
Satisfied with Satisfiability?–
A Note on the First NP-complete Problem

John Paul C. Vergara
Department of Information Systems and Computer Science

Ateneo de Manila University
Quezon City 1108 Philippines

ABSTRACT
In this paper, we revisit the theory of NP -completeness and
present an alternative to Satisfiability (SAT) as the “first”
NP -complete problem. We define the decision problem Non-
deterministic Turing Machine Computation (NTMC) and
present it as the alternative. An NTMC instance consists of
a non-deterministic Turing machine, an input string, and an
integer time bound. The decision problem seeks to answer
the question of whether the machine accepts the input string
within the given time. The approach was first presented by
Lewis and Papadimitriou in their classic textbook, Elements
of the Theory of Computation [6]. We review Cook’s Theo-
rem and its proof and present arguments on why NTMC is
a reasonable alternative as the first NP -complete problem.

1. INTRODUCTION
Author’s note: A version of this paper has appeared in

Philippine Journal of Computing. Corrections on some tech-
nical definitions and various clarifications have been incor-
porated in this version.

The theory of NP -completeness is a central concept in the
area of computational complexity. Thousands of decision
problems have been analyzed and proven to beNP -complete,
thereby placing them in a special class of intractable prob-
lems. Three classes of problems are important in this dis-
cussion:

• P : the class of decision problems whose acceptable
instances can be decided in (deterministic) polynomial
time.

• NP : the class of decision problems whose acceptable
instances can be decided in non-deterministic polyno-
mial time.

• NP -complete problems: the subclass of NP that con-
tains all problems π such that for each π′ ∈ NP , there
exists a polynomial-time transformation from π′ to π.

NP -complete problems are critical in our understanding of
the P = NP question, one of the most important unresolved
questions in computer science. If even one NP -complete
problem is shown to be in P , then the P = NP question
would be resolved in the affirmative, although this is gen-
erally thought to be unlikely. Showing that a problem is
NP -complete is thus a definitive statement of intractabil-
ity; that is, the problem is so difficult that discovering an
efficient solution to it will be groundbreaking.

Due to the transitivity of polynomial transformations, prov-
ing that a problem π ∈ NP is NP -complete typically in-
volves providing a polynomial-time transformation from a
known NP -complete problem to π. This, however, necessi-
tates a“first”NP -complete problem, whoseNP -completeness
requires a more complicated proof. Specifically, the proof
needs to satisfy the conditions of completeness as defined
and ensure that every problem in NP polynomially trans-
forms to that problem. That first NP -complete problem is
Satisfiability (SAT), and the proof of its NP -completeness
is due to Cook [1]. A SAT instance involves a set of vari-
ables and clauses over those variables; we seek to determine
whether there is a truth assignment for the variables that
satisfies all the clauses.

In this paper, we propose an alternative first NP -complete
problem, Non-deterministic Turing Machine Computation
(NTMC). An NTMC instance consists of a non-deterministic
Turing machine, an input string, and an integer time bound;
here, we seek to determine whether the machine accepts the
input string within the given time. We are in fact reviving
an approach first introduced by Lewis and Papadimitriou in
the first edition of their textbook, Elements of the Theory
of Computation [6]. While almost all textbooks that discuss
computational complexity use SAT as the first NP -complete
problem, Lewis and Papadimitriou begin by establishing
the NP -completeness of NTMC, after which they provide
a polynomial transformation from NTMC to the Bounded
Tiling problem. Savelsberg and van Emde Boas [8] refer
to this unique approach and propose Bounded Tiling as an
alternative to Satisfiability.

The rest of this paper is organized as follows. Section 2 pro-
vides some formalisms on Turing machines and complexity
classes. In Section 3, we review Cook’s Theorem and pro-
vide a proof sketch for the theorem. In Section 4, we define
NTMC and present arguments on its suitability as the first
NP -complete problem. We conclude in Section 5 where we

summarize our discussions.

2. PRELIMINARIES
We use the Turing machine as a model for computation,
and review its definition and significance in this section. A
Turing machine consists of a finite control with a tape head
moving along cells of a two-way infinite tape. Computation
on the machine begins with an input string on the tape and
the tape head pointing at the first symbol of the string. It
then proceeds with the control carrying out actions on the
cells of the tape until it reaches a final state.

