Using SUMO to Represent Storytelling Knowledge

Jeffrey Cua
Center for Language Technologies
De La Salle University
Manila, Philippines

jeffrey.cua@delasalle.ph

ABSTRACT

An ontology is a conceptual model of what “exists” in a domain,
brought into machine-interpretable form by means of expressions
in formal logic. Since ontologies are content theories about the
kinds, properties and relations of objects, story generators can use
them as concept dictionaries for actions and events in a story
world. This paper presents SUMO Stories, a story planner system
that uses the Suggested Upper Merged Ontology (SUMO) to
represent the storytelling knowledge of Picture Books. Picture
Books is an existing story generation system that utilizes a
commonsense knowledge base to generate fables for children age
4-6 years old. The story planner of SUMO Stories utilizes Sigma,
the inference engine of SUMO, in generating story plans. The
story plans are stated in first order logic and represent the
elements of a children’s story. Stories are constrained to follow a
basic plot, where a child violates a rule and learns the moral
lesson at the end of the story.

Keywords
Ontology, First-Order Logic, Story Generation

1. INTRODUCTION

A story is not just simply text; a good story contains creativity,
originality and even imagination, which would keep the target
readers interested. Before addressing these challenging goals, we
first have to ensure that we can generate a simple story that makes
sense, which is one that does not conflict with commonsense
information about the world. A story is made up of words, these
words represent concepts about the things and events that may or
may not exist in the real world. A person cannot create a story
from nothing. Without background conceptual knowledge in
which he/she can represent with words there could be no story.
Only through daily experiences and learning can someone obtain
the knowledge about the world necessary to construct a good
story. Thus, for systems to have the potential to achieve the same
level of expressiveness as people, they must also be provided with
the same collection of knowledge about the basic relations
between things and events.

Swartjes [15] developed a story world ontology containing two
layers, an upper story world ontology and a domain-specific world
ontology. The upper domain-independent story world ontology
models a vast amount of possible actions and events. It is limited
to high-level concepts that are meta, generic or abstract to address
a broad range of domain areas. A domain-specific story world
ontology applies the upper ontology to a certain domain.

Kooijman [7] suggests the use of the Suggested Upper Merged
Ontology (SUMO) as an upper ontology to capture the semantics

Ethel Ong

Center for Language Technologies
De La Salle University
Manila, Philippines

ethel.ong@delasalle.ph

37

Adam Pease
Articulate Software
Angwin, California

USA

apease@articulatesoftware.com

of world knowledge. SUMO [10] is an open source formal and
public ontology. It is a collection of well-defined and well-
documented concepts, interconnected into a logical theory.
Although originally just an upper ontology, it now contains some
20,000 terms and 70,000 axioms, having incorporated many
formal domain ontologies. Axioms are in first-order logic form
(with some higher order extensions) and reflect commonsense
notions that are generally recognized among the concepts. They
place a constraint on the interpretation of concepts and provide
guidelines for automated reasoning systems such as Sigma [12].
Sigma incorporates a version of the Vampire [13] theorem prover,
and the SInE axiom selection method [5] as well as the full TPTP
suite of theorem provers [14]. SUMO is stated in SUO-KIF, a
variant of KIF [4], which is first-order logic with equality and
some higher-order extensions.

This paper presents SUMO Stories, an automatic story generator
that uses first-order logic to declaratively describe models of the
world, specifically those aspects of the world that represent
storytelling knowledge for children’s stories of the fable form.
The story planner then utilizes Sigma to infer this knowledge in
order to generate a story plan also in first-order logic. Although
there exist a number of choices for knowledge representation in
formal logic, we chose first-order logic because it enables a less
restricted semantics compared to description logic. In particular,
the axiomatic nature of actions and their consequences, essential
for reasoning about narrative structures, is not supported by
description logics, which focus on category and instance
membership reasoning.

In this paper, we focus on discussing the representation of Picture
Books’ [6] storytelling knowledge [11] in SUMO, and the
interaction between the story planner and Sigma to derive the
story plan. The paper ends with a summary of what we have
learned including the issues discovered, and presents further work
that can be done.

