
On Turing Machines
Eliezer A. Albacea

Institute of Computer Science
University of the Philippines Los Baños

4031 College, Laguna

eaalbacea@uplb.edu.ph

ABSTRACT
In this paper, we define Turing machines and give examples of
how Turing machines may be constructed. Also illustrated is how
Turing Machines compute functions. We also discussed the
Halting problem and the Church-Turing Thesis.

Keywords
Turing machine, Turing-computable function, recursive language,
recursively enumerable language, Church-Turing Thesis.

1. DEFINITION OF A TURING MACHINE

Definition: A Turing Machine (TM) is denoted by M =
(Q, Σ, Γ, δ, q0, B, F) where Q is the set of states, Γ is the finite set
of allowable tape symbols, B is the blank symbol ∈ Γ, Σ is the set
of input symbols, δ is the next move function which is a mapping
from Q × Γ to Q × Γ × {L, R, S}, q0 is the initial state and F is the
set of final (halting) states (F ⊆ Q). See Figure 1 for an illustration
of a Turing machine.

Figure 1 A Turing Machine.

The TM machine will initially be in state q0 and the
read/write head will be pointing at the first symbol of the
input/output tape. The δ function, δ(q,T) = (q’,T’,D) defines the
state of computation after the TM has read the tape symbol T and
it is currently in state q. In this case (q’,T’,D), which says that the
new state is q’, it writes the T’ in place of T and the read/write
head is move in D direction (either L = left, R = right, or S =
stationary).

The input tape of the TM is infinite in both directions
with blanks (B) on the tape for parts not included in the initial
input.

The δ may alternatively be presented in transition
diagram. The transition diagram for δ(q,T) = (q’,T’,D) is:

Figure 2 Transition diagram for δ(q,T) = (q’,T’,D).

2. EXAMPLES OF TURING MACHINES

Example: Consider the TM M = (Q, Σ, Γ, δ, q0, B, {f})
where Q = {q0, f}, Σ = {a} and Γ = {a, B} and δ is given by the
table:

State
Symbol

a B

q0 (q0,B,R) (f,B,S)

This TM erases nonblank symbols in the input tape.

Initially, the TM is in state q0 and the read/write head is
pointing at the first symbol in the input tape. For example, the

1

input tape contains the initial input BabbabaB. In reality, it should
be …BBabbabaBB… but we simply shortened this to BabbabaB.
Hence, we are at state q0 and the read/write head is pointing at a.
What applies therefore is the transition function

δ(q0,a) = (q0,B,R).

This will bring the TM to state q0, replaces the letter a (input
being pointed to at the moment) with a B and moves the
read/write head one input to the right (R). If the direction of head
movement is L then it moves to the left and if it is S, then it
simply stays where it is. Hence, it will now be in state q0 and
reading the input letter b. Then, it simply checks the transition
table for the next move and the process is repeated until it reaches
the final state in which case it halts recognizing what is in the
input. Or, it may encounter an undefined entry in the transition
table, in which case it also halts and not recognizing what is in the
input.

In transition diagram, the TM above can be shown as:

Figure 3

Example: Consider the TM M = (Q, Σ, Γ, δ, q0, B, {f})
where Q = {q0, f}, Σ = {a} and Γ = {a, B} and δ is given by the
table:

State
Symbol

a B

q0 (q0,B,L) (q0,B,L)

This TM hangs or this TM machine does not stop executing
because it will always find a B in the tape. Note that the tape is
infinite and it contains B. In programming parlance, we say that
the program is in “infinite loop.”

In transition diagram, the TM above can be shown as:

Figure 4

Example: Consider the TM M = (Q, Σ, Γ, δ, q0, B, {f})
where Q = {q0, f}, Σ = {a,b} and Γ = {a, b, B} and δ is given by
the table:

State
Symbol

a b B

q0 (q0,b,R) (q0,a,R) (f,B,S)

This TM replaces all occurrence of a by a b and all occurrence of
a b by an a.

