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ABSTRACT

Finding gene clusters in genomes is an essential process in
establishing relationship among organisms. Gene clusters
may express functional dependencies among genes and may
give insight into expression of specific traits. The problem of
finding gene clusters among several genomes is referred to as
Gene Cluster Discovery and several models has already been
formulated for its definition. One formulation of this prob-
lem is the Approximate Gene Cluster Discovery Problem
(AGCDP) which is modelled as a combinatorial optimiza-
tion problem in some works. In this paper we propose an
approach which produces a transformation of AGCDP into
a minimum-weight star finding problem in graph. Detailed
examples are also presented to further clarify the notion of
the transformation. Proof of equivalence is also presented
in the paper to show the equivalence of input parameters of
AGCDP and the construction of the graph representing the
input parameters to the problem.
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1. INTRODUCTION

Gene clusters are set of genes that are closely related to
each other. Genes belonging to a cluster may share func-
tional dependencies and may be involved in the expression
of a specific trait. Identifying gene clusters is also an essen-
tial step in establishing relationships between organisms as
well as discovery of drug and treatments for diseases. The
problem of identifying this set of genes is called Gene Cluster
Discovery. This problem has been modelled several times,
examples of which are presented in [3], [4], [5], where genes

are modelled as integers and genomes are either permuta-
tions or sequences defined over the set of all genes. Models
in [3] also takes into account gene clusters with (max-gap
clusters) and without gaps (exact clusters).

The focus of this work is on the model presented in [5], where
they define Approzimate Gene Cluster Discovery Problem
(AGCDP) as a combinatorial problem which identifies the
set of genes that are kept “more or less” together across
genome sequences. An Integer Linear Programming (ILP)
formulation is also presented in [5]. Several modifications of
the model, specifically on the objective function, is also pre-
sented to take into account characteristics of real biological
data. Among these includes, absence of gene cluster occur-
rence in some of the input genomes, identification of valid
gene clusters, and use of certain reference genome.

In this paper we will represent AGCDP as a graph problem.
We will define how we transformed the set of inputs to a
specific graph called Gacepp. Then we will discussed how
the problem is reduced to finding minimum weight star(u)
in a graph. Two cases were both modelled in this paper.
We consider scenarios with and without a given reference
genome.

This paper is organized as follows. Section 2 presents a
brief discussion of AGCDP as well as the naive and ILP
formulation of the problem. Section 3 contains the detailed
discussion of how AGCDP is represented as a graph problem.
Proof of equivalence of the two representations is discussed
in Section 4. Finally Section 5 concludes the paper.

2. APPROXIMATE GENE CLUSTER DIS-
COVERY PROBLEM

Necessary for our understanding of the problem are the fol-
lowing definitions.

1. Gene A gene is represented by an integer g € Z°.
Special genes represented by the integer 0 are genes
with non existing homologs, with which we are not
interested of in this problem.

2. Gene Universe The set of all unique genes is called
the gene universe and is denoted by U = {0,1,2,..., N}.



3. Genome For simplicity, the genome of a certain indi-
vidual can be represented as a smgle sequence of genes
from a chromosome. For instance, g = (91,95 .-, gnl)
where each gj is the jth gene in the ith genome. In gen-

eral, a set of genomes is represented by G = {¢*, g% ..., g'}

for some t € Z, where each g* has length n; € Z7.

4. Linear Interval A linear interval J “in a genome ¢° =
(91,93,...,9n,;) is an index set which can either be
empty J* =0 or J* = {j,j+1,...,k}, which can also
be denoted as J;7k7 where 1 < j; < ki < mn;. A set of
linear intervals from all genomes is denoted by J.

5. Gene Content The gene content G(J} ) of a linear
interval J;’k in genome ¢° is the set of unique genes
contained in that interval.