Formally, a deterministic Turing machine M is a tuple
(Q,Σ, δ, b, q0, qfy , qfn), where Q is a set of states, Σ is the
tape alphabet, b ∈ Σ is the special blank symbol, δ : Q×Σ →
Q × Σ× {L,R} is the transition function mapping a state-
symbol pair to an action (state-symbol-direction triple), q0 ∈
Q is the start state, and qfy, qfn ∈ Q are accepting and re-
jecting final states, respectively. The literature has defined
Turing machines in different ways (see [2, 3, 7, 9] for some
examples). The definition given was chosen to fit the pur-
poses of this paper.

A computation on a Turing machine M involves an input
string over the alphabet Σ. The machine M starts in state
q0 with a string s ∈ Σ∗ bounded by infinitely many blank
symbols placed on its tape and the tape head pointing at
the leftmost symbol of s. The machine proceeds by repeated
applications of the transition function δ, each carrying out
an action based on the current state and the current sym-
bol. An action involves overwriting the symbol on the tape,
moving the head left (L) or right (R), and transitioning to
a different state. The machine halts once a final state (qfy
or qfn) is reached. It is of course possible that a computa-
tion will never reach a final state for a given input string. If
it does halt, we say that the machine completes in t steps,
where t is the number of times an action is carried out,
equivalently, the number of applications of δ.

Turing machines can serve as deciders for strings; that is, a
machine M accepts a string s if the resulting computation
reaches qfy, and rejects s if the computation reaches qfn. On
the other hand, Turing machines can also compute functions
on strings; The string left on the tape after the machine halts
serves as the computed output that corresponds to the input
string. In this case, M computes a function fM : Σ∗ → Σ∗,
if for all s ∈ Σ∗, M halts on input s (we may just require
that all computations end in qfy). The Church-Turing thesis
in fact states that the set of problems that are computable
(even when using computers with more powerful features)
is the same as the set of problems that can be solved by a
Turing machine.

Turing machines pave the way for the definitions of com-
plexity classes. The reader is referred to textbooks on al-
gorithms or computational complexity [2, 3, 7, 9] for more
detailed formalisms on the rest of the statements in this sec-
tion. Noting that problem instances can always be encoded
by strings over some alphabet, a Turing machine may repre-
sent a solution to a given problem. Specifically, for a decision
problem, a Turing machine solves that problem if it accepts
only those strings whose correponding instances have “yes”
answers to the problem’s question, and rejects those that

have “no” answers. The class P is defined to contain all
decision problems π such that there exists a deterministic
Turing machine that solves π within p(n) steps for all its
instances, where p is some polynomial over n. Here, n is the
length of an encoding of an instance of π.

A non-deterministic Turing machine M follows the same
definition as its deterministic counterpart except that δ is
now a transition relation. In effect, multiple actions may
correspond to a given state-symbol pair. The meaning of a
machine accepting an input string is adjusted accordingly:
for a non-deterministic machine M and a given input string
s, M accepts s as long as there exists a sequence of actions
that lead to qfy, consistent with δ. Analogous statements
for a non-deterministic Turing machine M solving a decision
problem π holds.

The class NP is defined to contain all decision problems π

such that there exists a non-deterministic Turing machine
that solves π within p(n) steps for all its instances, where p

is some polynomial over n. Clearly, P ⊆ NP . It is not yet
known if P = NP , although this has been conjectured to be
not the case.

Let π1 and π2 be decision problems, a transformation f from
π1 to π2 is a mapping from instances of π to instances of π2,
such that an instance I is a “yes”-instance of π1 if and only
if the instance f(I) is “yes”-instance of π2. We say that π1

transforms to π2.

The transformation is a polynomial transformation if it can
be carried out in polynomial time; that is, there exists a de-
terministic Turing machine (this time used as a machine that
computes a function on strings) that performs the trans-
formation within p(n) steps, for some polynomial (n is the
length of the encoding of an instance).

A decision problem π is NP -complete if π ∈ NP and for
all π′ ∈ NP , there exists a polynomial-time transforma-
tion from π′ to π. NP -complete problems are significant
because they represent a class of intractable problems vir-
tually equivalent to each other via polynomial-time trans-
formations. If a polynomial-time solution is discovered for
even one NP -complete problem, then all problems in NP

are rendered solvable in polynomial time, meaning P = NP .
Showing that a problem is NP -complete is thus a definitive
statement of intractability.

