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ABSTRACT
In this paper, we define Turing machines and give examples of 
how Turing machines may be constructed. Also illustrated is how 
Turing Machines compute functions. We also discussed the 
Halting problem and the Church-Turing Thesis.
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1. DEFINITION OF A TURING MACHINE

Definition: A Turing Machine (TM) is denoted by M = 
(Q, Σ, Γ, δ, q0, B, F) where Q is the set of states, Γ is the finite set 
of allowable tape symbols, B is the blank symbol ∈ Γ, Σ is the set 
of input symbols, δ is the next move function which is a mapping 
from Q × Γ to Q × Γ × {L, R, S}, q0 is the initial state and F is the 
set of final (halting) states (F ⊆ Q). See Figure 1 for an illustration 
of a Turing machine.

Figure 1 A Turing Machine.

The TM machine will  initially be in  state q0 and the 
read/write  head  will  be  pointing  at  the  first  symbol  of  the 
input/output tape. The  δ function,  δ(q,T) = (q’,T’,D) defines the 
state of computation after the TM has read the tape symbol T and 
it is currently in state q. In this case (q’,T’,D), which says that the 
new state is q’, it writes the T’ in place of T and the read/write 
head is move in D direction (either L = left,  R = right,  or S = 
stationary).

The input tape of the TM is infinite in both directions 
with blanks (B) on the tape for parts not included in the initial 
input.

The  δ may  alternatively  be  presented  in  transition 
diagram. The transition diagram for δ(q,T) = (q’,T’,D) is:

Figure 2 Transition diagram for δ(q,T) = (q’,T’,D).

2. EXAMPLES OF TURING MACHINES

Example: Consider the TM M = (Q, Σ, Γ, δ, q0, B, {f}) 
where Q = {q0, f}, Σ = {a} and Γ = {a, B} and δ is given by the 
table:

State
Symbol

a B

q0 (q0,B,R) (f,B,S)

This TM erases nonblank symbols in the input tape.

Initially, the TM is in state q0 and the read/write head is 
pointing at the first symbol  in the input tape. For example, the 
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input tape contains the initial input BabbabaB. In reality, it should 
be …BBabbabaBB… but we simply shortened this to BabbabaB. 
Hence, we are at state q0 and the read/write head is pointing at a. 
What applies therefore is the transition function

δ(q0,a) = (q0,B,R).

This  will  bring  the TM to state  q0,  replaces  the  letter  a  (input 
being  pointed  to  at  the  moment)  with  a  B  and  moves  the 
read/write head one input to the right (R). If the direction of head 
movement  is  L then it  moves to  the  left  and if it  is  S,  then  it 
simply stays  where it  is.  Hence,  it  will  now be in  state q0 and 
reading the input  letter b.  Then,  it  simply checks the transition 
table for the next move and the process is repeated until it reaches 
the final  state in  which case it  halts recognizing what is in  the 
input.  Or, it may encounter an undefined entry in the transition 
table, in which case it also halts and not recognizing what is in the 
input.

In transition diagram, the TM above can be shown as:

Figure 3

Example: Consider the TM M = (Q, Σ, Γ, δ, q0, B, {f}) 
where Q = {q0, f}, Σ = {a} and Γ = {a, B} and δ is given by the 
table:

State
Symbol

a B

q0 (q0,B,L) (q0,B,L)

This  TM hangs  or  this  TM  machine  does  not  stop  executing 
because it will always find a B in the tape. Note that the tape is 
infinite and it contains B. In programming parlance, we say that 
the program is in “infinite loop.”

In transition diagram, the TM above can be shown as:

Figure 4

Example: Consider the TM M = (Q, Σ, Γ, δ, q0, B, {f}) 
where Q = {q0, f}, Σ = {a,b} and Γ = {a, b, B} and δ is given by 
the table:

State
Symbol

a b B

q0 (q0,b,R) (q0,a,R) (f,B,S)

This TM replaces all occurrence of a by a b and all occurrence of 
a b by an a.