In transition diagram, the TM above can be shown as:

Figure 5

Example: Consider the TM M = (Q, Σ, Γ, δ, q0, B, {f})
where Q = {q0, q1 ,f}, Σ = {a,b} and Γ = {a, b, B} and δ is given
by the table:

2

State
Symbol

a b B

q0 (q1,a,R) (q0,b,R) (q2,B,L)

q1 (f,a,R) (q0,b,R) (q2,B,L)

q2 (q2,B,L) (q2,B,L) (q2,B,L)

This TM searches for the substring aa. If it finds aa, then it goes to
the final state. Otherwise, it simply erases the tape and hangs.

We note that a string may contain the substring aa or
not. There is no problem with the case where aa is found in the
input since the TM can go to a final state. But if the string does
not contain the substring aa, then we can either make the TM hang
as what was done above or we force the TM to stop. The TM
stops when the δ is undefined. For example, we can make the TM
above stops when we encounter a B in the input tape.

State
Symbol

a b B

q0 (q1,a,R) (q0,b,R)

q1 (f,a,R) (q0,b,R)

In transition diagrams, the TM’s above can be shown
as:

Figure 6

Example: The Turing Machine for recognizing the
language L = aba*b is given by TM M = (Q, Σ, Γ, δ, q0, B, {f})
where Q = {q0, q1, q2,f}, Σ = {a,b} and Γ = {a, b, B} and δ is
given by the table:

State
Symbol

a b B

q0 (q1,a,R)

q1 (q2,b,R)

q2 (q2,a,R) (f,b,R)

.
In transition diagram, the TM above can be shown as:

Figure 7

3. INSTANTANEOUS DESCRIPTION

Definition: The instantaneous description (ID) of a TM
is denoted by α1qα2 where α1α2 ∈ Γ* and q is the current state (q
∈ Q).

When α2 = ∈ then the TM is said to be in a halted description.

Definition: Let M = (Q, Σ, Γ, δ, q0, B, F) and let α1qiα2

and α3qi+1α4 be instantaneous descriptions. Then α1qiα2 |- α3qi+1α4

iff for some a ∈ Σ, A ∈ Γ, δ(qi, a) = (qi+1, A, R) and α3 = α1A, α2 =
aα4.

The TM is said to yield the second configuration (ID) in one step.

Definition: For any TM M, |-* is the reflexive,
transitive closure of |-. We say that ID c1 yields ID c2 if c1 |-* c2. A
computation by M is a sequence of ID’s c0, c1, c2, …, cn for some
n ≥ 0 such that c0 |- c1 |- c2 |- … |- cn. We say that the computation
is of length n or has n steps.

Example: Consider the TM M for erasing nonblank
symbol. If M is started with ID q0aaaaB, its computation would be
represented as follows:

3

q0aaaaB |- Bq0aaaB
|- BBq0aaB
|- BBBq0aB
|- BBBBq0B
|- BBBBfB

Definition: A TM M = (Q, Σ, Γ, δ, q0, B, F) is said to
accept L if for any w ∈ L there is a computation q0w |-* uf for
some u ∈ Γ* and f ∈ F. If such a TM M exists, then L is said to be
a Turing-acceptable language.

Example: Consider the TM M = (Q, Σ, Γ, δ, q0, B, {f})
where Q = {q0, q1 ,f}, Σ = {a,b} and Γ = {a, b, B} and δ is given
by the table:

State
Symbol

a b B

q0 (q1,a,R) (q0,b,R)

q1 (f,a,R) (q0,b,R)

In transition diagram, this table is equivalent to the following:

Figure 8

The TM machine accepts the language L =
(b*ab*)*aa(b*ab*)* since there is a computation for every string
in the language. For example, the computation for the string
bbaaba is:

q0bbaabaB |- bq0baabaB
 |- bbq0aabaB
 |- bbaq1abaB
 |- bbaafbaB

4. COMPUTING WITH TURING
MACHINES

Definition: Let Σ1 and Σ2 be alphabets of languages L1

and L2, respectively. Let f be a function from Σ1 to Σ2. A TM M =
(Q, Σ, Γ, δ, q0, B, F) is said to compute f if Σ1, Σ2 ⊆ Σ and for any
w ∈ Σ1,

if f(w) = u then q0w |-* uf,

where f ∈ F. If such a TM M exists, then f is said to be a Turing-
computable function.

