
Data Association for an Adaptive Multi-target Particle Filter

Tracking System

Raphael Alampay

Ateneo de Manila University

Quezon City, 1108 Philippines

+632-4266001 ext 5660

raphael.alampay@gmail.com

Kardi Teknomo

Ateneo de Manila University

Quezon City, 1108 Philippines

+632-4266001 ext 5660

teknomo@gmail.com

ABSTRACT

This paper presents a hybrid approach to improve the

accuracy of tracking multiple objects in a static scene using

a particle filter system by introducing a data association

step, a state queue for the collection of tracked objects and

adaptive parameters to the system. The data association

step makes use of the object detection phase and

appearance model to determine if the approximated targets

given by the particle filter step match the given set of

detected objects. The remaining detected objects are used

as information to instantiate new objects for tracking. State

queues are also used for each tracked object to deal with

occlusion events and occlusion recovery. Finally we

present how the parameters are adaptively adjusted to

occlusion events. The adaptive property of the system is

also used for possible occlusion recovery. Results of the

system are then compared to a ground truth data set for

performance evaluation. Applying the system to a limited

dataset, it produces quite accurate results and was able to

handle partially occluded objects as well as proper

occlusion recovery from tracking multiple objects. We also

present a comparison of this method compared to an

ordinary particle filter. Results show that although it may

improve the accuracy in terms of correcting the system

after occlusion, it works on a case to case basis.

Keywords: Multi object tracking, particle filter, data

association, target hijacking, computer vision

Introduction
Video tracking is defined as a process of estimating the

location of one or more objects in a video or from a camera

or video file [4]. The objects being tracked by the system

depends on the application it addresses. It may be defined

as any moving object in the scene, pedestrians or cars. The

collection of state information of these objects for every

time step is referred to as an object’s trajectory.

The trajectory information brought by a video tracking

system can be used for many applications. Surveillance is

one of the most popular applications for video tracking

systems such as the one used by IBM to monitor activities

of objects within the scene of a compound [2]. Other

examples include monitoring pedestrian activity and

classifying their trajectories to complex behaviors as done

by [6] and creating probabilistic models for pedestrian flow

from captured trajectories [5].

All applications of a video tracking system have to deal

with several common problems. The first problem is noise,

which is defined as unwanted or false information brought

about by the vision sensor [4]. The amount of noise often

depends on the quality of the sensor being used. Another

major problem is occlusion wherein targets are either failed

to be observed or tracked properly if obscured by other

valid targets or foreign objects in the scene (i.e. target

moves behind a wall or two or more objects merging

together) [4].

In order to deal with the problems of noise and occlusion,

multiple methods have been used. Multiple object tracking

by [11] was done by using probability trees which takes

into account the tracking configuration of several previous

frames on its histogram values, distance and speed. Using a

robust likelihood model, the system is able to track objects

and deal with minor occlusions. Another approach by [13]

used an observation model to determine occlusions. In this

approach, occlusion is detected by locating significant

decreases in similarity values when comparing a tracked

object to a reference object.

One of the recently popular methods for tracking is the use

of particle filter which was first introduced by Isard and

Blake [3]. The appealing reasons to use the particle filter

method for tracking multiple objects are mainly its ability

to deal with non-linear state space and its multi-modal

property both of which contribute to the ability of the

particle filter to deal with partial occlusions. Particle filter

is based on Monte Carlo sampling. The samples it produce,

when matched with some observation model, can create

non-Gaussian and/or nonlinear scores. In the context of

tracking, this approach is useful to overcome clutter

between objects or when an object has some parts of it

covered by other objects. With the particle filter approach,

the system will be able to model the partially available

information from samples which give a higher chance for

the tracker to track the objects even in the case of partial

occlusion. More details regarding the particle filter will be

discussed in the later sections.

Though several papers (e.g. see [9] for survey) have shown

tracking multiple objects using particle filter successfully,

there are several important problems that they did not

address. One of the main problems is target hijacking.