In transition diagram, the TM above can be shown as:

Figure 5

Example: Consider the TM M = (Q, Σ, Γ, δ, q0, B, {f}) 
where Q = {q0, q1 ,f}, Σ = {a,b} and Γ = {a, b, B} and δ is given 
by the table:
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State
Symbol

a b B

q0 (q1,a,R) (q0,b,R) (q2,B,L)

q1 (f,a,R) (q0,b,R) (q2,B,L)

q2 (q2,B,L) (q2,B,L) (q2,B,L)

This TM searches for the substring aa. If it finds aa, then it goes to 
the final state. Otherwise, it simply erases the tape and hangs.

We note that  a string may contain the substring aa or 
not. There is no problem with the case where aa is found in the 
input since the TM can go to a final state. But if the string does 
not contain the substring aa, then we can either make the TM hang 
as what  was done above or we force the TM to stop.  The TM 
stops when the δ is undefined. For example, we can make the TM 
above stops when we encounter a B in the input tape.

State
Symbol

a b B

q0 (q1,a,R) (q0,b,R)

q1 (f,a,R) (q0,b,R)

In  transition diagrams,  the TM’s above can be shown 
as:

Figure 6

Example: The  Turing  Machine for  recognizing  the 
language L = aba*b is given by TM M = (Q, Σ,  Γ,  δ, q0, B, {f}) 
where Q = {q0, q1, q2,f},  Σ = {a,b} and  Γ = {a, b, B} and  δ is 
given by the table:

State
Symbol

a b B

q0 (q1,a,R)

q1 (q2,b,R)

q2 (q2,a,R) (f,b,R)

.
In transition diagram, the TM above can be shown as:

Figure 7

3. INSTANTANEOUS DESCRIPTION

Definition: The instantaneous description (ID) of a TM 
is denoted by α1qα2 where α1α2 ∈ Γ* and q is the current state (q 
∈ Q).

When α2 = ∈ then the TM is said to be in a halted description.

Definition: Let M = (Q, Σ, Γ, δ, q0, B, F) and let α1qiα2 

and α3qi+1α4 be instantaneous descriptions. Then α1qiα2 |- α3qi+1α4 

iff for some a ∈ Σ, A ∈ Γ, δ(qi, a) = (qi+1, A, R) and α3 = α1A, α2 = 
aα4.

The TM is said to yield the second configuration (ID) in one step.

Definition: For  any  TM M,  |-*  is  the  reflexive, 
transitive closure of |-. We say that ID c1 yields ID c2 if c1 |-* c2. A 
computation by M is a sequence of ID’s c0, c1, c2, …, cn for some 
n ≥ 0 such that c0 |- c1 |- c2 |- … |- cn. We say that the computation 
is of length n or has n steps.

Example: Consider  the  TM M  for  erasing  nonblank 
symbol. If M is started with ID q0aaaaB, its computation would be 
represented as follows:
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q0aaaaB |- Bq0aaaB
|- BBq0aaB
|- BBBq0aB
|- BBBBq0B
|- BBBBfB

Definition: A TM M = (Q, Σ,  Γ,  δ, q0, B, F) is said to 
accept L if for any w ∈ L there is a computation q0w |-* uf for 
some u ∈ Γ* and f ∈ F. If such a TM M exists, then L is said to be 
a Turing-acceptable language.

Example: Consider the TM M = (Q, Σ, Γ, δ, q0, B, {f}) 
where Q = {q0, q1 ,f}, Σ = {a,b} and Γ = {a, b, B} and δ is given 
by the table:

State
Symbol

a b B

q0 (q1,a,R) (q0,b,R)

q1 (f,a,R) (q0,b,R)

In transition diagram, this table is equivalent to the following:

Figure 8

The  TM machine  accepts  the  language L  = 
(b*ab*)*aa(b*ab*)* since there is a computation for every string
in  the  language.  For  example,  the  computation  for  the  string 
bbaaba is:

q0bbaabaB |-  bq0baabaB
     |-  bbq0aabaB
    |-  bbaq1abaB
     |-  bbaafbaB

4. COMPUTING WITH TURING 
MACHINES

Definition: Let Σ1 and Σ2 be alphabets of languages L1 

and L2, respectively. Let f be a function from Σ1 to Σ2. A TM M = 
(Q, Σ, Γ, δ, q0, B, F) is said to compute f if Σ1, Σ2 ⊆ Σ and for any 
w ∈ Σ1,

if f(w) = u then q0w |-* uf,

where f ∈ F. If such a TM M exists, then f is said to be a Turing-
computable function.