2. REPRESENTING STORYTELLING

KNOWLEDGE IN SUMO

Story generators require two types of knowledge, the
narratological or operational knowledge representing concepts
about narrative structures, and the storytelling domain knowledge
comprising of the knowledge about the world, character
representations, and a causal network of actions and events that
can take place in the story world. Narratological knowledge
includes the plot and the theme that drive the flow of the story.
Stories in Picture Books follow the classic story pattern of
Machado [9] to drive its plot, which has five phases comprising of
the introduction, problem occurrence, rising action, resolution of
the problem, and climax.

2.1 Narratological Knowledge
Story phases are modeled in SUMO Stories (SUMOs) as story
attributes to depict the time progression of a story, for example:

(instance ?STORY Story)
(attribute ?STORY ProblemPhase)

These could be considered a replacement for the temporal
qualifications of SUMO. Because temporal qualifications are
higher-order logic, they currently pose problems for inferencing.

Story phases help restrict the occurrence of events or the
performance of actions in certain parts of the story. This is
especially true for initializing attributes, locations and other
elements in the story during specific phases, e.g., in the
introduction phase. Every time a phase transition occurs, the
system checks if there are any attributes that conflict with each
other; for instance, a character having the attribute of tranquility
during the introduction phase may experience anxiety during the
problem phase. This scenario arises due to the lack of temporal
predicates to allow attribute changes in a character to be asserted.

There is no built-in method to remove an assertion in SIGMA,
however, which leads to the solution of creating a new snapshot of
the current world state by removing all conflicting assertions and
re-asserting only those that still hold true based on the current
phase of the story. Conflicting attributes are those with the same
parent class, e.g., honest and dishonest belong to the
TraitAttribute class, where one is an instance of a
PositiveAttribute and the other an instance of a NegativeAttribute,
as shown in the following axioms:

(subclass NegativeAttribute TraitAttribute)
(subclass PositiveAttribute TraitAttribute)
(instance Dishonest NegativeAttribute)
(instance Honest PositiveAttribute)

Other conflicting #rait attributes include cowardly and brave,
while conflicting visibility attributes include hidden and visible.
Using this approach, the system would only allow one of the
TraitAttribute and prevents a situation wherein a character has
multiple positive and multiple negative attributes. To resolve this,
the system manually allows certain attributes to have many
instances and checks if a certain attribute is a contrary attribute of
an existing attribute using the axiom below.

(contraryAttribute Honest Dishonest)

Children’s stories also have themes to teach a particular value,
e.g., learning to be brave, or learning to sleep early. Themes give
a different set of possible actions and events to generate varying
stories from the same input story elements. Currently, the story
planner determines the theme based from the input of the user on
what he/she wants to learn. Adding themes to axioms is also vital
to the story plan progression to set initial attributes or to force an
event to happen since not all events have to actually be based
from previous events and current world state. In the example
axiom below for the learning to sleep early theme, the child has to
disobey the rule of the parent to sleep early.

(=>
(and
(instance ?STORY Story)
(attribute ?STORY IntroductionPhase)
(attribute ?STORY SleepEarly)
(instance ?CHAR StoryCharacter)

38

(attribute ?CHAR Child)
(attribute ?CHAR MainRole))
(attribute ?CHAR Disobedient))

2.2 Axioms for Domain Knowledge

SUMO Stories based its storytelling domain knowledge (the
semantic description about concepts, objects and their relations)
from the domain of Picture Books [6]. Whereas Picture Books
uses binary relations patterned after ConceptNet [8] to represent
commonsense relations between two concepts [11], SUMOs
utilizes a more formal ontology.

The axioms that comprise the ontology of SUMOs are divided
into three main categories: factual axioms, action axioms, and
event axioms. Factual axioms represent the characters, locations
and objects that may comprise the story. These axioms define the
story elements by specifying their attributes which could be their
traits, age, role, visibility, physical state, name and parent class. A
sample factual axiom describing story characters is shown below.
This axiom states that “if Adultl is a female adult elephant
character and Childl is a child elephant character, then Adultl
has the name Edna and she is the mother of ChildI”. Picture
Books generates fables that convey morals or lessons and utilize
animals as characters.
(=>
(and

(instance ?Adultl ElephantCharacter)

(attribute ?Adultl Female)

(attribute ?Adultl Adult)

(instance ?Childl ElephantCharacter)

(attribute ?Childl child))

(and
(name ?Adultl "Edna")
(mother ?Childl ?Adultl)))

Action axioms define the actions that story characters may do
given the world state. In SUMOs, the story revolves around and
progresses through actions of characters. By specifying the
choices that a character can make, more options are available to
generate varying stories from the same input picture. Currently,
only characters are able to have action axioms, however it does
not necessarily mean that all axioms for characters are actions.
The example action axiom below states that “if a child is near
some toys, then the child may play with the toys”. The capability
predicate specifies the possible action, while the agent and the
patient arguments reflect thematic roles for specifying the doer
and the receiver of the actions, respectively.

