means that their
fitness value is greater than the other. Same goes for the third
and fourth picked schedule.

The two schedules that are placed in the best_fit array will be
the parents for creating two new offspring or schedule.

The creation of new schedule will involve two genetic operaors
called the crossover and mutation.

Coe R
Tely e

GENETIC ALGORITHM

il

b (g

el

i iplitn | v

Tt Yot
Titess Mteion
Qpeen

M
Ui

Figure 1. Class Scheduler Design Architecture

.

Store
course,faculty,
room data into loo
up tables

Count number of
courses entered =
Pmaxsize

)

Counter=0

v

Create blank
schedules,
oblect array =

—

Place all
courses into
schedule object

arrav

)

counter =0

\T/

Pick all faculty
that has an
expertise equal
to
schedule(count

(" smone)

Search for the
faculty who will be
the most prioritized
for that subject and

ed

%
counter2=0
~——

Create new
blank

schedule

nhaiart

Place room and
time to schedule
object array

~—

Randomly pick
room and time slot

—r

counter2=0

\4

\ L

Teacher to be

assigned

Iimllu=l’nmin?

counter++

I

Compute unit
load, prep,
and overload

o Assigned faculty to
schedule (course).

has not reached the
maximum overload

—

\/ counter

—

Figure 2. createSchedules() Activity Diagram

start

(A
Load population
. J
' N
Pmaxsize = x
P —
<«
- J
(N\
Pick schedule from
population
| J

Counter==

If arraySched(0).room== If arraySched(0).time==

arraySched(i).room yes arraySched(i).time yes

> Fitness value
+=1
If arraySched(0).f_Iname== no
arraySched(i).f_Iname
yes If arraySched(0).time== yes
arraySched(i).time Fitness value
> > +=1
no
if class_size >
room canacitv yes
» Fitness value
+=1
If time_prefl= time
Is counter== Pmaxsize
counter++ i++
>
no
yes
end

Figure 3. testfitness() Operation Activity Diagram

In crossover, it will randomly generate two random numbers i
range of total number of courses offered for a particular
semester. So if there are 60 courses, two numbers will be
randomized in that range. Every time slot and room of the
parents between those two randomly generated numbers will be
swapped. No crossover operation will occur if for example he
numbers generated is 4 and 5 or 10 and 11, this is because
there are no data to be swapped in between them.

In mutation, it will again randomly generate two random
numbers from 1 to 50. The first number will be for the first
new schedule. The randomly generated number is for
determining if that number is greater than to the mutation rate
which is equal to 20. If it is less than the mutation rate, there
will be a mutation to the first new schedule. The process of'this
is to randomly pick new time slot and room. If the number is
greater than the mutation rate, no mutation will occur. Then
again same goes for the second new schedule.

Now, the two new schedules created will have their fitness
value tested and checked if their fitness value is equal to zero.
If one of the two new schedules has fitness value of zero itwill
stop the execution. If not, the two new schedules will be placed
back to the population table. But before doing that, the
schedules that were placed in the worst fit array will be
deleted, replacing those two new schedules created.

The operation here in useGenOperators() is that it will only
stop if it finds a fitness value equal to zero or if the maximum
iteration has been reached. If the maximum iteration has been
reached, the schedule that has a fitness value closer to zero will
be the final schedule.

5. THE CLASS SCHEDULER

The design of the proposed system intends to create graphical
interface that users can easily understand. Security is of utmost
concern, and the developers have taken steps to ensure that
critical data is only accessible by authorized personnel.
Authorized users are given freedom to manipulate data and
interaction is encouraged. This allows for information exchang
that has the user at the center of consideration. In many cases
an ideal solution may not exist, but in genetic algorithm,
settling for suboptimal solution may be the best option. See
figure 5 for the main page of the proposed system.

6. TESTING & EVALUATION

Table 1 shows the results of the testing and evaluation of the
generation of class schedule highlighting the number of
iterations and the number of conflicts in class schedule created.
In average, generation of class schedule will be finished 5.4
minutes with about 1 conflict in the faculty to a class time and
a room to a class time.

The time it takes to generate the schedule is not stable since the
data was randomly generated, and because of this some data
sets may actually have had no possible solutions. Some
schedule may have conflicts and others don’t have. With these

findings, it clearly states that with the fluctuating results of the
time and conflicts occurred in the schedule, it does not give aut
a 100% schedule but closer to what perfection is. The final
schedule will also vary on the inputted information. For a large
amount of data, the time it took to get to the lowest fimess
value was extensive.

start

Mutation rate=20

counter=0

)
randomly pick
schedules from =

population that had

a high fitness

v B

First picked
schedule ==

parentA
end
w Is fitness
SR

value

Second picked
schedule ==

parentB counter+
\T/ +
)
Generate two
random numbers in

range of total
number of classes

 —

Place two new
schedules into

population and Test fitness
Every course of the deLetg tlvvo Valu?;;’/f two
parents between schedules _new
those two random from the
numbers is swapped population that

__had abad

I

childC == parentA
childD == parentB
Is the first

\—V—/ value below

the mutation |

rate? | v Pick new

Pick two random — start time

numbers between 1 and new

and 50 ranm
Is the /IE
second
< Pick new
start time
and new
n v ranm
t—t

Figure 4. useGenOperators() Operation Activity Diagram

7 501 Class Scheduler

E”
G

7

Waltaing, c2s! HBZ009 I0243FH

TsfSemesie SY. 20082008 . Jirstrame v [Senen |[snont | [aostewpaeuy

| First Hame Last Hame: Stohus
Course Inforrnation

i

Room Infarmatien

Change SEMIS Y,

Vigw Report

Azcount Setings

SIS Fullfme Y Mitive

GENERATE S R i
SCHEDULE ek]