The  notion  of  a  Turing-computable  function from  strings  to 
strings can be extended in several ways:

One is the Turing-computable  function from string to 
string. It can be extended to consider functions of any number of 
arguments, including 0. Let f be a function from (Σ1*)k to  Σ2*, 
where k ≥ 0, and let M be a TM (Q, Σ, Γ, δ, q0, B, F), where Σ1, Σ2 

⊆ Σ. For any w1, w2, … wk ∈ Σ1*, if f(w1, w2, …, wk) = u, then

q0w1Bw2Bw3B … Bwk |-* uf.

Again, we say that M computes f and that f is Turing-computable.

Example: Substitute Function. Let Σ1 = Σ2 = {0,1} and 
let f(w) = z, where w ∈ Σ1 and z ∈ Σ2, be defined as follows:

For  any w  ∈ Σ1.  f(w)  =  z,  where  z  is  the  result  of 
replacing each occurrence of 0 in w by 1, and vice versa.

Thus, an input

010101B

will produce the tape configuration

101010B.

Rough Algorithm: The TM scans forward through its 
input, changing 0’s to 1’s and vice versa, until a blank symbol is 
found.

Formally,  the  TM can  be  described  as  follows:  M = 
({q0,q1}, {0,1}, {0,1,B}, δ, q0, B, {q1}), where δ is defined as:
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States

Symbols

0 1 B

q0 (q0,1,R) (q0,0,R) (q1,B,R)

In transiiton diagram, this TM can be shown as :

Figure 9

Example: Show the  computation  for  the  input  string 
0101001.

q00101001B |- 1q0101001B
|- 10q001001B
|- 101q01001B
|- 1010q0001B
|- 10101q001B
|- 101011q01B
|- 1010110q0B
|- 1010110Bq1

The Turing-computable function may be extended 
to consider functions from natural numbers (N) to natural 
numbers (N).  Let  I  be some fixed symbol other than the 
blank  symbol,  then  the  natural  number  n  may  be 
represented by the string In. A function f: N → N is said to 
be computed by a TM M if M computes the function f’: 
{I}* → {I}*, where f’(In) = If(n) for each n ∈ N. In general, 
a TM M computes a function f: Nk → N if it computes the 
function f’: ({I}*)k → {I}*, where f’(In1, In2, …, Ink) = If(n1,n2, 

…, nk) for any n1, n2, …, nk ≥ 0.

Example: Successor  Function.  Let  f  be  the 
successor function: f(n) = n+1 for each n  ∈ N. A TM for 
this is M = ({q0,q1}, {0}, {0,B},  δ, q0, B, {q1}) where δ is 
defined as:

States

Symbols

0 B

q0 (q0,0,R) (q1,0,R)

In transition diagram this can be written as:

Figure 10

Thus with an initial input tape configuration of:

0000B

will produce a final tape configuration of

00000B.

Example: Show the  computation  for  the  input  string 
0000.

q00000B |- 0q0000B
|- 00q000B
|- 000q00B
|- 0000q0B
|- 00000q1

Example: Proper  Subtraction.  The  proper 
subtraction function f(m,n) is defined as:

f(m,n) = m-n, when m ≥ n,

f(m,n) = 0, when m < n.

Rough  Algorithm: The  objective  of  the  TM 
machine is to transform the initial input tape:
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0m10n

to

0m-n, if m ≥ n

all B’s or blanks if m < n.