(=>
(and
(instance ?STORY Story)
(attribute ?STORY ProblemPhase)
(instance ?CHILD StoryCharacter)
(attribute ?CHILD Child)
(instance ?TOYS Toys)
(orientation ?CHILD ?TOYS Near))
(and
(capability RecreationOrExercise
agent ?CHILD)

(capability RecreationOrExercise
patient ?TOYS)))

Event axioms include explicit events, (e.g., a fragile lamp
breaking if a child is not careful during playtime [3]), attribute
changes, thoughts and even actions of characters (e.g., if a child is
hurt he will immediately cry). The example event axiom below
states that “if it is night time and a child continues to play (instead
of going to bed early), he or she will have a headache”.
(=>
(and
(instance ?STORY Story)
(attribute ?STORY RisingActionPhase)
(instance ?CHILD StoryCharacter)
(attribute ?CHILD Child)
(instance ?NIGHT NightTime)
(instance ?PLAYING RecreationOrExercise)
(agent ?PLAYING ?CHILD))
(and
(attribute ?CHILD HeadAche)
(exists (?R)
(instance ?R RisingActionEvent))))

When a child plays during the night it becomes a rising action
event. There are other events as well, such as problem events and
solution events, corresponding to those that occur during a
problem phase and a solution phase, respectively, of a story.
Rising action events are typically actions that will cause
consequences because of the problem (i.e., the child violated
his/her parent’s rule to go to bed early).

3. GENERATING STORY PLANS

Figure 1 shows the architecture of SUMO Stories, including its
interface with SUMO and Sigma. SUMOs has two main modules
— Story Editor and Story Planner, both of which assert and query
the ontology using Sigma, but the purpose for each is different.

Story
Editor
Story queries SUMO
Planner assertions Ontology
and queries (Story
return Ontology)
results SIGMA
(I:fer.enie obtain
ngine
abstract & results
story plan
assertions
Story plan
(SUMO)

Figure 1. Architectural Design

The Story Editor processes the input story elements — theme,
background, characters and objects, chosen by the user and
generates assertions corresponding to these. It then queries Sigma

for additional information such as attributes and initial locations
of the characters and objects in the background.

The following axioms comprise the first part of the story plan.
Lines 1 to 5 contain axioms to instantiate a story with its theme
(sleep early) and current phase (introduction phase). The time is
associated with the theme (night time) as well but the day is set to
a default value. A group, children, is instantiated in line 6 to track
the number of child characters in the story. By keeping track of
the number of child characters in the story we have a simple
metric to change the flow of the story by giving the child more
possible actions to react to events. For example, when the child
breaks the lamp he/she will not only probably hide but will also
blame another child in the process.

1> (instance Storyl Story)

2> (attribute Storyl SleepEarly)

3> (attribute Storyl IntroductionPhase)
4> (instance NightTime2 NightTime)

5> (instance Friday3 Friday)

6> (instance Children Group)

Lines 7 to 17 assert the different characters and their attributes;
RabAdult being the parent of RabChild (the main character) is
automatically inferred from the domain knowledge. Notice that
line 11 initializes the current state of RabChild to tranquility as
the story has not reached the problem phase yet.

7> (instance RabChild RabbitCharacter)
8> (attribute RabChild Child)

9> (attribute RabChild Female)

10> (member RabChild Children)

11> (attribute RabChild Tranquility)
12> (instance RabAdult RabbitCharacter)
13> (attribute RabAdult Adult)

14> (attribute RabAdult Female)

15> (attribute RabAdult Tranquility)
16> (attribute RabChild MainRole)

17> (memberCount Children 1)

Line 18 asserts the object (foys) and line 19 asserts the
background (/iving room) which is the setting of the story. Lines
20 to 22 place the main character and the object in the location, as
well as initialize their orientation (near). These are dictated by the
theme as well.