Target hijacking occurs when two or more tracked objects

merge with each other causing occlusion and at the same

time causes the particle filter to update its current state to

the wrong object. Other studies have dealt with this

problem using learned approaches such as modifying the

motion model of the system to take into account previous

number of velocity data of the tracked object and adding it

as information to compute the most probable state in the

succeeding frames [7]. The problem with such approaches

is that it assumes the object being tracked moves linearly

and may not cope with sudden change of direction. An

example of target hijacking is illustrated in the following

figure:

Figure 1: Example of Target Hijacking

This example shows the correct trajectory given by the

purple and pink arrows. The top picture with an “X” shows

that the trajectories interchanged after occlusion. The

bottom picture shows the correct trajectories after tracking

which is similar to the arrows in the left picture.

Our approach takes advantage of the multi-modal

capabilities of the particle filter to track through partial

occlusion and at the same time introduce a data association

step coupled with object detection and an appearance

model to deal with target hijacking. Data association in a

traditional sense is used to match every object in every

scene to compute one’s likelihood that it is indeed part of

previous objects. It is often a needed step for track-before-

detect systems such as those discussed by [10] but often

increases computation complexity as the number of objects

increase. Our approach reduces the data association step by

considering only nearby detected objects per tracked object

as opposed to associating all objects in the scene. This

however is done prior to particle filter (meaning a separate

routine in addition to and after the filter) and as a means of

verification thereby adding a layer of computation.

Throughout the discussion of the paper, we will show how

these steps, when coupled with an adaptive parameter

approach, can deal with noise, occlusion events (partial and

full) and occlusion recovery.

The rest of the paper is divided as follows. We first discuss

the particle filter approach in detail and present some

examples that have modified this approach to deal with

tracking problems. We then present our methodology by

first giving an overview and then breaking it down to the

different algorithms used by the particle filter, data

association and the models used by the system particularly

the appearance model and transition model. The last few

sections of the paper discuss the system’s performance

against ground truth data.

Related Literature
Particle Filter Algorithm

The particle filter approach is based on the sequential

Monte Carlo method. Random numbers is utilized to

estimate the state of an object in a time series. In the case of

video tracking, the state is commonly the x and y

coordinates of the object in the 2D image plane (video

frame). In order to generate the next probable state of the

object, particle filter requires a transition model which

mathematically models the movement of an object. These

state representations are the “particles” and are then

weighted according to some appearance model. The highest

weighted particle is most likely the estimated state of the

object. The process is then repeated and updated

recursively for tracking throughout the video [4].

The particle filter in the context of video tracking is defined

by [1] as a Monte Carlo Bayesian algorithm that uses

particles wherein each particle represents a state of the

object of interest. The algorithm is Bayesian because it

recursively computes for the approximated state of the

object by re-instantiating particles from previous states

possibly from the actual or predicted prior. In order to do

this, the particle filter requires a transition model that

defines the movement of the object. Given an object state

in a certain frame, particles are then generated for the next

frame which represents possible states of the object.

Each particle is then weighted against the reference object

using a likelihood or appearance model. The particle with

the highest weight is treated as the approximated state of

the object at the given frame. The state of the object is then

updated and particles are re-sampled for the next iteration.

In weighing particles, some systems will define which

particles are considered weak and strong. Re-sampling

procedure then generates lost particles from either the

strongest weighted particles or set of strong surviving

particles.

The following is a mathematical representation of the

particle filter as discussed by [4]. For explanation of

notations, please refer to the notations section in the

methodology section. The densities)|(:1| kkkk zxp are

approximated with a sum of kL Dirac  functions (the

particles) centered in
kL

i

i

kx 1

)(}{ 

as

)()|()(

1

)(

:1|

i

kk

L

i

i

kkkkk xxwzxp
k





 (1)

where kz :1 is part of a set of measurements in relation to

an active target at time index k and
kL

i

i

kw 1

)(}{  are the

weights associated with the particles that are defined as

k

k

i

kk

k

i

kkki

k Li
zxq

zxp
w ,...,1

)|(

)|(

:1

)(

:1

)(

|)(

 (2)

q() is the importance density function defined as the density

that generated the current set of particles.