The TM repeatedly replaces its leading 0 by a B, 
then searches right for a 1 followed by a 0 and change this 0 
to 1. Next, M moves left until it encounters a B and repeats 
the cycle. The repetition ends if

1. searching right for a 0, the TM encounters a 
B;

2. beginning the cycle, M cannot find a 0 to 
change to a B, because the first m 0’s already 
have been changed. Then m ≥ n, so f(m,n) = 
0. The TM replaces all remaining 1’s and 0’s 
y B’s.

Formally, the TM can be described as follows: M 
= ({q0, q1, …, q5, f), {0, 1}, {0, 1, B}, δ, q0, B, {f}), where 
δ is defined as:

States

Symbols

0 1 B

q0 (q1,B,R) (q5,B,R)

q1 (q1,0,R) (q2,1,R)

q2 (q3,1,L) (q2,1,R) (q4,B,L)

q3 (q3,0,L) (q3,1,L) (q0,B,R)

q4 (q4,0,L) (q4,B,L) (f,0,R)

q5 (q5,B,R) (q5,B,R) (f,B,R)

F

In transition diagram notation, this can be written as:

Figure 11

Example: Show the computation for the input 000100.

q0000100B |- Bq100100B
|- B0q10100B
|- B00q1100B
|- B001q200B
|- B00q3110B
|- B0q30110B
|- Bq300110B
|- q3B00110B
|- Bq000110B
|- BBq10110B
|- BB0q1110B
|- BB01q210B
|- BB011q20B
|- BB01q311B
|- BB0q3111B
|- BBq30111B
|- Bq3B0111B
|- BBq00111B
|- BBBq1111B
|- BBB1q211B
|- BBB11q21B
|- BBB111q2B
|- BBB11q41B
|- BBB1q41BB
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|- BBBq41BBB
|- BBq4BBBBB
|- BB0fBBBB

Example: Addition. The addition function f(m,n) 
is defined as:

f(m,n) = m+n,

when m,n ≥ 0.

Rough  Algorithm: The  objective  of  the  TM 
machine is to transform the initial input tape:

0m10n

to

0m+n

.

The algorithm looks for the first occurrence of the a 1, replace this 
with a 0 and then continue this time looking for a B. Once a blank 
is found, moves one square left and replace it with a blank.

Formally, the TM can be described as follows: M 
= ({q0, q1, q2, f), {0, 1}, {0, 1, B}, δ, q0, B, {f}), where δ is 
defined as:

States

Symbols

0 1 B

q0 (q0,0,R) (q1,0,R) (f,B,S)

q1 (q1,0,R) (q2,B,L)

q2 (f,B,S)

f

In transition diagram, the above TM is equivalent to:

Figure 12

Example: Show the computation for the input 000100.

q0000100B |- 0q000100B
|- 00q00100B
|- 000q0100B
|- 0000q100B
|- 00000q10B
|- 000000q1B
|- 00000q20B
|- 00000fBB

5. VARIANTS OF TURING MACHINES

Two-Way Infinite Tape TM

As  in  the  original  one-way  infinite  tape  model,  a 
machine in this model may be denoted by M = (Q, Σ, Γ, δ, q0, B, 
F). The relation |- which relates two ID’s is defined as for the one-
way infinite  tape,  except  that  if  δ(q,x)  =  (p,Y,L),  then  qxα |- 
pBYα and if  δ(q,x) = (p,B,R), then qxα |- pα ( in the original 
model, the B would appear to the left of p).

Multitape Turing Machines (MT-TM)

A MT-TM consists of a finite control with k-tape heads 
and k-tapes; each tape is infinite in both directions.  In  a single 
move, depending on the state of the finite control and the symbol 
scanned by each of the tape heads, the machine can

1. change state;
2. print a new symbol on each of the cells scanned by its tape 

head;
3. move each of its tape heads, independently, one cell to the 

left or right, or keep it stationary.
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Initially, the input appears on the first tape and the other tapes are 
blank.