18> (instance Toys6 Toys)

19> (instance LR7 LivingRoom)

20> (located RabChild LR7)

21> (located Toys6 LR7)

22> (orientation RabChild Toysé6 Near)

The Story Planner handles the progression of the story and creates
assertions from results of queries to Sigma until the story plan is
completed. The generated axioms are asserted back to Sigma for
inclusion in the SUMO Stories’ domain ontology to be used again
for further inferencing.

Queries sent to Sigma can be classified into three types. Concept-
based queries concern classes and instances, and are used to
determine direct and indirect subclass and class-instance
relationships. Relation-based queries infer knowledge by
considering transitivity, symmetry and inversion of relations [2].
Action-based queries identify a set of actions based on the current

world state to drive the story. A fourth category, time-event
queries, containing quantification over formula, is currently not
supported by Sigma’s embedded first-order theorem provers.
These sorts of queries involve reasoning about temporal and
event-based specifications and will be supported in the future by
Sigma’s currently experimental higher-order theorem proving
component [1].

From the initial set of assertions, the planner issues its first
concept-based query, “(name RabChild ?X)”, to determine a
name for the main character, RabChild, and receives “Rizzy” as a
result. This is asserted to the story plan as shown in line 23.

23> (name RabChild “Rizzy"”)

The next query then checks if the parent has any desires for the
child’s state or behavior, which is actually the theme of the story.
If there is, this would be the rule of the parent. The query
“(desires RabAdult ?2X)” would return and add assertion 24
to the story plan for the learning to sleep early theme. Note that
this is in higher-order logic which Sigma cannot interpret, and the
quote is used to treat it as a list that can simply be matched and
unified with other lists.

24> (desires RabAdult
‘(exists (?X0)
(and
(instance ?X0 Sleeping)
(manner ?X0 Early)
(agent ?X0 RabChild)))

The parent must communicate this desire to the child, so an
instance of the Stating process is created, with the parent as the
agent of the action and the child as the patient, as shown in
assertions 25 to 28.

25> (instance Stating8 Stating)
26> (agent Stating8 RabAdult)
27> (patient Stating8 RabChild)
28> (patient Stating8
‘(exists (?X0)
(and
(instance ?X0 Sleeping)
(manner ?X0 Early)
(agent ?X0 RabChild))))
Legend:

G = general queries T = phase transition

S = phase specific queries

S| G| T G| S| G| T| G| S

Figure 2. Sequence of Queries during Phase Transition

At this point, the introduction phase of the story plan has been
completed. The next phase of the story would be the problem
phase. However, during the transition to the next phase, a set of
processes is performed. This involves general queries that check if
there are any new events and new attributes, and remove old or
conflicting information. The current StoryPhase attribute is also

40

removed and replaced with the next one. Before going to phase-
specific queries, the system again queries if there are any new
desires, attributes, and events at the start of each new phase. These
general queries are performed before and after the transition to the
next phase. The sequence of queries is depicted in Figure 2.

During the transition from the introduction phase to the problem
phase, the following queries are performed to retrieve various
conditions or states of the story world:

* Query to check for new attributes of a character
“(attribute <character> ?X)”

* Query to check for new attributes
“(attribute <object> ?X)”

of an object

* Query to check a character’s desires, beliefs, states or other
predicates “(<predicate> <character> ?X)”

¢ Query to check for new events
<StoryEvent>)”

“(instance ?X

Based from the results of these queries, new assertions shown in
lines 29 to 30 are created. It is necessary to assert that the child
character is disobedient (line 29) in this theme so he/she would
disobey the rule (line 30) given by the parent character.

29> (attribute RabChild Disobedient)
30> (disapproves RabChild
(exists (?X0)
(and
(instance ?X0 Sleeping)
(manner ?X0 Early)
(agent ?X0 RabChild))))

The problem phase begins by identifying any possible actions the
child character can do given the current state of the story world
with the query “(capability RabcChild 2X)”. This is the first
action-based query to start the story flow. The ontology contains
an axiom that states that if a child is near a toy he/she can play
(“RecreationOrExercise”) with it, resulting in the addition of
assertions 31 to 33.