6. Set Difference The set difference between two dis-
tinct gene contents G(J;, x,) and G(']]Z';,kp)7 1<i<t,
1 <p<tandi#p,is defined as

G(T e \GU], 1) = {alg € G(Jj,

Given the definitions listed above, AGCDP aims to find a
gene set X C U, where 0 ¢ X and a set of linear intervals
J= J;Z «, Where the gene content G/(J. J’z k) for each genome
¢" is roughly equal to X. To define formally how close X is to
the gene contents G/(.J; Jt .k, )> the number of missing genes | X'\
G(J}, ;)| and addltlonal genes |G(J}, x,)\ X| are computed.
Let us formally define the Basic Approximate Gene Cluster
Discovery Problem (AGCDP).

DEFINITION 1 (AGCDP [5]). Given the gene universe
U=1{0,1,...,N}, set of genomes G = {g*, g%, ..., 9"}, size
range [D™, D+] or positive constant D, and integer weights
w™ and wh corresponding to cost of missing and additional
genes in an interval, identify X C U, 0 ¢ X, D~ < |X| <
DY or |X| = D and a set of linear intervals J — {7}, k. }
V i such that the cost function

t
cost(X, J) Z(w_ IX\G(J], k) + (W™ 1G(T5, k) \ X))
18 minimum.

AGCDP is a double minimization problem. In order to
identify the cost of X, we identify the set of linear inter-
vals J which minimizes the value of the objective function
cost(X,J). The naive way of identifying the set X is to
check the cost of all possible X C U, which is (g) if| X|=D
otherwise

Zd(J;]), where D~ <d< DV
vd

if we have D~ < |X| < DT. Also note that we have to
identify the set of linear intervals for each genome which
minimizes the cost given X. Naively this can be done by

Jandg ¢ G(J7 )}

checking all possible linear intervals in each genome. The
total running of time the naive AGCDP solver is the num-
ber of X C U satisfying the constraint |X| = D, times the
running time of identifying the best linear interval given X.
Thus, naive AGCDP solver takes O(N!(n?")).

EXAMPLE 1. To idllustrate Definition 1, suppose we have
the set of genomes G = {g*, g%, g%, g"} defined over the gene
universe U ={0,1,2,3,4,5,6,7}. The aim of AGCDP is to
discover a set of genes X C U, with cardinality | X| =D =3
such cost(X,.J) is minimum. Let G be equal to the following
set. In this example, gene 0 does not exist in at least one of
the genomes.
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The naive approach of finding minimum X is to evaluate
each X that satisfy the constraints X CU and |X|=D. In
this case we have to evaluate

X ={{1,3,2},{2,3,4},{3,4,5},.. .},

where the total number of gene sets to be evaluated is (;)
Note that to evaluate the score of a certain gene set, another
minimization procedure is needed, i.e. identification of the

best linear interval for each genome.

After checking all possible linear interval and all possible
gene cluster X, we see that cost(X™,J") is minimum where
X*={1,2,3} and J* = {J1174,Jﬁ3,J§,5,J{1,2} as shown in
the figure below.

¢b: 1 1 3 2 4
¢?: 3 2 1 4
¢: 5 6 1 4 2
gt: 1 3 7
Figure 1: The set of gene contents

corresponding to

{{1,3,2},{3,2,1},{1,4,2},{1,3}}
J*.

Given that the penalties for missing and additional genes
are the same, i.e. wT = w~ = 1, the computation for
cost(X™,J*) is as follows.

cost(X™,J")
cost(X™,J*)
cost(X™,J*)

iy [ X\ G| + (G \ X7
(0+0)+(0+0)+(1+1)+(1+0)
3

The integer linear programming (ILP) formulation of AGCDP
is presented in [5]. They defined the set of missing and ad-
ditional genes in Equation 1 and 2 respectively.

N

XNGY, | =D (2 = 1) (1)

q=0



N

Gh N\ X = (X — 1) (2)

q=0

where x4, I, and X,} are binary indicator vectors which per-
tains to the reference gene set X, the intersection of reference
gene set and gene content X [ Gf}i, and the gene content ’Jz
respectively. Further details of their integer linear program-
ming formulation is presented in [5].