There are two ways to prove that a problem π is NP com-
plete:

1. Show that π ∈ NP , and then show that for every prob-
lem π′ ∈ NP , there is a polynomial transformation
from π′ to π.

2. Show that π ∈ NP , and then provide a polynomial
transformation from a known NP -complete problem
to π.

The second approach is valid because of the transitivity of
polynomial-time transformations. However, it necessitates a
“first”NP -complete problem, whose proof has to involve the
first approach. That proof is the topic of the next section.

3. COOK’S THEOREM
Satisfiability is traditionally the first NP -complete problem.
We provide a formal definition for this problem:

SATISFIABILITY (SAT)

INSTANCE: A set U of boolean variables and a collection
C of clauses over U (each clause in C is a set of positive
or negative literals over U).

QUESTION: Is there a truth assignment for U that sat-
isfies all the clauses in C?

The following result is due to Cook [1], and was indepen-
dently arrived at by Levin [5]. We sketch a proof similar to
that described in Garey and Johnson’s definitive reference
to the theory of NP -completeness [2].

Theorem 1. SAT is NP -complete.

Proof. It is straightforward to show that SAT is in NP .
A non-deterministic Turing machine can non-deterministically
generate a truth assignment (|U | true-or-false values) on the
tape, and then verify (deterministically) in polynomial time
if the assignment satisfies at least one literal for each clause,
before proceeding to an accepting state.

To show that for every problem π′ ∈ NP , there is a polyno-
mial transformation from π′ to SAT, we use the only char-
acterization available for a problem in NP : the existence of
a non-deterministic Turing machine M that solves π′ within
p(n) steps. We create a SAT instance from this character-
ization; that is, we define a set of variables U and clauses
C, such that there is a truth assignment for U that satisfies
C if and only if the instance of π′ is accepted by M within
p(n) steps.

The set U of variables are as follows:

Q[i, k] (for each time step i and each state k) holds the
value true if at time i, M is in state qk.

H [i, j] (for each time step i and tape cell j) holds the value
true if at time i, the tape head is on cell j.

S[i, j, k] (for each time step i, tape cell j and symbol k)
holds the value true if at time i, the contents of tape
cell j is the symbol k.

The set C of clauses over U are arranged to represent the
following:

1. At each time i, M is in exactly one state.

2. At each time i, the tape head is on exactly one tape
cell.

3. At each time i, each tape cell contains exactly one
symbol.

4. At time 0, the tape contains an input string of length
n (the encoding of the instance of π′), the tape head
is on the cell containing the leftmost symbol of the
string, and M is in its initial state.

5. By time p(n), M has reached the accepting state.

6. For each time i, the transitions to time i+1 (change in
state and symbol) are consistent with M ’s transition
relation δ.

We omit the details of the actual literals in the clauses (see
[2] for a complete proof), but with the above construction,
it can be verified that the transformation is a polynomial
transformation and that there is a truth assignment for U

that satisfies C if and only if the instance of π′ is accepted
by M within p(n) steps.

The above proof is a classic result and launched the growth
of the class of NP -complete problems [2, 4]. It provided
a first NP -complete problem, which meant that succeed-
ing proofs for NP -completeness need only select an existing
NP -complete problem to transform from to render a given
problem NP -complete.

In the next section, we propose an alternative first NP -
complete problem, and suggest it as a more natural choice.

4. THE ALTERNATIVE: NTMC
We begin by providing a formal definition for the problem
of Non-deterministic Turing Machine Computation.

NON-DETERMINISTIC TURING MACHINE
COMPUTATION (NTMC)

INSTANCE: A non-deterministic Turing machine M with
alphabet Σ, a string s ∈ Σ∗, and an integer t. 1

QUESTION: Does M accept s within t steps?

We then propose that the proof of Cook’s Theorem be bro-
ken down into two parts as follows:

1. A polynomial transformation from any problem in NP

to NTMC.

2. A polynomial transformation from NTMC to SAT.

The first part was an approach actually taken by Lewis and
Papadimitriou in the first edition of their textbook, Ele-
ments of the Theory of Computation [6]. (Curiously, the
approach was not used in the second edition of their book
[7].) We state and prove it here as a lemma.