31> (instance ROE9 RecreationOrExercise)
32> (agent ROE9 RabChild)
33> (patient ROE9 Toysé6)

The more story knowledge that is added to the ontology, the larger
the set of possible actions (i.e., capabilities) a character can do
(e.g. a child can look, touch, or clean the toy). However, the
current effort only chooses the first item from the list (if Sigma
does return a list) of actions as they are the only ones populated
with sufficient knowledge to lead to the progress of the story.

If the parent gave a command at the start of the story, the system
checks if the child actually did it. It would query if there is an
instance of sleeping with its corresponding semantic roles.

(and
(instance ?X Sleeping)
(manner ?X Early)
(agent ?X RabChild))

Sigma returns “no” which then leads for the system to query for
the occurrence of any event in which the child participated that
contradicts an adult’s command. Since the only action that the
child was involved in was RecreationOrExercise, the system

asserts line 34 that “the child did not sleep early” to the story plan
as the problem of the story (violation of stated rule).

34> (not
(exists (?X0)
(and
(instance ?X0 Sleeping)
(manner ?X0 Early)
(agent ?X0 RabChild))))

The rising action phase contains queries to check for the possible
actions of the child and the parent. Line 35 is the assertion
depicting the effect of not sleeping early on the main character.

35> (attribute RabChild HeadAche)

A forced event is set to happen where the parent will go to the
room to see where the child is, to see if anything transpired,
resulting in the assertion in line 36. This is to drive the interaction
between the adult and child in order to lead to the solution.

36> (located RabAdult LR7)

After the adult enters the same room where the child is, the
system will continually query what the adult and the child
characters can do until a rising action event has occurred.
However, in the sleep early theme, when the child character
experiences a headache (due to playing during the night which
indirectly means he did not sleep early) it is already a rising action
event and no further actions are done in this phase. The system
was able to determine that the child has a headache using the
general queries during the phase transition asking Sigma if there
are any new attributes for the story characters.

In the solution phase, the story planner continues to query Sigma
for possible actions of the child until a solution event has been
asserted. Since the parent and the child are near to each other (on
the account that they are in the same room as asserted in line 36),
when the system queries what the child can do, it returns that
he/she can complain (ExpressingDisapproval) to his/her parent
about his/her headache, which are asserted as lines 37 to 40.

37>
38>
39>
40>

(instance ED11 ExpressingDisapproval)
(agent ED11 RabChild)

(patient ED11 HeadAche)

(patient ED11 RabAdult)

Actions that show remorse or positive change due to previous
events are the ones that are labeled as solution events. These
include a child confessing, apologizing, complaining, or becoming
brave. In the example above, after the child experiences the side
effects of not going to sleep early, he/she complained regarding
his/her headache to his/her parent. The adult would then repeat the
same rule he/she had stated at the start of the story, if he/she made
one, as shown in assertions 41 to 44.

41>
42>
43>
44>

(instance S12 Stating)

(agent S12 RabAdult)

(patient S12 RabChild)

(patient S12

‘(exists (?X0)
(and

(instance ?X0 Sleeping)
(manner ?X0 Early)
(agent ?X0 RabChild))))

41

The last phase, climax, queries the new trait attribute of the child
which is assumed to be a positive one already.

However, in the sleep early theme, there is a unique event
associated in the climax phase, a change day event. For a child
character to actually learn the benefits of sleeping early he/she
should experience it himself/herself. If the system queries and
learns that there is a change day event, it will assert lines 45 to 46.

45> (instance Saturdayl3 Saturday)
46> (instance NightTimel4 NightTime)

The system would also remove previous assertions 4 “(instance
NightTime2 NightTime)” and 5 “(instance Friday3
Friday)” to give an impression that a whole day has passed
setting an assumption that all future assertions would be done in
this new period. The system would also reset some attributes of
the child character as the story transitions to a new day (e.g.
headache will be gone).

Note that this is a workaround for representing events in sequence
without the use of higher-order logic. Issues related to this
workaround are discussed in the next section of this paper.

In the climax phase, it has been assumed that the child has learned
his/her lesson and would follow the rule of his/her parent, as
shown in assertions 48 to 52. The attributes of the child would
also be changed to obedient (trait) and happiness (state).