If)|(1:111|  kkkk zxp is approximated by the set of

particles and associated weights given by
1

1

)(

1

)(

1 },{ 


kL

i

i

k

i

k xw

, the following form can be obtained:






 
1

1

)(

11|

)(

11:11|)|()|(
kL

j

j

kkkk

j

kkkkk xxfwzxp .

(3)

where
1| kkf is the posterior density function.

Recursively, the formulation to propagate the particles and

their corresponding weights can be written as

)|(

)|()|(

:1

)(

1

)(

1

)(

1|

)(

1

)(

)(

1

k

i

kk

L

j

j

k

i

kkk

j

k

i

kkk

i

k
zxq

xxfwxzg

w

k










(4)

where kg is the likelihood function used at time index k

.

Isard and Blake [3] proposed a form where the particles are

drawn from the predicted prior as such:

)|()|(1:11|:1  kkkkkkk zxpzxq
 (5)

The way particles are propagated in a scene depends on the

transition model that represents how an object moves.

Ghaeminia et al [1] used a modified ARMA (autoregressive

moving average) model for its motion model defining how

particles are propagated (and thus sampling how the object

moves in the scene). The parameters of their transition

model depend on the values of the velocity and acceleration

displacement of a previous number of frames. During this

training period, a simple mean shift tracking process is

applied. Although this may accurately model the way an

object may move in real life, it is still prone to fail if

occlusion occurs in early parts of the video.

Another adaptation of the particle filter in multi-object

tracking is done by Wang et al [13]. Unlike Ghaeminia’s

approach, the way Wang propagated their particles at every

time step was by using a simple random walk in which the

movement of the object is defined by adding some random

noise due to the uncertainty of motion. Instead of focusing

on the transition model, they instead implemented a robust

likelihood model that deals with variation of scale and is

able to detect occlusion by continuous decrease in its

likelihood values.

A problem encountered by particle filter is particle

degeneracy. This happens when only one or few particles

will have a high enough weight value and all others will be

close to 0. In order to solve this problem, most particle

filter implementations generate new particles from high

weighted particles and drop the low weighted ones. There

are a wide variety of approaches for resampling through

particle degeneracy as explained in [4].

Background Subtraction Algorithm

The particle filter algorithm in terms of object tracking

assumes that the system includes a way to define objects in

a given video. One common and simple way to do this is

through the background subtraction algorithm. For every

given frame at index t in the video, the system first

performs object detection to define a set of Z objects in

the scene. This is done by performing an image processing

technique called background subtraction wherein objects in

a foreground are extracted as blobs by using a reference

background image and getting the difference of pixel

values from frame to frame.

The system assumes that the video is taken from a static

camera in order to implement a background reference

image. The way the reference image is computed is by

getting the running average value of each pixel (also called

moving average) which involves getting the average value

of a temporal signal that takes into account the latest values

received [11]. It can be computed using the following

equation:

ttt p  1)1(
 (6)

where t is the running average of the pixel p at time t
and α is a parameter called a learning rate that defines the

current value over the currently estimated average. A lower

α would mean a faster adaptation to changes in the

observed value as suggested by [12].

One of the problems with background subtraction approach

is the inherent noise produced both in the background and

the foreground. Noise here can be produced if the

background contains moving pixels throughout the video

which are not exactly objects being tracked which causes

false detection (i.e. swaying trees and shadows).

In the next section, we provide our methodology in

applying the particle filter in tracking multiple objects as

well as some additions to the process to increase its

accuracy and deal with occlusion problems.