The notion of a Turing-computable function from strings to
strings can be extended in several ways:

One is the Turing-computable function from string to
string. It can be extended to consider functions of any number of
arguments, including 0. Let f be a function from (Σ1*)k to Σ2*,
where k ≥ 0, and let M be a TM (Q, Σ, Γ, δ, q0, B, F), where Σ1, Σ2

⊆ Σ. For any w1, w2, … wk ∈ Σ1*, if f(w1, w2, …, wk) = u, then

q0w1Bw2Bw3B … Bwk |-* uf.

Again, we say that M computes f and that f is Turing-computable.

Example: Substitute Function. Let Σ1 = Σ2 = {0,1} and
let f(w) = z, where w ∈ Σ1 and z ∈ Σ2, be defined as follows:

For any w ∈ Σ1. f(w) = z, where z is the result of
replacing each occurrence of 0 in w by 1, and vice versa.

Thus, an input

010101B

will produce the tape configuration

101010B.

Rough Algorithm: The TM scans forward through its
input, changing 0’s to 1’s and vice versa, until a blank symbol is
found.

Formally, the TM can be described as follows: M =
({q0,q1}, {0,1}, {0,1,B}, δ, q0, B, {q1}), where δ is defined as:

4

States

Symbols

0 1 B

q0 (q0,1,R) (q0,0,R) (q1,B,R)

In transiiton diagram, this TM can be shown as :

Figure 9

Example: Show the computation for the input string
0101001.

q00101001B |- 1q0101001B
|- 10q001001B
|- 101q01001B
|- 1010q0001B
|- 10101q001B
|- 101011q01B
|- 1010110q0B
|- 1010110Bq1

The Turing-computable function may be extended
to consider functions from natural numbers (N) to natural
numbers (N). Let I be some fixed symbol other than the
blank symbol, then the natural number n may be
represented by the string In. A function f: N → N is said to
be computed by a TM M if M computes the function f’:
{I}* → {I}*, where f’(In) = If(n) for each n ∈ N. In general,
a TM M computes a function f: Nk → N if it computes the
function f’: ({I}*)k → {I}*, where f’(In1, In2, …, Ink) = If(n1,n2,

…, nk) for any n1, n2, …, nk ≥ 0.

Example: Successor Function. Let f be the
successor function: f(n) = n+1 for each n ∈ N. A TM for
this is M = ({q0,q1}, {0}, {0,B}, δ, q0, B, {q1}) where δ is
defined as:

States

Symbols

0 B

q0 (q0,0,R) (q1,0,R)

In transition diagram this can be written as:

Figure 10

Thus with an initial input tape configuration of:

0000B

will produce a final tape configuration of

00000B.

Example: Show the computation for the input string
0000.

q00000B |- 0q0000B
|- 00q000B
|- 000q00B
|- 0000q0B
|- 00000q1

Example: Proper Subtraction. The proper
subtraction function f(m,n) is defined as:

f(m,n) = m-n, when m ≥ n,

f(m,n) = 0, when m < n.

Rough Algorithm: The objective of the TM
machine is to transform the initial input tape:

5

0m10n

to

0m-n, if m ≥ n

all B’s or blanks if m < n.

The TM repeatedly replaces its leading 0 by a B,
then searches right for a 1 followed by a 0 and change this 0
to 1. Next, M moves left until it encounters a B and repeats
the cycle. The repetition ends if

1. searching right for a 0, the TM encounters a
B;

2. beginning the cycle, M cannot find a 0 to
change to a B, because the first m 0’s already
have been changed. Then m ≥ n, so f(m,n) =
0. The TM replaces all remaining 1’s and 0’s
y B’s.

Formally, the TM can be described as follows: M
= ({q0, q1, …, q5, f), {0, 1}, {0, 1, B}, δ, q0, B, {f}), where
δ is defined as:

States

Symbols

0 1 B

q0 (q1,B,R) (q5,B,R)

q1 (q1,0,R) (q2,1,R)

q2 (q3,1,L) (q2,1,R) (q4,B,L)

q3 (q3,0,L) (q3,1,L) (q0,B,R)

q4 (q4,0,L) (q4,B,L) (f,0,R)

q5 (q5,B,R) (q5,B,R) (f,B,R)

F

In transition diagram notation, this can be written as:

Figure 11

Example: Show the computation for the input 000100.