A simpler approach to solve ACGDP is to make use of a ref-
erence genome. Note that in the objective function, we are
comparing the gene set of each linear interval to a reference
gene set X. With the use of a reference genome sequence,
instead of evaluating all possible X C U which we can gen-
erate from the universal set, we only evaluate Xs which are
present in the reference genome. This reduces the solution
space of AGCDP. However, it is important to note that a
global minimum X identified using the naive solution (con-
sidering all possible clusters in all the input genomes) may
not be the X identified when we use a reference genome,
i.e. X may not occur in at least one of the genomes in the
naive solution. Since in some cases a reference genome is
available, one may opt to use other specialized algorithms
simpler than the ILP formulation presented in [5]. For in-
stances in which reference genome sequences are available
through comparison and alignment of genomes of several
species, these reference genome sequences are used in the
process of identifying new genome sequences.

3. AGCDP AS MINIMIZATION PROBLEM

ON GRAPH

Given the definition of AGCDP we look into two different
cases of the problem which we discuss in the succeeding sub-
sections. The first case is when we consider one of the input
genomes as a reference genome from which we generate gene
contents which we treat as reference gene sets without loss
of generality. The second case is when we do not assume a
reference genome from the set of input genomes. Instead,
we consider each gene content of a linear interval in any of
the parts of the graph satisfying the constraint on |X| as
a possible solution gene set X. This lessens the number of
possible reference gene set subsets of & which we need to
evaluate.

3.0.1 Construction of Graph

Given gene universe U = {0,1,..., N}, a set of genomes
G=1{g",6%...,q'}, size range |X| = [D~, D*] or [X| = D,
and integer penalty weights w™ and w™ for missing and ad-
ditional genes respectively in a linear interval, we propose
the following transformation of AGCDP input parameters
into a t-partite edge-weighted undirected graph representa-
tion.

DEFINITION 2. Define a t-partite edge-weighted undirected
graph Gaccpp = (V, E), where

V =

i

Vi.

t
=1

1. A part V; C V represents a genome g' € G where
1<i<t.

2. A function v(.) is a bijection v : G* — V; from the set
of all gene contents G' = {G(J}, ,)} in genome g* to
the set of all vertices in V; ¥V i,1 < i <t. An evaluation
of U(G(J;:,L-,ki)) is a vertex in graph Gaccpp and an
evaluation of v(x:) is a gene content of a linear interval
in genome g*.

3. An edge e € E is incident to verticesx € Vo and y € Vy,
if and only if v # y.

4. The weight wa,, assigned to an edge incident to vertices
x and y is equal to

way = w - o(@)\oy)| +w’ oy \v(@]  (3)

where the ”\” is the set difference operator.

Given G acepp as the graph representation of the input pa-
rameters of AGCDP, let us now define a collection of vertices
star(z) rooted at vertex x € V; defined in [10]. Basically,
star(z) is a set of vertices from each part where the weight
between the root and each vertex is minimum among all ver-
tices in a part incident to the root. Below shows the formal
definition of star(x).

DEFINITION 3. Given a vertex z in G accpp, let star(x)
be a set of vertices of size (t — 1) such that x; is rooted at
x € Vi, where

We can evaluate a star(x) by computing its weight as
t
weight(star(z)) = wai,x, i F#u (4)
=1

3.0.2  Minimization on Graph

Given the proposed transformation of the input parameters
of AGCDP into its graph representation, we define AGCDP
as a minimization problem on graph as follows.

DEFINITION 4. Giwen a graph Gaccpp = (V, E) and a
size range [D_,D+] or positive constant D, find a vertex
x € Vi and star(z) such that |v(xz)| = D or |v(x)| is in the
range [D~, D] and

t
weight(star(z)) = Zw”’i’“” i#u

=1

is minimum.