Methodology
Overview

Tracking multiple objects in the system requires the

original frame at a given index as its initial input. We then

perform background subtraction to get the objects to either

initialize them for tracking or pass them to the tracking

module. Tracking then involves utilizing the particle filter

algorithm for each tracked object then passing its output to

the data association algorithm to determine trajectory state,

occlusion state or initialization of new objects. The system

is implemented in C++ and uses the OpenCV library

framework.

Notations and Definitions

For uniformity in the computations to follow, we shall use

the following notations:

 M – Number of particles per tracked object

 m – particle index

 Y – Observed objects from image data (y will

then represent each element)

 X – Approximated state or tracked object

configuration (x will then represent each tracked

object)

 Z – Observed objects from object detection

module (z will then represent each observed

object)

 π – Likelihood value when computing similarities

between histograms with range from 0 to 1.

 T – Threshold for likelihood with range from 0

to 1. We used a value of 0.6 for our experiments.

 L – The computed likelihood score of the

approximated object state after the particle filter.

Figure 2: Overview of system

The entire system flow is illustrated in Figure 2. The

system requires an input of a frame, which is basically a

two dimensional array that contains the frame image data

as captured by OpenCV. It is stored in a Mat data structure

which is a native data type to the OpenCV framework. The

system also processes blob data (“Blobs” in the diagram).

Blob data contains grouped pixels that represent an object

in the scene as detected by the object detection module. It

also contains information such as the coordinates of the

object’s center of mass as well as the rectangular area of

the blob’s image region (for histogram computation later

on). The system also stores an occlusion queue which

houses all tracked objects which are in an occluded state

but are not dropped for possible recovery. The set of Y is

checked if there is at least 1 element present. If there are no

elements present, the system doesn’t process anything.

For defining observed objects, we used the background

subtraction approach as explained in the related literature.

A value of 0.01 was used for  .

Particle Filter Algorithm

The particle filter algorithm recursively approximates the

state of an object being tracked by making use of

“particles” that represent possible states at a given frame

index. The objective is to use a Markovian assumption to

approximate the current hidden states given the set of

observed objects. Although it is explained in detail in

related literature, it can be written as a Bayesian filtering

distribution using the following:

(7)

where)|(tt yxp is the current state,)|(tt xyp is the

observation model,)|(1tt xxp is the transition model

and)|(1:11  tt yxp is the previous object state.

The observation model represents the likelihood function or

how we measure the likelihood of the object being in that

specific state [7]. In terms of computer vision, the

observation model will be represented by comparing

histograms of image regions and will be discussed in the

next section. The transition model specifies how objects

move from frame to frame and is used to propagate the

particles.

The steps in performing a single iteration of the particle

filter can be then summarized in four steps namely predict

measure, update and resample as suggested by [7]. The

update step is where the data association phase will take

place and will be discussed in the next section. A single

iteration of the particle filter is given by the following

pseudo code taken from [7]:

// START

For each X as tx

 Current particle set: Mmxm

t ...1}{ 

 // Prediction step

 For Mm ...1

 // Transition model

m

tx 1'  ←transition(
m

tx)

 // Compute histogram of the region given

by the transitioned particle

m

tqx 1:'  ←computeHisto(
m

tx 1'  ,
m

tx)

 End






1

11:111)|()|()|()|(

tx

ttttttttt dxyxpxxpxypyxp

 // Measurement step

 For Mm ...1

 // Assign weights to the particles

m

twx 1:' 
←compareHisto(

m

tqx : ,
m

tqx 1:' )

 // Normalize particles

 Normalize(Mmx m

t ...1}'{ 1 
)

 End

 // Select the most likely particle

ma

tqx :

1:'  ←MAX(Mmx m

t ...1}'{ 1 
)

 // Update

 1tx ←
ma

tx :

1' 

 // Resample

Mmxm

t ...1}{ 1 
←resample(Mmxm

t ...1}{ 1 
)

End

// END

Note that tx will not always be
ma

tx :

1'  due to the data

association step. For normalization and selection process,

we use the same algorithm as explained in [7] in which the

particle with the highest likelihood will be considered the

approximated state. The next algorithm will use data

association to refine the likelihood and detect occlusion

events, occlusion recovery without instantiate new objects.