Lemma 1. NTMC is NP-complete.

1For the purposes of this paper, we assume that t is unary-
encoded or that t is a polynomial on |s|.

Proof. It is straightforward to show that NTMC is in
NP . A non-deterministic Turing machine can non-determi-
nistically generate a sequence of t transitions from M ’s δ

(where each transition contains a state-symbol pair and a
state-symbol-direction triple) and then verify (determinis-
tically) in polynomial time if the sequence of transitions
represents a valid simulation of M on s and leads to M ’s
accepting final state.

Let π′ be any problem in NP . By definition, there exists
a Turing machine M ′ that solves π′ in polynomial time.
Therefore, an acceptable instance I ′ of π′ brings M ′ to its
accepting final state within p(n) steps.

We create an instance of NTMC as follows: M = M ′, I = I ′,
and t = p(n). Trivially, M ′ accepts I ′ within p(n) steps if
and only if M accepts I within t steps. The lemma fol-
lows.

The proof of Cook’s Theorem would then invoke the above
lemma and provide a transformation from NTMC to SAT.

The alternative proposed would appear superfluous on the
surface, but it provides several conveniences:

1. The approach manages the complexity of the proof
of Cook’s Theorem. Transforming from every NP

problem to a given problem is not too easy to com-
prehend for those who are new to the theory of NP -
completeness. The directness of the transformation, if
NTMC is used as the destination problem, helps sim-
plify the proof. The second stage of the proof is then a
simpler transformation from a single problem (NTMC)
to another (SAT).

2. We can say thatNP -complete problems are those prob-
lems that are “polynomially equivalent to the problem
of Non-deterministic (Polynomial) Turing Machine Com-
putation”, providing a compact description consistent
with the definition of the class.

3. We found at least one reference that proposed an alter-
native to Satisfiability. Savelsberg and van Emde Boas
[8] propose Bounded Tiling problem as an alternative,
particularly because they found that a transformation
from a Turing machine instance was more appropri-
ate. Had NTMC been a declared NP -complete prob-
lem, then the proof for the problem’sNP -completeness
would have been slightly less complex, involving a trans-
formation from a single problem to another, instead of
following an approach similar to Cook’s Theorem.

5. SUMMARY
At the very least, this paper provides a review of the theory
of NP -completeness and Cook’s Theorem. It also proposes
an approach that attempts to improve the explanation of
the theory by providing an alternative to Satisfiability as
the first NP -complete problem. The alternative problem
is called Non-deterministic Turing Machine Computation
(NTMC). The NP -completeness of NTMC is established,
and arguments regarding the suitability of this problem as
the first NP -complete problem are presented.

6. REFERENCES
[1] Stephen A. Cook. The complexity of theorem-proving

procedures. In Michael A. Harrison, Ranan B. Banerji,
and Jeffrey D. Ullman, editors, STOC, pages 151–158.
ACM, 1971.

[2] M. R. Garey and David S. Johnson. Computers and
Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

[3] John E. Hopcroft, Rajeev Motwani, and Jeffrey D.
Ullman. Introduction to automata theory, languages,
and computation - (2. ed.). Addison-Wesley series in
computer science. Addison-Wesley-Longman, 2001.

[4] Richard M. Karp. Reducibility among combinatorial
problems. In Raymond E. Miller and James W.
Thatcher, editors, Complexity of Computer
Computations, The IBM Research Symposia Series,
pages 85–103. Plenum Press, New York, 1972.

[5] L.A. Levin. Universal sequential search problems.
Problemy Peredachi Informatsii, 9(3):115–116, 1973.

[6] Harry R. Lewis and Christos H. Papadimitriou.
Elements of the Theory of Computation. Prentice-Hall,
1981.

[7] Harry R. Lewis and Christos H. Papadimitriou.
Elements of the theory of computation (2. ed.). Prentice
Hall, 1998.

[8] W.P. Savelsbergh and P. van Emde Boas. Bounded
Tiling, an Alternative to Satisfiability? Report.
Centrum voor Wiskunde en Informatica. Stichting
Mathematisch Centrum. OS. Centrum voor Wiskunde
en Informatica, 1984.

[9] Michael Sipser. Introduction to the theory of
computation. PWS Publishing Company, 1997.