Consider a three-tape TM (k = 3). The case k > 3 can be 
defined similarly. Formally, a three-tape TM can be denoted by M 
= (Q, Σ,  Γ,  δ, q0, B, F) where Q = [p,q,r] with p the state of the 
first tape, q the second tape and r the third tape, Σ = [a,B,B], Γ = 
[X,Y,Z]  and  δ is  defined  by  δ([p,q,r],[X,Y,Z])  =  ([pi,qi,ri], 
[Xi,Yi,Zi],[A,B,C]),  [A,B,C]  are  the  moves of  the  first,  second, 
and third tape heads, respectively.

Multidimensional Turing Machines (MD-TM)

A MD-TM  is a device that has the usual finite control, 
but the tape consists of k-dimensional array of cells infinite in all 
2k  directions,  for  some  fixed  k.  Depending  on  the  state  and 
symbol  scanned,  the device changes state,  prints  a new symbol 
and  moves  the  tape  head  in  one  of  the  2k  directions,  either 
positively or  negatively,  along  one  of  the  k axes.  Initially,  the 
input is along one axis, and the head is at the left end of the input.

Multihead Turing Machine

A  k-head  TM has  some  fixed  number  k,  read/write 
heads. The heads are numbered from 1 to k, and a move of the 
TM depends  on  the  state  and  on  the  symbol  scanned  by each 
head. In one move, the heads may each move independently left, 
right or stationary.

Nondeterministic Turing Machines

A nondeterministic TM is denoted by M = (Q, Σ, Γ, ∆, 
q0, B, F) where ∆ the next move function is a mapping from Q × Γ 
to a subset of Q × Γ × {L, R, S}. The instantaneous descriptions 
(ID’s)  and  the  relations  |- and  |-*  are  defined  as  in  the 
deterministic  case.  The  only  difference  is  that  |-  need  not  be 
single-valued.

Nondeterministic  TM’s  are  as  powerful  as  the 
deterministic case (meaning they are equivalent). However, there 
are  problems  whose  natural  solutions  are  the  nondeterministic 
case.

6. RECURSIVE AND RECURSIVELY 
ENUMERABLE LANGUAGES

Definition: We say that M  semidecides L if for every 
string w the following is true: w  ∈ L if and only if M halts on 
input w, otherwise it does not halt. A language L is  recursively 

enumerable if  and  only  if  there  is  a  Turing  Machine M that 
semidecides L.

Example: Let L = {w ∈ {a,b}*| w contains an a}. L is 
semidecided by the Turing Machine  = ({q0,q1}, {0}, {0,B}, δ, q0, 
B, {q1}) where δ is defined as:

States

Symbols

a b B

q0 (q1,a,S) (q0,b,R) (q0,B,R)

This Turing Machine scans the input  one  by one until  an a is 
encountered  in  which  case  it  halts.  Otherwise  it  endlessly 
continuous to go the right or it does not halt.

Since the TM may not  halt,  we can say that  the  TM 
machine is not an algorithm for the problem being solved.

Definition: We say that M decides L if for every string 
w, M halts on input w whether w is in L or not. A language L is 
recursive if and only if there is a Turing Machine M that decides 
L.

Let  and  be two symbols not in Σ. Then a language 
L ⊆ Σ* is recursive if and only if a TM that compute the function 
g: Σ* → {, } can be constructed, where for each w ∈ Σ*,

g(w) = , if w ∈ L

g(w) = , if w ∉ L.

If g is computed by a TM M, then M is said to decide L, or to be a 
decision procedure for L.

The  symbol   stands  for  "yes"  or  w is  in  L and   
stands for "no" or w is not in L.

Since the TM decides a language, it can be reasonably 
thought of as an  algorithm that  performs correctly and reliably 
some computational task.