Data Association Algorithm

In the data association step, the system takes advantage of

the observation module to validate the tracked objects.

Unlike previously discussed particle filter tracking systems

such as that in [10], wherein object detection is only done

at the start to define the objects to be tracked, our system

uses object detection at every frame step and validates the

likelihood of the tracked object 1tx if a detected object

falls within its region (bounding rectangular area defined

by the scale of the object). If the likelihood is high enough,

then we associate the observed object as the tracked object.

Else, we determine if the likelihood of 1tx given by

ma

tx :

1'  is high enough. If it is, then it is considered to be

tracked. Else, we consider it to be occluded (low value for

highest approximated particle) and push it to the occlusion

queue. The advantage of this is that if
ma

tx :

1'  indeed has a

high enough value and object detection fails to detect an

object in that area, then tracking can still continue. Once

data association takes place, the remaining observed objects

are first compared to currently occluded and tracked

objects. If it finds a tracked object with a high enough

likelihood value, then that object will be considered to be

recovered from occlusion state. All other remaining objects

will be initialized as new objects to be tracked. The

algorithm for data association is given by the following

pseudo code:

Given ZXX ,',

For each X as 1tx :

 For each Z as 1tz

 If isWithinRange(1tz , 1tx)

1: tqz ←computeHisto(1tz , 1tx)

 Π ←compareHisto(
1: tqz ,

1: tqx)

 If π >= lT

 1tx ← 1tz

 // Remove from Z

 POP(1tz)

 Else if 1: twx < lT

 // Push to occlusion queue

 PUSH(1tx)

 End

 End

 End

 If count(Z) > 0

 For each Z as 1tz

For each 'X as 1tx

 Π←compareHisto(
1: tqz , 1tx)

 If π >= lT

 1: tqx ← 1: tqz

 // Reset the parameters of 1tx

 Reset(1tx)

 POP(1tx)

 End

 End

 End

 End

 If count(Z) > 0

 For each Z as 1tz

 // Initialize as new object

 1tz ←init(1tz)

 PUSH(1tz)

 End

 End

End

It is main parts of the data association as shown in the

pseudo code is looping through all X elements, checking if

it is within range from Z elements and computing their

likelihood scores through the likelihood model. After all

elements have been accounted for, the system can then

determine if there are new objects in the scene.

Transition Model

The transition model makes use of the second order

autoregressive moving average (ARMA) equation. When

applied to particles, the system makes use of each particle’s

parameters as parameters to the equation which is given by

the following:

tttt CwBsAsx   11 (8)

where A, B and C corresponds to the 2nd order ARMA

parameters and ts , 1ts refers to vectors corresponding to

the difference between the current (t) and original and the

difference between the previous (t) and original for the x, y

and s (scale) values of the tracked object in order to

compute for its (probable) state in t+1. Similar to [7], we

use the values 2.0, -1.0 and 1.0 for A, B and C respectively.

The value of w is generated randomly with a standard

deviation of 1.0 and 0.5 for x and y respectively.

The noise parameters of the model will depend on the

values stored in each tracked object. This is where

adaptation takes place. If the status of the tracked object is

occluded, then the standard deviations for both x and y will

increase by a certain threshold which affects the value of

the noise in the equation. The parameters will continue to

increase while the object is in its occluded state for every

index. A counter is also implemented to track the number

of continuous increase of parameters of the tracked object

before it is dropped. 1.0 was used as increment values for

both x and y standard deviations.

