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ABSTRACT

A numerical technique called multigrid for optimization or
MGOPT that solves semilinear elliptic optimal control prob-
lems is presented. The given problem is discretized by finite
difference technique incorporated with a multigrid strategy.
To illustrate the MGOPT method, we focus on minimization
problems governed by semilinear elliptic differential equa-
tions.

1. INTRODUCTION

Among the most efficient tools for the solution of systems of
equations arising from the discretization of elliptic optimal
control problems are multigrid methods. Some recent re-
sults and developments of multigrid include the application
to optimal control problems [1, 2, 4], inverse problems [9, 10]
and to real- world problems [3]. The purpose of this paper is
to formulate a fast numerical technique for solving optimal
control problems. We focus on one type of multigrid which is
called the multigrid for optimization or MGOPT. We con-
sider the application of this method for solving semilinear
elliptic optimal control problems. This work is an extension
of [11], where MGOPT is utilized as a solver for linear ellip-
tic optimal control problems. The MGOPT method was first
introduced in [6, 8]. In the MGOPT scheme the multigrid
solution process represents the outer loop where the con-
trol function is considered as the unique dependent variable.
The inner loop consists of a classical one-grid optimization
scheme.

In the next section, optimal control problems are presented
together with the finite difference discretization. This dis-
cretization is utilized for the appropriate optimization algo-
rithms. The section ends with the formulation of the multi-
grid scheme. Numerical experiments follow to demonstrate
the ability of MGOPT in solving control-unconstrained and
control-constrained semilinear elliptic optimal control prob-
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lems and a section of conclusion completes this paper.

2. PROBLEM DESCRIPTION

The purpose of an optimal control problem is to minimize
a cost functional subject to a constraint given by a partial
differential equation. In application, take for example a ma-
terial plate defined over a domain Q2. Let y be the state of the
material representing the temperature distribution over the
domain 2. The heat source and additional temperature con-
tributions can be represented by f and G(y), respectively.
The idea is to control the state y to be close as possible to
a given target function z by applying an additional control
function u. This problem can be formulated as a semilinear
elliptic optimal control problem

minJ(y,u) 1 = 3lly = 20122y + llullzz(q),
—Ay+Fly)—uw = f inQ, (1)
y = 0 on 09,

where v > 0 is the weight of the cost of the control, z €
L?*(Q) is the target function, and f € L*(Q). For the
control-unconstrained case, U = L*(2) and for the control-
constrained case, the control space is a closed convex subset
of L?()

Uss ={uc L*(Q) | u<u <7 a.e. in 0}, (2)

where u and T are elements of L*°(£2). We define the La-
grange functional

L(y>u7p) = J(yau) + <_Ay+ F(y) —Uu-— f>p>H1_17H1 ’

where p is the Lagrange multiplier. Equating to zero the
Fréchet derivatives of L with respect to the triple (y,u,p)
results to the first-order necessary optimality conditions for
a minimum. We get

—Ay+Fly)—vw = f inQ, y=0 ondQ,
—Ap+Fyp+y = inQ, p=0 ondQ (3)
(vu—p,v—u) > 0 foralve Uyg.

I

The first equation is called the state equation, the second
is the adjoint equation. The inequality condition is called
the optimality condition which becomes vu —p = 0 in ) for
the control-unconstrained case. Equation (3) is called the
optimality system which is a characterization of the solution
to the given optimization problem (1). The existence of
a unique solution to (1) and its characterization are well
known. See for example [7].



We now introduce the reduced cost functional
J(u) = J(y(u), ),

together with V.J (u) = vu — p which is the gradient with
respect to u. For the MGOPT method, the gradient projec-
tion method [5] is utilized as the optimization algorithm. We

want to find a solution w of min,, (j (w) = (f, u)) such that
u € Ugq, where U,q is given by (2). Define the projection P
onto U,q by

if u<u,
if u<wu<mu,
if u>mw.

Pu,q(u) =

SIS

Given the current iterate u*, the new iterate u*(«) is defined
as

u[(a) =Pu,, (ul + ad[)7

where « satisfies the sufficient decrease condition [5]

A A o
[ (@) = (£, (@) = [J@) = (£,u)] < =Z |~ (@),
for bound constrained problems and d* is a search direction.

Next we discuss the multigrid procedure. A typical multi-
grid method uses a sequence of nested discretization grids
of increasing fineness

D CQC...CcQL=0.

Associated to the sequence of grids is a sequence of finite
difference spaces

icVeC...CcVp=V.

This means that at each grid level k, the problem
min () = (fi, )i ) (4)
Uk

represents a discrete convex optimization problem which is
equivalent to solving

VJi(ur) = fi

in Q. The term fj is introduced to give a recursive for-
mulation, where fi = 0 at the finest resolution k¥ = L. We
need transfer operators between finer and coarser grids. We
define a restriction operator I ,]: 1 Vi = Vi1 and a pro-
longation operator I,’j,l Vi, — Vi

One cycle of MGOPT method is presented in the following
algorithm.

MGOPT algorithm
Initialize u. If k& = 1, solve min,, (jk(uk) - (fk,uk)k)
Else

1. Apply 71 iterations of an optimization algorithm to the
problem at resolution k.

2. Apply v cycles of MGOPT to the coarse grid problem

min (.]Ak,l(ukfl) - (fkfl,uk—l)k—l)

Up—1

to obtain uy_1, where

foo1 =

Tk—1 =

[;filfk + Te-1 R
V1 (IF 7 ") — IF Vg (ulh).