As discussed in section 2, AGCDP is a double minimization
problem. This is also true for the graph problem transfor-
mation of AGCDP in which a vertex x mapped to a gene
content (possible solution gene set X) and the set of vertices



Z;, star(z), which minimizes the weight of each edge inci-
dent to pairs x, x; is searched for in the graph. From among
the found star(x), the minimum-weight star is identified.
From the resulting minimum-weight star(z) we identify the
gene content G ; to which the root vertex 2 maps into.
G7, k., is the solution gene cluster. Note that there may be
one or more solution gene cluster and so we may find one or
more root x. Also, we identify the set J;! , U {I}lkl} as
the set of linear intervals J where {.J;, , .} is the set of linear
intervals to which star(x) maps into and J}! ;, is the linear
interval associated with the gene content G, ;. .
To give a more intuitive notion of the transformation dis-
cussed, we present examples of the two cases aforementioned
with input parameters as specified in Example 1.

3.0.3 AGCDP with Reference Genome

Without loss of generality we assume genome g¢' to be the
reference genome. All gene contents of linear intervals in g*
which satisfy the size constraint | X| = D will be considered
as possible solution gene set X to the problem. These gene
contents are mapped to vertices in part Vi of the graph.
These vertices are the roots of star(zx) which will be eval-
uated for weight. Assume that the penalty weight w~ =
wh = 1 and the size constraint |X| = 3 as specified in Ex-
ample 1.

EXAMPLE 2. Given the set of genomes G, we construct
the graph Gaccpp.

1. Identify the linear intervals J;1k1 for each genome g

ng.

2. Identify gene content G( lekz) for each linear interval
JE

JisRi”

3. To each identified gene content G(J;, ;) a vertex
v(G(J}, ;) i Gacepp is mapped into.

4. For all pairs x1,z;, ©1 € V1, x; € V; and i # 1 define
an edge €z, .«; € E. Define the weight assigned to each
edge €., «; as defined in (3) where x = x1 and y = ;.

5. For each x € Vi such that |v(z)| = |G(J}, x,)| = 3
determine star(x).

star(v(G(J14))) = {v(G(Ji)),
v(G(J53)) | (G (J35)) |
v(G(J35)), 0(G(Ji2))}

star(v(G(Jz4))) = star(v(G(J14)))

star(v(G(J35))) {v(G(J72) | v(G(JT4)),
v(G(J25)), v(G(J2.2))}

symbol means “or”.

where the 7|7

6. Determine minimum-weight star(x) from among those

g | Jiw | {5} G(Jj.k) {1,2,3} | {2,3,4}
Jia | (3) {3} 2 2
Jan | (2) {2 2 2
J3,3 (l) {l} 2 4
Jaa | (4) {41 4 2

o | Jie | (3,2) {2,3} 1 1

9 | s | (3,21 {1,2,3} 0 2
Jia | (3,2,1,4) | {1,2,3,4} 1 1
Jos | (2,1) {1,2} 1 3
Joa | (2,1,4) {1,2,4} 2 2
Jaa | (1,4) {1,4} 3 3
TJi1 | (5) {5} 1 1
Jao | (6) {6} 4 4
Jas | (1) {1 2 4
Jaa | (4) {4} 4 2
Jss | (2) 2} 2 2
Jia | (5,6) {5,6} 5 5
Jis | (5,6,1) {1,5,6} 4 6

g> | Jia ]| (5,6,1,4) {1,4,5,6} 5 5
Jis | (5,6,1,4,2) | {1,2,4,5,6} 4 4
Jos | (6,1) {1,6} 3 5
Joa | (6,1,4) {1,4,6} 4 4
Jos | (6,1,4,2) | {1,2,4,6} 3 3
Jaa | (1,4) {1,4} 3 3
Jas | (1,4,2) {1,2,4} 2 2
Jas | (4,2) {2,4} 3 1
Jia | (1) {1y 2 1
Joo | (3) {3} 2 2

4 | Ja3 | (7) {7} 4 4

91 na | (1,3) {1,3} 1 3
Jis | (1,3,7) {1,3,7} 2 4
Jos | (3,7) {3,7} 3 3

Table 1: Identification of edge weights with respect
to the gene contents (candidate solution gene set)
{1,2,3} and {2,3,4}. These are the gene contents
of linear intervals in genome g¢' which satisfies the
size constraint |X| = 3. Highlighted in the table are
minimum weights for each reference gene content in
relation to the gene contents of other genomes.
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therefore are the only valid roots for star(z). The weight of each edge are indicated on the side of each vertex with color corresponding to the

V3 and on the bottom are elements of V4. The vertices which are colored in yellow are the only vertices which satisfy the constraint |X| =3 and
color of the edge.