SWE_ | DBLETE |

Figure 5. SU Class Scheduler User Interface

Table 1. Testing Results

Faculty-time Room-Time
1% trial 6 1 0
2" trial 5 0 2
3" trial 5 0 1
4™ trial 6 1 0
5" trial 6 0 1
6" trial 5 0 2
7% trial 5 1 0
8" trial 5 2 1
9" trial 6 0 2
10™ trial 5 1 0

The testing contains the following constraints in the generation

of class schedules.
e Total number of courses: 65

Total Number of Rooms: 12

Total Number of Faculty 14

A faculty can only teach one class at a time.

A room can only hold one class at a time.

A faculty can only teach classes that he/she is capable

of.

e A class may only be held in a room that has the
correct equipment.

e A faculty may prefer not to teach MWF, TTH, in the
morning, afternoon or evening classes.

e A class may only be held in a room that has enough
number of seats.

There were three more batches of tests that were done — one
with 500, 1000 and 1500 iterations. These iterations were
tested for 50 trials each. The data included 61 courses, 14
faculty and 12 rooms. Three types of iterations were done to
investigate how much looping the algorithm would need to get
the lowest amount of conflicts possible. For the 500 iterations,
there was an average of 10.43 conflicts. These conflicts were
the total of conflicts from the faculty and the room. For the
1000 iterations, an average of 9.28 conflicts, and the 1500
iterations resulted in an average of 12.78 conflicts. These
findings suggest that the higher the iteration rate, the more
conflict is acquired. The same occurrence has happened on an
iteration that is too low. That is why the researchers have
decided to settle for an iteration of 1000, since it has the lowest
conflict rate among the three tests.

7. SUMMARY OF FINDINGS,
CONCLUSION AND
RECOMMENDATION

7.1 Summary of Findings

The purpose of this system is to aid the secretary in creating
class schedules, and it does not only create schedules but
provides an environment that will ease the task of creating a
schedule. With the use of this system, the span of time when
making schedules will be reduced. This system makes sure that
the final schedule will have a minimal number of conflicts as
possible. All of the information that would be used in making
the schedule will be based on what the secretary inputted.

More importantly, the system design intends to create graphical
interface that users can easily understand. Security is of utmost
concern, and the developers have taken steps to ensure that
critical data is only accessible by authorized personnel.
Authorized users are given freedom to manipulate data. This
allows for information exchange that has the user at the center
of consideration. In many cases an ideal solution may not exig,
but in genetic algorithm, settling for suboptimal solution may
be the best option.

7.2 Conclusion

The study concluded that that the higher the iteration rate, the
more conflict is acquired. The same occurrence has happened
on an iteration that is too low. Thus, embedded in the
application program particularly in the algorithm is an iteration
of 1000, since it has the lowest conflict rate among the three
tests.

Further, the study revealed that genetic algorithm does not give
a 100% ideal schedule, but it gives an outcome which is closer
to what an ideal schedule would be. Specifically, it was also
discovered that the proposed system can generate a class
schedule in about 6 minutes with one conflict scenario. Further,
although perfect schedules were almost impossible to come by,
many schedules were found that would at least satisfy all the
major constraints of the problem.

7.3 Recommendation

The Class Scheduler is developed for the purpose of
automatically creating class schedules for the existing Colleges
in Silliman University. The developers recommend that the
system be implemented in the University because it will lessen
the hassle of the college secretaries to manually encode and
compare class schedules. However, due to lack of time to karn
further knowledge about genetic algorithms, the Class
Scheduler System, though a 100 percent running program, has
still limitations and shortcomings.

The system does not guarantee a perfect, non-conflicting
schedule. The development team may have not come up with
the greatest solution to resolve the problem but this shouldn’t
curb the aspiring developers of this system to unravel better
ways and come up with a much improved genetic algorithm and
superior program ideas.

It is also recommended for further study the consideration of
using other methodologies and specific algorithm in genetic
algorithm. Similarly, to conduct a study on another heuristic
approach in generating class schedules that might include other
constraints not mentioned in the study.

Moreover, the researchers further recommend to future
researchers to conduct an evaluative study on the accuracy of
the final schedules generated by the proposed system for
improvement and enhancement.

8. ACKNOWLEDGEMENT

The output of the developed system is made possible
through the ultimate effort of the following developers who
graduated their degree in BSIT namely: Justin Fred M. Opeiia,
Honeylet B. Laput and Elia - Grace V. Limbaga. Special thanks
also to the faculty and staff in the College of Computer Sudies,
Silliman University who helped in the quality assurance
component during the development of the class scheduler
system.

9. REFERENCES

[1] Grefenstette, J. (1982). “Optimization of Control
Parameters for Genetic Algorithms.” IEEE Transactions
on Systems Management and Cybernetics.

[2] Mitchell, 1997[Mitchell, T. M., Machine Learning.
WCB/McGraw Hill, 1997

[3] Patterson, 1990 Introduction to Artificial Intelligence and
Expert Systems, Dan W. Patterson, Prentice-Hall
International Editions, 1990.

[4] Turban, Efraim and Aronson, Jay E. (1998). Decision
Support Systems and Intelligent Systems. Fifth Edition.
Prentice-Hall, Inc.