q0000100B |- Bq100100B
|- B0q10100B
|- B00q1100B
|- B001q200B
|- B00q3110B
|- B0q30110B
|- Bq300110B
|- q3B00110B
|- Bq000110B
|- BBq10110B
|- BB0q1110B
|- BB01q210B
|- BB011q20B
|- BB01q311B
|- BB0q3111B
|- BBq30111B
|- Bq3B0111B
|- BBq00111B
|- BBBq1111B
|- BBB1q211B
|- BBB11q21B
|- BBB111q2B
|- BBB11q41B
|- BBB1q41BB

6

|- BBBq41BBB
|- BBq4BBBBB
|- BB0fBBBB

Example: Addition. The addition function f(m,n)
is defined as:

f(m,n) = m+n,

when m,n ≥ 0.

Rough Algorithm: The objective of the TM
machine is to transform the initial input tape:

0m10n

to

0m+n

.

The algorithm looks for the first occurrence of the a 1, replace this
with a 0 and then continue this time looking for a B. Once a blank
is found, moves one square left and replace it with a blank.

Formally, the TM can be described as follows: M
= ({q0, q1, q2, f), {0, 1}, {0, 1, B}, δ, q0, B, {f}), where δ is
defined as:

States

Symbols

0 1 B

q0 (q0,0,R) (q1,0,R) (f,B,S)

q1 (q1,0,R) (q2,B,L)

q2 (f,B,S)

f

In transition diagram, the above TM is equivalent to:

Figure 12

Example: Show the computation for the input 000100.

q0000100B |- 0q000100B
|- 00q00100B
|- 000q0100B
|- 0000q100B
|- 00000q10B
|- 000000q1B
|- 00000q20B
|- 00000fBB

5. VARIANTS OF TURING MACHINES

Two-Way Infinite Tape TM

As in the original one-way infinite tape model, a
machine in this model may be denoted by M = (Q, Σ, Γ, δ, q0, B,
F). The relation |- which relates two ID’s is defined as for the one-
way infinite tape, except that if δ(q,x) = (p,Y,L), then qxα |-
pBYα and if δ(q,x) = (p,B,R), then qxα |- pα (in the original
model, the B would appear to the left of p).

Multitape Turing Machines (MT-TM)

A MT-TM consists of a finite control with k-tape heads
and k-tapes; each tape is infinite in both directions. In a single
move, depending on the state of the finite control and the symbol
scanned by each of the tape heads, the machine can

1. change state;
2. print a new symbol on each of the cells scanned by its tape

head;
3. move each of its tape heads, independently, one cell to the

left or right, or keep it stationary.

7

Initially, the input appears on the first tape and the other tapes are
blank.

Consider a three-tape TM (k = 3). The case k > 3 can be
defined similarly. Formally, a three-tape TM can be denoted by M
= (Q, Σ, Γ, δ, q0, B, F) where Q = [p,q,r] with p the state of the
first tape, q the second tape and r the third tape, Σ = [a,B,B], Γ =
[X,Y,Z] and δ is defined by δ([p,q,r],[X,Y,Z]) = ([pi,qi,ri],
[Xi,Yi,Zi],[A,B,C]), [A,B,C] are the moves of the first, second,
and third tape heads, respectively.

Multidimensional Turing Machines (MD-TM)

A MD-TM is a device that has the usual finite control,
but the tape consists of k-dimensional array of cells infinite in all
2k directions, for some fixed k. Depending on the state and
symbol scanned, the device changes state, prints a new symbol
and moves the tape head in one of the 2k directions, either
positively or negatively, along one of the k axes. Initially, the
input is along one axis, and the head is at the left end of the input.

Multihead Turing Machine

A k-head TM has some fixed number k, read/write
heads. The heads are numbered from 1 to k, and a move of the
TM depends on the state and on the symbol scanned by each
head. In one move, the heads may each move independently left,
right or stationary.

Nondeterministic Turing Machines

A nondeterministic TM is denoted by M = (Q, Σ, Γ, ∆,
q0, B, F) where ∆ the next move function is a mapping from Q × Γ
to a subset of Q × Γ × {L, R, S}. The instantaneous descriptions
(ID’s) and the relations |- and |-* are defined as in the
deterministic case. The only difference is that |- need not be
single-valued.