Example: Let  Σ = {a} and L = {w ∈ Σ | |w| is even}. 
Then the following TM M = (Q, Σ, Γ, δ, q0, #, F) where Q = {q0, 
q1, …, q6}, Σ = {a}, Γ = {a, , , #}, f ∈ F and δ is given by:
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States
Symbols
a #  

q0 (q1,#,L)

q1 (q2,#,S) (q4,#,R)

q2 (q3,#,L)

q3 (q0,#,S) (q6,#,R)

q4 (q5,,S)

q5 (f,,R
)

(f,,R)

q6 (q5,,S)

The TM produces the following computations:

q0#an# |-* # #f, if n is even and
q0#an# |-* # #f, if n is odd.

7. THE HALTING PROBLEM

Definition: Problems with no algorithm exists are called 
undecidable or  uncomputable while  problems with  algorithms 
are called decidable or computable. 

With  this  definition,  we  can  say that  the  problem of 
recognizing recursive languages are decidable since an algorithm
can  be  formulated  for  the  problem.  However,  the  problem of 
recognizing recursively enumerable languages may be decidable 
or  not  because  if  it  is  decidable,  then  the  set of  recursively 
enumerable  languages  is  equivalent  to  the  set  of  recursive 
languages.  We show in  this  section  that  the  set  of  recursively 
enumerable  languages  is  not  equivalent  to  recursive  languages, 
i.e.,  there  are  recursively  enumerable  languages  that  are  not 
recursive.  Recognizing  this  set  of  recursively  enumerable 
languages that are not recursive are what we call undecidable.

Now,  we  consider  our  first  undecidable problem,  the 
problem of testing whether a string w is accepted by a TM M. We 
define this as:

Member(M,w) = {Mw | TM M accepts input string w}.

Theorem: Member(M,w) is recursively enumerable.

Proof: We  can  construct  a  TM U  that  recognizes 
Member(M,w) as follows: U on input Mw (M is an encoding of 
the TM M and w is the input string):

1. Simulate M on input w

2. If M enters an accept state, U accepts. Otherwise, if 
M enters a reject state, U rejects.

Note  that  U loops  on  input  Mw if M loops  on  w -  thus  it  is 
possible for U not to stop.

This problem is called the Halting Problem because if 
there is only a way by which we can determine that M will not 
halt on w, then we can force U to stop and reject.

The TM U as describe is an example of the Universal 
TM  which  was  used  by  Alan  Turing  in  its  proof  of  the 
undecidability  of  the  Halting  Problem.  The  machine  is  called 
universal  because it  is  able to simulate any other  TM from the 
description of the machine.

Theorem: Recognizing Member(M,w) is undecidable.

Proof: We  assume  that  Member(M,w)  is  decidable. 
Being  decidable,  we  can  construct  a  TM H  that  decides 
Member(M,w), i.e., on input Mw, where M is a TM and w is a 
string, H halts and accepts if M accepts w. Furthermore, H halts 
and rejects if M fails to accept w. In summary, we say

accept,M accepts w
reject, M does not accept w

H 
= 



Next, we construct another Turing Machine U that calls 
H. This new TM U calls H to determine what M does when the 
input to M is its own description M rather than w. The behavior of 
U is that it does the opposite of what H does. That is, it rejects if 
M accepts  and  accepts  if M does not  accept.  U's  operation  on 
input M can be outlined as follows:

1. Run H on input MM
2. Output  the  opposite  of  what  H  outputs;  if  H 

accepts, reject and if H rejects, accept.

We can therefore write this as follows:

accept, if M does not accept M 
reject, if M accepts M

D 
= 



Now,  we  examine  what  happens  when  we  run  D  on  its  own 
description. In this case we get:

accept, if D does not accept D
reject, if D accepts D

D 
= 


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Clearly,  no matter what D does it is forced to do the opposite. 
Clearly this is a contradiction since D accepts when D does not 
accept. Hence, there is no such TM D and similarly no such TM 
H.

The  existence  of  Member(W,w),  a  language that  is 
recursively enumerable but  not  recursive,  proved  the  following 
theorem.

Theorem: The class of recursive languages is a strict 
subset of the class of recursively enumerable languages.