Likelihood Model

Determining the likelihood of two image regions involves

comparing them based on a histogram model. In order to

compute the histogram of a given region in the image

(defined by the x and y coordinates as its center of mass

and a rectangular bounding box that specifies its scale), we

will use an HSV (hue, value and saturation) color model as

suggested by Perez et al [7]. The needed values in the HSV

color space will be the hue and saturation values. The

sh NN bins will be populated using pixels with saturation

and value larger than specified threshold 0.1 and 0.2

respectively. The bins of the resulting histogram are thus

defined as vsh NNNN  bins.

In order to compute the likelihood between two given

histograms, we make use of the Bhattacharrya similarity

coefficient given by the following equation:





N

n

t xnqnqxqqd
1

);()('1))(,'(

 (9)

where q’ is the reference histogram and q(x) is the

histogram of the region given by a certain particle x [7].

Determining Accuracy

In order to determine the accuracy of the system compared

to ground truth, we took the difference between the NTXY

of the system and the ground truth using the following

equation:

22)()(sgsg yyxxe 

(10)

where e is the resulting difference,),(gg yx is the

coordinate of the ground truth and),(ss yx is the

coordinate of the particle filter system in a given frame. If e

is less than a user defined threshold, then the track is

considered to be correct. The threshold is used as a

difference factor since ground truth data was extracted

using the head of the person as opposed to the system

which bases its coordinates on the object’s center of mass.

For the experiments to follow, a threshold of 25 was used.

Accuracy is then computed by taking the number of

correctly tracked frames over total number of frames when

the object is tracked.

To show a comparative analysis between using the

mentioned system and an ordinary particle filter tracking

system we run the system on the same data set minus the

data association module. This way, we would be able to

evaluate the performance between the two.

Results and Analysis
To verify the effectiveness of our approach, we developed

the prototype program on top of OpenCV library

framework in C++.

For the demonstration of the program, we used two data

sets. The first dataset was taken from a pedestrian

experiment in Indonesia. This video dataset consist of a set

of three people walking across a scene in which towards the

end of the video, two of the three people merge together

then separate. The trajectories taken by the system are then

compared with trajectories taken by manual tracking.

Trajectory data is recorded by using the NTXY format

where N is the object identifier, T is the frame number and

X and Y are the x and y image coordinates of the object. In

a second data set, we run our system against a PETS [8]

video where two people meet, stall for 3 seconds (around

28 frames) then split.

The following image is the output of the tracking system. It

displays the trajectory of each tracked object using a

different color for each object.

Figure 3: Occlusion detection and adapting parameters. Even

through partial occlusion, the system continues tracking.

Although the system can accurately track multiple objects

even through partial occlusion by using particle filter and

data association, the downside of this is computation

complexity resulting in a longer processing time compared

to other systems mentioned where tracking time is claimed

to be able to handle real-time processing. Based on the

algorithms in the previous sections, the system is set to

always run with a complexity of O(n2). It is expected that

as the number of objects being tracked increases, the time it

takes for it to compute the trajectories would increase

exponentially as well.

The following figure shows a statistical representation of

the harvested trajectories from the NTXY output of the

system in comparison with the NTXY data of the manual

system (ground truth):

Figure 4: Trajectory comparisons between ground truth and

model estimated.

For this first data set, occlusion occurs towards the end of

the video and is classified as a merging occlusion where

one target merges with another. As shown in figure 4, one

trajectory steers sideways and is far from the ground truth

data. One possible reason for this is that when the two

objects merge, the object detection part of the system treats

it as one large blob. When passed to the data association

part, the HSV values are compared and are associated with

the closest among the two measured objects. Since one

object will be considered to be the most likely one, it will

be associated with the detected blob (considering the values

are above the threshold) and therefore updating its x and y

coordinates to it. Recovery from this occlusion is shown

afterwards where one object is recovered and is tracked

until the video ends while the other one is failed to be

tracked due to low values for its particles even after its

parameters have changed. It is also not associated from the

data association part of the system since the object was

failed to be recognized during those time frames mainly

due to a minimum scale threshold of blobs after

background subtraction.