48>
49>
50>
51>
52>

(attribute RabChild Obedient)
(instance Sleepingl5 Sleeping)
(agent Sleepingl5 RabChild)
(manner Sleepingl5 Early)
(attribute RabChild Happiness)

4. ISSUES AND ANALYSIS

Sigma has a suite of theorem provers that handle only first-order
logic, which presented some serious limitations. There are a few
partial workarounds. The first is that Sigma converts higher-order
statements into statements with a first-order interpretation by
quoting. For example:

(desires RabChild
(exists (S1) (instance S1 Sleeping)))

becomes

(desires RabChild

‘(exists (S1) (instance S1 Sleeping)))

The quoted sentence becomes an uninterpreted list rather than a
logical sentence. Quantifying over a list term is allowed in first-
order logic. The following query can now be performed:

(desires Rab5
(exists (S1) (instance S1 ?X)))

The correct answer of "Sleeping" will be returned through simple
list unification. However, most of the semantics of the statement
is lost with this approach. For example, given:

(desires Rab5
‘(exists (S1)
(and
(instance S1 Sleeping)
(manner S1 Early)
(agent S1 Rab4))))

The same query will return no result because the "and" ceases to
have its logical meaning. It becomes just another opaque term,
and the two lists above do not unify.

The second partial workaround is that it is possible to create
"summary" predicates that have a first-order use, while having a
higher-order definition. For example, the predicate "capability" in
SUMO states that a particular entity is capable of playing a
particular kind of role in a particular kind of process. The
definition requires the use of higher-order logic (in particular, a
logic of possibility and necessity). However, once that predicate is
defined, we can simply state that a child is capable of playing:

(capability Playing agent Childl)

There are serious limitations to this as well. The kinds of possible
statements one can make in higher-order logic are infinite. It is
typically not possible, even in a restricted knowledge
representation project, to cover all the things that one may need to
say through the creation of these sorts of summary predicates, and
even then, first-order inference will not be able to take advantage
of the definitions of these statements.

5. CONCLUSION

The paper presented our work in using an upper ontology in first-
order logic to represent storytelling domain knowledge and
narratological concepts. The story knowledge created is
simplified, most of which is in first-order logic. Briefly, in higher-
order logic one can quantify over statements, whereas in first-
order logic one can only quantify over terms.

Our story planner then interacts with the inference engine Sigma
to retrieve relevant knowledge from the ontology and to make
new assertions in order to generate story plans, specifically the
events, actions, emotions, objects, characters and location
comprising the target story. As the formal logic notation is
readable by only a select group of people, another engine,
specifically a language generator, is needed to transform the story
plan to surface text in English (or any desired language).

Though the system is designed to be able to create branching
stories, the current version selects only the first item in the list of
possible actions, as other options do not have sufficient
knowledge available in the ontology. If enough knowledge is
added, the static selection could then be replaced with a smart
action selector algorithm that could also detect if the action has
been done already and choose another one.

The use of probabilistic logic can be explored to address the issue
of a smart action selector in order to find possible future actions in
a story and how likely they are. Although a full higher-order
logic can be used, it is not necessary and makes inferencing very
hard. A logic of possibility and necessity approach would miss
the notions of different events being more likely than others, and
would mean that choosing story outcomes would be part of an
external control program, rather than being explicit in the
knowledge representation of the story rules. The current approach
of using the first-order capability relation does not allow us to
give full logical statements, but just roles and action types.
Wrapping full logical statements in probabilities would provide
full flexibility.

Axioms that are created to represent storytelling knowledge are
usually events and actions caused by characters that continuously

42

change the world state. The changing attributes of the instances in
the world should be associated at a specified part of the event (e.g.
during, after, before, start, end) to be able to correctly represent it.

Other concepts such as conversations (statements, questions) and
thoughts (desires and disapprovals) also require higher-order
logic. For example, we may want to state that "Mother believes
the child is sad." This sentence states a relation between
"Mother" and the proposition that "the child is sad". The belief
relation quantifies over statements, and is therefore higher-order.

Another promising approach is to integrate full higher-order
logical reasoning with Sigma. An initial attempt has been made in
this direction with LEO-II [1]. However, this work was begun
only in 2010, is still experimental, and is not yet suitable for
application projects such as the SUMO Stories effort. Hopefully,
future projects will be able to take advantage of this new work.