3. For a given step length a,

i+l om k k=1, 71
ul T =t oy (up—r — I ).

4. Apply 72 iterations of an optimization algorithm to the
problem at resolution k.

The parameter v characterizes the type of multigrid cycle
being used. Typical values are v = 1 which is called the
V-cycle and v = 2 is W-cycle.

Now consider the discrete version of the optimality system
(3). By the finite difference discretization, —Aj, denotes the
minus five-point stencil for the Laplacian and hence we have

—Agyr + Fyr) —us frs
—Apr + F'(y)pe + U6 = 2k,
(vur — pr,vx —ug) > 0.

Let x € Q) where z = (ihg,jhy) and 4, j are the indeces of
the grid points arranged lexicographically. We first set

A =
B =

—(Yi—1,j F Yiv1j + Yij-1 + Yije1) — B2 fi
—(pi-1j +Pit1s+Pij1+Pigi1) —hiz

The values A and B are considered constant during the up-
date of the variables at ¢j. Then

A+ 4yi,j + hQF(yi,j) — h2ui,j = 0,
B+4p;i ; + h*F'(yij)piy + WPyiy = 0,
(Vui,j = Pigy Vi — Uiy) > 0.

We can easily compute the updates for the variables y; ;
and p; ; by using a Newton method and hence we obtain an
update for u; ;. In the presence of constraints, a new value
for u;,; is obtained by its projection onto the admissible set.

3. NUMERICAL RESULTS

We now present the numerical experiments using multigrid
with finite difference method. For the results of the exper-
iments, we use 71 = 2 = 2 pre- and post- optimization
steps. This means that one multigrid cycle uses v1 +v2 = 4
iterations of the optimization algorithm on the finest level.

We discuss the semilinear elliptic optimal control problem

min J(y,u) = 3ly—2lliz + §lluli,
“Ay+F(y)-u = [ in 9
y = 0 on ON.

The domain is the unit square 2 = (0,1) x (0, 1) with f,z €
L?(Q) given by

f($1,172) = 07

z(xi,x2) = sin(2wz1)sin(27wzs).

The target function z is shown in Figure 1.



Figure 1: The target function z.

3.1 Runl

In the semilinear partial differential equation, let F(y) = y.
The numerical results for the control-unconstrained case are
shown in Table 1. In this case, the CPU time in seconds are
noted until the L%-norm of the state and adjoint residuals,
lr(W) |72 and ||7(p)|| 1.2, satisfy a stopping tolerance of tol =
107!, For the control-constrained case, let u(z1, xs) = —40
and u(x1,x2) = 40. The results are reported in Table 2.
The CPU time in seconds are noted until the L*-norm of
the difference ||[u® — u®(1)|| 2 satisfies a stopping tolerance
of tol = 107°. The CPU time approximately increase as
a factor of four by halving the mesh size. This shows an
almost optimal computational complexity of the MGOPT
approach.

Table 1: Numerical results for the control-
unconstrained case of Run 1.

v mesh — [Ir(y)llL>  [Ir(p)[lL>  time (sec)
33x33 1.45le-13 1.16le15 0.1
65x 65  2.976e-13  2.230e-15 0.5
1074 129 x 129 6.288¢-13  6.272e-15 2.4

257 x 257 5.057e-12  4.004e-14 10.6
513 x 513 1.687e-11 1.368e-13 46.3

Table 2: Numerical results for the control-
constrained case of Run 1.

v mesh |lu® —uf(1)]|2  time (sec)
33 x 33 3.31e-05 0.2
65 x 65 2.44e-05 0.6
107% 129 x 129 4.47e-05 2.7
257 x 257 4.33e-05 11.9
513 x 513 9.52e-05 54.2
3.2 Run2

Next we take F(y) = y. In this experiment, the con-
trol function u for the control-unconstrained case and the
control-constrained case are shown in Figure 2 and Figure
3, respectively.

Figure 2: The control function u for the control-
unconstrained case of Run 2.

Figure 3: The control function u for the control-
constrained case of Run 2.

Here, u(z1,z2) and u(x1,x2) are similar as in Run 1. The
results for the control-constrained problem are reported in
Table 3. Similar to the results of Run 1, the CPU time
shows an almost optimal computational complexity of the
MGOPT approach.

Table 3: Numerical results for Run 2.

v mesh luf —uf(1)]|2  time (sec)
33 x 33 2.467e-05 0.6
65 x 65 2.660e-05 1.8
107* 129 x 129 9.968e-05 114
257 x 257 8.441e-05 42.0
513 x 513 8.923e-05 221.3

4. CONCLUSIONS

Multigrid optimization scheme with finite difference discretiza-
tion for solving semilinear elliptic optimal control problems
is presented. In particular, the control-unconstrained and
control-constrained cases are considered. As an optimization
algorithm for the MGOPT method, we consider the gradi-
ent projection method. The results of the numerical experi-
ments show that this multigrid strategy provide a multigrid



computational efficiency. A topic which can be considered
for future research is the appropriate use of other types of
optimization algorithms for faster convergence results.
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