Nondeterministic TM’s are as powerful as the
deterministic case (meaning they are equivalent). However, there
are problems whose natural solutions are the nondeterministic
case.

6. RECURSIVE AND RECURSIVELY
ENUMERABLE LANGUAGES

Definition: We say that M semidecides L if for every
string w the following is true: w ∈ L if and only if M halts on
input w, otherwise it does not halt. A language L is recursively

enumerable if and only if there is a Turing Machine M that
semidecides L.

Example: Let L = {w ∈ {a,b}*| w contains an a}. L is
semidecided by the Turing Machine = ({q0,q1}, {0}, {0,B}, δ, q0,
B, {q1}) where δ is defined as:

States

Symbols

a b B

q0 (q1,a,S) (q0,b,R) (q0,B,R)

This Turing Machine scans the input one by one until an a is
encountered in which case it halts. Otherwise it endlessly
continuous to go the right or it does not halt.

Since the TM may not halt, we can say that the TM
machine is not an algorithm for the problem being solved.

Definition: We say that M decides L if for every string
w, M halts on input w whether w is in L or not. A language L is
recursive if and only if there is a Turing Machine M that decides
L.

Let  and  be two symbols not in Σ. Then a language
L ⊆ Σ* is recursive if and only if a TM that compute the function
g: Σ* → {, } can be constructed, where for each w ∈ Σ*,

g(w) = , if w ∈ L

g(w) = , if w ∉ L.

If g is computed by a TM M, then M is said to decide L, or to be a
decision procedure for L.

The symbol  stands for "yes" or w is in L and 
stands for "no" or w is not in L.

Since the TM decides a language, it can be reasonably
thought of as an algorithm that performs correctly and reliably
some computational task.

Example: Let Σ = {a} and L = {w ∈ Σ | |w| is even}.
Then the following TM M = (Q, Σ, Γ, δ, q0, #, F) where Q = {q0,
q1, …, q6}, Σ = {a}, Γ = {a, , , #}, f ∈ F and δ is given by:

8

States
Symbols
a #  

q0 (q1,#,L)

q1 (q2,#,S) (q4,#,R)

q2 (q3,#,L)

q3 (q0,#,S) (q6,#,R)

q4 (q5,,S)

q5 (f,,R
)

(f,,R)

q6 (q5,,S)

The TM produces the following computations:

q0#an# |-* # #f, if n is even and
q0#an# |-* # #f, if n is odd.

7. THE HALTING PROBLEM

Definition: Problems with no algorithm exists are called
undecidable or uncomputable while problems with algorithms
are called decidable or computable.

With this definition, we can say that the problem of
recognizing recursive languages are decidable since an algorithm
can be formulated for the problem. However, the problem of
recognizing recursively enumerable languages may be decidable
or not because if it is decidable, then the set of recursively
enumerable languages is equivalent to the set of recursive
languages. We show in this section that the set of recursively
enumerable languages is not equivalent to recursive languages,
i.e., there are recursively enumerable languages that are not
recursive. Recognizing this set of recursively enumerable
languages that are not recursive are what we call undecidable.

Now, we consider our first undecidable problem, the
problem of testing whether a string w is accepted by a TM M. We
define this as:

Member(M,w) = {Mw | TM M accepts input string w}.

Theorem: Member(M,w) is recursively enumerable.

Proof: We can construct a TM U that recognizes
Member(M,w) as follows: U on input Mw (M is an encoding of
the TM M and w is the input string):

1. Simulate M on input w

2. If M enters an accept state, U accepts. Otherwise, if
M enters a reject state, U rejects.

Note that U loops on input Mw if M loops on w - thus it is
possible for U not to stop.

This problem is called the Halting Problem because if
there is only a way by which we can determine that M will not
halt on w, then we can force U to stop and reject.

The TM U as describe is an example of the Universal
TM which was used by Alan Turing in its proof of the
undecidability of the Halting Problem. The machine is called
universal because it is able to simulate any other TM from the
description of the machine.

Theorem: Recognizing Member(M,w) is undecidable.