The second data set was taken from a kind of standard

surveillance data of PETS [8] which exhibited the problem

of target hijacking wherein two targets, one coming from

the north and one from the south, merge in the middle, stay

in that position for a while and split. During the first run,

the system failed to properly track these two objects as

shown in the following figure:

Figure 5: Before merging

Figure 6: After splitting, trajectories of objects interchange

In this case, double target hijacking occurs. One object is

updated to the other and continues to follow that object. A

set of runs were conducted this time increasing the number

-200

0

200

400 50

100

150

200
0

100

200

300

400

Y

X-Y-T Trajectory

X

T

ground truth

estimation model

of particles per tracked object from 80 to 110. The results

showed that the system was able to recover after occlusion

but increased the time it took to track the objects. Using 90

or more particles per tracked object allowed the system to

properly track the objects after occlusion as shown by the

following figures:

Figure 7: Before merging

Figure 8: After split with 90 particles producing correct results

Objectively, the results are summarized according to time

of computation and according to accuracy. Figure 9 shows

the computation time against the number of particles.

Figure 9: Computation time in seconds

Based on these numerical experiments, the computational

time increases as the number of particles used increases.

For accuracy, we used the error rate for each experiment by

taking the inverse of its accuracy (100% minus accuracy

percentage).

Figure 10: Error rate against number of particles used

These results show that using less than 90 particles

prevents the system from being able to recover proper

tracking after occlusion resulting in target hijacking and a

high error rate. 90 or more particles results in accuracy with

less than 10% error rate. When we increase the number of

particles to 100 particles, accuracy improves.

These suggest that using 100 or more particles would be the

optimal choice in order to avoid target hijacking. But after

considering both time and accuracy (assuming both have

equal weights), we took its change in accuracy, its change

in computation time and its cumulative scores and took its

ratio. Doing this, we achieved the following results:

Figure 11: Cost-Benefit ratio when considering

computation time and accuracy

This shows that the number of particles to be used for

optimal performance in terms of time and accuracy to avoid

target hijacking is 90 to 95.

In terms of evaluating the system against a basic particle

filter system, we were able to achieve error rates as shown

in the following figure.

Figure 12: Error rate for both with and without data

association

The red line indicates the error rate of the system without

data association as we increased the number of particles.

The blue line indicates the error rate of the system with

data association.

Based on these results, with data association present, the

system was able to maintain correct trajectories for the

objects. However without data association, the system isn’t

able to cope with after occlusion situations and thus

maintain its error rate despite increasing the number of

particles. The computation time remains the same for both

situations.

Figure 13: Correct trajectories after multiple occlusions

Taking these parameters into consideration, we’ve run the

system on three more video data sets with similar occlusion

scenarios. It was found out that two out of the four video

data sets proved to be corrective in the sense that it was

able to recover after occlusion using the set parameters.

Outputs of the trajectories of these video sets are shown in

Figure 13.

Figure 14: Correct trajectories after multiple occlusions

for another video set

Figure 15: Incorrect trajectories

The last figure shows incorrect trajectory output for the

system where the bottom pedestrian’s trajectory at the

shown frame is dropped and the top pedestrian’s trajectory

who was originally at the bottom now contains trajectories

for both.