A related problem, also called by some authors as the 
halting problem, is the problem of recognizing:

Halt(M,w) = {Mw | TM M halts on input string w}.

This  problem is  also  undecidable and our  proof  is  a  reduction 
from Member(M,w).

Theorem: Reconizing Halt(M,w) is undecidable.

Proof: Assume that a TM H decides Halt(M,w). We can 
construct a TM U to decide Member(M,w), where U operates on 
input  Mw (M is an encoding of the TM M and w is the input 
string):

1. Run TM H on input Mw
2. If H rejects, reject.
3. If H accepts, simulate M on w until it halts. If M 

accepted w, accept; if M rejects w, reject.

Clearly if H decides Halt(M,w),  then U decides Member(M,w). 
But since Member(M,w) is undecidable, so is Halt(M,w).

8. CHURCH-TURING THESIS

Earlier we have illustrated that Turing machines can be 
designed  to  accept  more  complicated  languages  and  arithmetic 
functions. Because Turing machines can carry out computations, 
we view Turing machines as a formal equivalent of the intuitive 
notion of an algorithm. That is, anything cannot be considered an 
algorithm unless a Turing machine can be constructed for it.

However, the use of a Turing machine is not only the 
approach  to  computations.  There  are  other  models  of 
computations and these models of computations are: 

1. Godel-Herbrand-Kleene (1936) – General recursive 
functions defined by means of an equation calculus (Kleene, 
1952).

2. Church (1936) - λ-definable functions (Church, 1936).
3. Godel-Kleene (1936) - µ-recursive functions and partial 

recursive functions (Kleene, 1936).
4. Turing (1936) – Functions computable by finite state 

machines known as the Turing Machines (Turing 1936).
5. Post (1943) – Functions defined from canonical deduction 

systems (Post, 1943).
6. Markov (1951) – Functions given by certain algorithms over 

a finite alphabet (Markov, 1954).
7. Shepherdson-Sturgis (1963) – Unlimited Register Machine 

(URM)-computable functions (Shepherdson and Sturgis, 
1963).

The  Church-Turing  Thesis states  that  each  of  the  above 
proposals  for  a  characterization  of  the  notion  of  effective 
computability gives rise to the same class of functions, the class 
we call the Turing-computable functions. Thus, all the models of 
computations  above  are  equivalent  to  each  other  and  also 
equivalent to the Turing machine approach. Also, the intuitively 
and informally defined class of effectively computable functions 
coincides  with  the  class  of  Turing-computable  functions.  This 
means that we can  extend our concept of an algorithm as not only 
limited to those where a Turing machine can be constructed but 
also to those computable by other models of computations above.

This  thesis  is  not  a  theorem (which  is  susceptible  to 
mathematical proof); it has the status of a claim or belief that may 
be substantiated by evidence. We cannot hope to prove this thesis 
because  we  do  not  have  an  exhaustive  list  of  models  of 
computations.  In  fact,  there  might  be  somebody  who  can 
overthrow this  thesis  by showing  the  existence  of  a  model  of 
computation that can carry out computation that cannot be carried 
out by a Turing machine. However, this is unlikely because there 
are so many evidences that show that the thesis holds. Some of 
these evidences are:

1. The fundamental result itself is one evidence. Many 
independent proposals for a precise formulation of the 
intuitive idea have led to the same class of functions, which 
we have called Turing-computable functions. 

2. A vast collection of effectively computable functions has 
been shown explicitly to belong to Turing-computatable 
functions.

3. An implementation of a program for a Turing-computable 
function is clearly an example of an algorithm.

4. No one has ever found yet a function that would be accepted 
as computable in the informal sense, that does not belong to 
Turing-computable function.

On the basis of these evidences and of their experiences, 
most mathematicians are led to accept  the Church-Turing 
Thesis.

In  order  to  illustrate  the  flavor  of  other  models  of 
computations,  we  discuss  unrestricted  grammars,  µ-recursive 
functions and unlimited register machines. These three models of 
computations were shown to be equivalent to the Turing machine 
approach.
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