Proof: We assume that Member(M,w) is decidable.
Being decidable, we can construct a TM H that decides
Member(M,w), i.e., on input Mw, where M is a TM and w is a
string, H halts and accepts if M accepts w. Furthermore, H halts
and rejects if M fails to accept w. In summary, we say

accept,M accepts w
reject, M does not accept w

H 
= 



Next, we construct another Turing Machine U that calls
H. This new TM U calls H to determine what M does when the
input to M is its own description M rather than w. The behavior of
U is that it does the opposite of what H does. That is, it rejects if
M accepts and accepts if M does not accept. U's operation on
input M can be outlined as follows:

1. Run H on input MM
2. Output the opposite of what H outputs; if H

accepts, reject and if H rejects, accept.

We can therefore write this as follows:

accept, if M does not accept M
reject, if M accepts M

D 
= 



Now, we examine what happens when we run D on its own
description. In this case we get:

accept, if D does not accept D
reject, if D accepts D

D 
= 



9

Clearly, no matter what D does it is forced to do the opposite.
Clearly this is a contradiction since D accepts when D does not
accept. Hence, there is no such TM D and similarly no such TM
H.

The existence of Member(W,w), a language that is
recursively enumerable but not recursive, proved the following
theorem.

Theorem: The class of recursive languages is a strict
subset of the class of recursively enumerable languages.

A related problem, also called by some authors as the
halting problem, is the problem of recognizing:

Halt(M,w) = {Mw | TM M halts on input string w}.

This problem is also undecidable and our proof is a reduction
from Member(M,w).

Theorem: Reconizing Halt(M,w) is undecidable.

Proof: Assume that a TM H decides Halt(M,w). We can
construct a TM U to decide Member(M,w), where U operates on
input Mw (M is an encoding of the TM M and w is the input
string):

1. Run TM H on input Mw
2. If H rejects, reject.
3. If H accepts, simulate M on w until it halts. If M

accepted w, accept; if M rejects w, reject.

Clearly if H decides Halt(M,w), then U decides Member(M,w).
But since Member(M,w) is undecidable, so is Halt(M,w).

8. CHURCH-TURING THESIS

Earlier we have illustrated that Turing machines can be
designed to accept more complicated languages and arithmetic
functions. Because Turing machines can carry out computations,
we view Turing machines as a formal equivalent of the intuitive
notion of an algorithm. That is, anything cannot be considered an
algorithm unless a Turing machine can be constructed for it.

However, the use of a Turing machine is not only the
approach to computations. There are other models of
computations and these models of computations are:

1. Godel-Herbrand-Kleene (1936) – General recursive
functions defined by means of an equation calculus (Kleene,
1952).

2. Church (1936) - λ-definable functions (Church, 1936).
3. Godel-Kleene (1936) - µ-recursive functions and partial

recursive functions (Kleene, 1936).
4. Turing (1936) – Functions computable by finite state

machines known as the Turing Machines (Turing 1936).
5. Post (1943) – Functions defined from canonical deduction

systems (Post, 1943).
6. Markov (1951) – Functions given by certain algorithms over

a finite alphabet (Markov, 1954).
7. Shepherdson-Sturgis (1963) – Unlimited Register Machine

(URM)-computable functions (Shepherdson and Sturgis,
1963).

The Church-Turing Thesis states that each of the above
proposals for a characterization of the notion of effective
computability gives rise to the same class of functions, the class
we call the Turing-computable functions. Thus, all the models of
computations above are equivalent to each other and also
equivalent to the Turing machine approach. Also, the intuitively
and informally defined class of effectively computable functions
coincides with the class of Turing-computable functions. This
means that we can extend our concept of an algorithm as not only
limited to those where a Turing machine can be constructed but
also to those computable by other models of computations above.

This thesis is not a theorem (which is susceptible to
mathematical proof); it has the status of a claim or belief that may
be substantiated by evidence. We cannot hope to prove this thesis
because we do not have an exhaustive list of models of
computations. In fact, there might be somebody who can
overthrow this thesis by showing the existence of a model of
computation that can carry out computation that cannot be carried
out by a Turing machine. However, this is unlikely because there
are so many evidences that show that the thesis holds. Some of
these evidences are:

1. The fundamental result itself is one evidence. Many
independent proposals for a precise formulation of the
intuitive idea have led to the same class of functions, which
we have called Turing-computable functions.

2. A vast collection of effectively computable functions has
been shown explicitly to belong to Turing-computatable
functions.