Conclusion and Recommendations

We have proposed a hybrid approach to improving the use

of particle filter in tracking multiple objects by adding a

data association step and keeping track of occlusion states

using an occlusion queue. The parameters of each object

adjusts depending on its state affecting the way the particle

filter “searches” for the object’s state throughout each

frame and possibly recover it from occlusion. The added

data association step provides a corrective measure for the

common particle filter approach. This means that the

system is not reliant on the particle filter algorithm alone as

done in previous literature. It enters another verification

step so that instead of relying on a highest weighted

particle, it can then make use of information passed to it

through data association and thus tries to correct itself

using the information available and not only based on the

initialized information as set in the beginning of the

process. Otherwise, using particle filter alone, the error rate

after occlusion would remain high since no matching is

tried and the process simply continues with the Markov

assumption. We then utilized the HSV color space of the

image for likelihood computation using Battacharyya

distance metric. The results proved to be corrective in as

sense that using the proper values for the system’s

parameters, it was able to track objects within occlusion

and recover after a given number of frames. However, we

sacrificed computation time for adding a data association

step. The problem of target hijacking still poses as a

challenge for particle filter tracking systems even with the

added data association step. Increasing the number of

particles allows the system to possibly recover after

occlusion and achieve proper trajectories but also increases

computation time. We have identified an optimal range for

number of particles to be used that is able to avoid target

hijacking and be as efficient as possible in terms of

computation time. It is therefore recommended to find

ways to reduce computation time while maintaining the

system’s accuracy. A better motion model that also follows

the Markov assumption is also recommended to better

model object movements such as pedestrians. Through our

approach, we were able to show that adding a data

association step can allow a verification process to correct

assignment of observed objects with existing trajectories..

By allowing the system to adaptively change some of its

parameters, we are able to handle recovery from occlusion.

Our system also proves to perform well with some scenes

with possible target hijacking where objects’ trajectories

tend to interchange by increasing the particle filter’s

parameters thereby increasing the likelihood of being able

to properly track diverging objects from previously merged

state. This however doesn’t guarantee improvement. When

running it against other video sets, it was also proven that

this approach is on a case to case basis and may not be

practical for some situations. This suggests that there is a

need for further study to determine in which situations

these may or may not be used.

References

1. Ghaeminia, M.H., Shabani, A.H. and Shokouhi,

S.B. "Adaptive Motion Model for Human

Tracking Using Particle Filter." International

Conference on Pattern Recognition (2010).

2. IBM. Smart Surveillance System. 2 May 2009

<http://www.research.ibm.com/peoplevision/2Dtr

ack.html>.

3. Isard, M. and Blake, A. "Condensation -

Conditional Density Propagation for visual

tracking." International Journal of Computer

Vision (1998): 5-28.

4. Maggio, E. and Cavallaro, A. Video Tracking

Theory and Practice. Wiley, 2011.

5. Makris D. and Ellis T.. "Spatial and Probabilistic

Modelling of Pedestrian Behavior."

6. Nascimento, J.C., Marques J.S. and Figueiredo

M.A.T..“Classification of Complex Pedestrian

Activities from Trajectories”.. 17th International

Conference on Image Processing (2010).

7. Perez, P., Hue, C. and Gangnet, M. "Color-Based

Probabilistic Tracking." ECCV (2002).

8. PETS 2004 public data benchmark. http://www-

prima.imag.fr/PETS04/caviar_data.html

9. Prithwijit, G., Mukerjee, A. and Venkatesh, K. S..

"Efficient Occlusion Handling for Multiple Agent

Tracking by Reasoning with Surveillance Event

Primitives." Proceedings 2nd Joint IEEE

International Workshop on VS-PETS (2005).

10. Ryu, HwangRyol and Huber, M. "A Particle

Filter Approach for Multi-target Tracking."

Conference on Intelligent Robots and Systems

(2007).

11. Sadaat, S., Teknomo, K. and Fernandez, P.

"Automation of Tracking Trajectories in

Crowded Situation." Fire Technology Vol 48:1

(2012): 73-90.

12. Stauffer, C. and Grimson, W.E.L. "Adaptive

background mixture models for real-time

tracking." Con. on Computer Vision and Pattern

Recognition (1999).

13. Wang, Y., Liu, T. and Li, M. "Object Tracking

Appearance-based Kalaman Particle Filter in

Presence of Occlusions." Global Congress on

Intelligent Systems (2009): 288-293.