6. ACKNOWLEDGMENTS

This work would not have been possible without our strong
collaboration with Mr. Adam Pease from Articulate Software
(USA). Mr. Pease is one of the invited speakers in the 6 National
Natural Language Processing Research Symposium organized by
the College of Computer Studies (De La Salle University) in
September 2009. His visit, talks (in the symposium), and
subsequent lectures for and consultations with members of the
university were made possible through funding from DOST-
PCASTRD and the Visiting Scholars Program of the university.

7. REFERENCES

[1] Benzmiiller, C., and Pease, A. 2010. Reasoning with
Embedded Formulas and Modalities in SUMO. In
Proceedings of European Conference on Artificial
Intelligence 2010 Workshop on Automated Reasoning about
Context and Ontology Evolution, August 16-17 2010,
Portugal.

[2] Corda, 1., Bennett, B., and Dimitrova, V. 2008. Interacting
with an Ontology to Explore Historical Domains. In
Proceedings of the 2008 First International Workshop on
Ontologies in Interactive Systems, 65-74, IEEE Computer

Society.

Cua, J., Manurung, R., Ong, E., and Pease, A. 2010.
Representing Story Plans in SUMO. In Proceedings of the
NAACL Human Language Technology 2010 Workshop on
Computational Approaches to Linguistic Creativity (Los
Angeles, USA, June 5, 2010). NAACL-HLT CALC ’10.
ACL, NJ, USA, 40-48.

Genesereth, M. 1991. Knowledge Interchange Format. In
Proceedings of the Second International Conference on the
Principles of KnowledgeRepresentation and Reasoning,
Allen, J., Fikes, R., Sandewall, E. (eds), 238-249, Morgan
Kaufman Publishers.

(3]

(4]

[5] Hoder, K. 2008. Automated Reasoning in Large Knowledge
Bases. PhD Thesis, Charles University, Prague, Czech

Republic.

Hong, A.J., Solis, C., Siy, J.T., Tabirao, E. and Ong, E. 2008.
Picture Books: An Automated Story Generator. In
Proceedings of the 5th National Natural Language
Processing Research Symposium (Manila, Philippines,
November 2008). SNNLPRS, DLSU, Manila, Philippines.

(6]

[7] Kooijman, R. 2004. De virtueleverhalenverteller:
voorstelvoor het gebruik van een upper-ontology en
eennieuwearchitectuur. Technical Report, University of
Twente, Department of Electrical Engineering, Mathematics
and Computer Science.

[8] Liu, H. and Singh, P. 2004. Commonsense Reasoning in and
over Natural Language. In Proceedings of the 8th
International Conference on Knowledge-Based Intelligent
Information and Engineering Systems, 293-306, Wellington,
New Zealand, Springer Berlin.

[91 Machado, J. 2003. Storytelling. In Early Childhood
Experiences in Language Arts: Emerging Literacy, 304-319.
Clifton Park, N.Y., Thomson/Delmar Learning.

[10] Niles, I. and Pease, A. 2001. Towards A Standard Upper
Ontology. In Proceedings of Formal Ontology in Information
Systems (Maine, USA, October 17-19, 2001). FOIS 2001,
USA, 2-9. See also www.ontologyportal.org

[11] Ong, E. 2010. A Commonsense Knowledge Base for
Generating Children's Stories. In Proceedings of the 2010

AAAI Fall Symposium Series on Common Sense Knowledge
(Virginia, USA, November 11-13, 2010). CSK ’10, AAAI
USA, 82-87.

[12] Pease, A. and Benzmiiller C. 2010. Sigma: An Integrated
Development Environment for Logical Theories. In
Proceedings of the ECAI 2010 Workshop on Intelligent
Engineering Techniques for Knowledge Bases (Lisbon,
Portugal, August 16-17, 2010). I-KBET-2010, Portugal.

[13] Riazanov, A. and Voronkov, A. 2002. The Design and
Implementation of Vampire. A Communications, 15(2-3),
91-110.

[14] Sutcliffe, G. 2007. TPTP, TSTP, CASC, etc. In Lecture
Notes in Computer Science, V. Diekert, M. Volkov, and A.
Voronkov (eds), Vol. 4649/2007, 6-22, Springer Berlin /
Heidelberg, ISBN 978-3-540-74509-9.

[15] Swartjes, 1. 2006. The Plot Thickens: Bringing Structure and
Meaning into Automated Story Generation. Master's Thesis,
University of Twente, The Netherlands.

43