3. An implementation of a program for a Turing-computable
function is clearly an example of an algorithm.

4. No one has ever found yet a function that would be accepted
as computable in the informal sense, that does not belong to
Turing-computable function.

On the basis of these evidences and of their experiences,
most mathematicians are led to accept the Church-Turing
Thesis.

In order to illustrate the flavor of other models of
computations, we discuss unrestricted grammars, µ-recursive
functions and unlimited register machines. These three models of
computations were shown to be equivalent to the Turing machine
approach.

10

9. REFERENCES

[1] Church, A. An unsolvable problem of elementary number
theory, Am. J. Math. 58, 1936, 345-363.

[2] Cohen, D.I.A Introduction to Computer Theory, John Wiley
and Sons, Philippine Reprint, 1993.

[3] Cutland, N.J. Computability: An Introduction to recursive
function theory, Cambridge University Press, 1980.

[4] Davis, MD, Sigal, R, and Weyuker, EJ. Computability,
Complexity, and Languages, Academic Press, 1994.

[5] Hopcroft, JE and Ullman, JD. Introduction to Automata
Theory, Languages, and Computations, Addison-Wesley, 1979.

[6] Kelly, D. Automata and Formal Languages: An Introduction,
Prentice-Hall, 1995.

[7] Kleene, S.C. General recursive functions of natural numbers,
Mathematiche Annalen, 112, 1936, 727-742.

[8] Kleene, S.C. Introduction in Metamathematics, Van Nostrand,
Princeton, 1952.
[9] Lewis, HR and Papadimitriou CH. Elements of the Theory of
Computations (1st Edition), Prentice Hall, 1981.
[10] Lewis, HR and Papadimitriou CH. Elements of the Theory of
Computations (2nd Edition), Prentice Hall, 1998.
[11] Markov, A.A. The Theory of Algorithms. English translation
National Science Foundation, 1954.
[12] Martin, J.C. Introduction to Languages and Theory of
Computation, McGraw-Hill, 1991.
[13] Post, E. Formal reductions of the general combinatorial
decision problem, Am. J. Math 65, 1943, 197-215.
[14] Shepherdson, J.C. and Sturgis, H.E. Computatbility of
recursive functions, J. Assoc. Comput. Machinery 10, 1963, 217-
255.
[15] Sipser, M. Introduction to the Theory of Computation, PWS
Publishing Co., 1997.
[16] Turing. A.M. On computable numbers, with application to
the Entscheidungs problem, Proc. London Math. Soc. 42 & 43,
1936, 230-265 (vol 42), 544-546 (vol 43).

11

	1. DEFINITION OF A TURING MACHINE
	2. EXAMPLES OF TURING MACHINES
	3. INSTANTANEOUS DESCRIPTION
	4. COMPUTING WITH TURING MACHINES
	States

	5. VARIANTS OF TURING MACHINES
	6. RECURSIVE AND RECURSIVELY ENUMERABLE LANGUAGES
	Symbols

	7. THE HALTING PROBLEM
	8. CHURCH-TURING THESIS
	9. REFERENCES
	[8] Kleene, S.C. Introduction in Metamathematics, Van Nostrand, Princeton, 1952.
	[9] Lewis, HR and Papadimitriou CH. Elements of the Theory of Computations (1st Edition), Prentice Hall, 1981.
	[10] Lewis, HR and Papadimitriou CH. Elements of the Theory of Computations (2nd Edition), Prentice Hall, 1998.
	[11] Markov, A.A. The Theory of Algorithms. English translation National Science Foundation, 1954.
	[12] Martin, J.C. Introduction to Languages and Theory of Computation, McGraw-Hill, 1991.
	[13] Post, E. Formal reductions of the general combinatorial decision problem, Am. J. Math 65, 1943, 197-215.
	[14] Shepherdson, J.C. and Sturgis, H.E. Computatbility of recursive functions, J. Assoc. Comput. Machinery 10, 1963, 217-255.
	[15] Sipser, M. Introduction to the Theory of Computation, PWS Publishing Co., 1997.
	[16] Turing. A.M. On computable numbers, with application to the Entscheidungs problem, Proc. London Math. Soc. 42 & 43, 1936, 230-265 (vol 42), 544-546 (vol 43).