Figure 2: The constructed graph Gaccpp. The vertices on top are elements of Vi, on the left are elements of V5, on the right are elements of



identified in the previous step.

weight(star(v(G(JllA)))) = weight((v(G(JllA)), A O I N
2 W4 ,3 .39 N
”(C_’(‘“f’)))) " Jo = {JiaJis Js, T}
wegtBIC s Jo = L s s T}
3 ,45>1,35 3,691,
U(G(JB’B)))) + L Jy = {*712,37 ']12,37 =]33,37 Jf,Q}
weight((v(G(J1 ,4)), Js = {24 0%, 03, 00}
4 ,39»71,3y 75,56y “1,
U(G(J1,2)))) Je = {«712,3, ']12,3, J??,57 —#,2}
= 04+2+1
= 3 form a solution to our example problem as what is con-
weight(star(v(G(J1)))) = star(v(G(J1,4))) cluded in Ezample 1.
weight(star(v(G(Jgfj)))) = weight((v(G(Jé,s)),
v(G(J75))) +
weight((v(G(Jéj)),
W(G(I3))) + 3.(),4 AGCDP with no Referen.ce Genome
) 1 In this case we do not choose a specific genome from the set
weight((v(G(Js,5)), of input genomes and instead consider all vertices mapped
v(G (J§2)))) to gene contents which satisfy the input constraint | X| =
— 141+2 As a result, all vertices from each part of Gaccpp are ad-
A jacent to other vertices from other parts. This largely in-

creases the number of edges in graph G accpp which needs

to be evaluated for weight. All gene contents of linear in-
tervals in all genomes ¢° which satisfy the size constraint
|X| = D or |X| in the range [D~, D] will be considered
as possible solution gene cluster X to the problem. These
vertices are the roots of stars which will be evaluated for
finding the solution to the problem. We also assume that
the penalty weight w~ = w®™ = 1 and the size constraint
|X| = 3 as defined in Example 1.

In this example, we see that the minimum-weight star(x),
with weight of 8, in graph Gaccpp are the following
star(z)

star(v(G(J14))) = {v(G(Ja)),
v(G(J34)), v(G(J12))}

= {v(G(Jis)),
v(G(J35)), v(G(J12))}
_ {v(G(Jf3)) EXAMPLE 3. Given the set of genomes G, we construct
L th hG .
W(G(T3)) (G 2))} C TR rasenr
star(v(G(J24))) = {v(G(J73)),
’U(G(Jg 3)),v(G (Ji2))} 1. f;legtzfy the linear intervals J}i,ki for each genome ¢'
= {v(G(Jis)), ‘
v(G(J35)), v(G(J12))}
= (G 3)) 2. Identify gene content G(Jj’1k1) for each linear interval
v(G(J55)),v(G(J12)} Ji

Jirki

The wvertices v(G(Ji,4)) and v(G(J34)) are then the

roots of star(z) in Gagcpp which has the minimum

weight. The solution gene set X we are searching for 3. To each identified gene content G(J;L,k
must then be either of the gene contents to which ver- v(G(JL ) in Gacepp is mapped.
tices v(G(J1,4)) and v(G(J34)) are mapped into. Note Jirk

that the gene content to which the vertex v(G(Ji4)) is

mapped into is {1,2,3} and the gene content to which 4. For all pairs z,z:, © € Vu, x; € Vi and i # u define
the vertex v(G(Js,4)) is mapped into is also {1,2,3}. an edge €z,z; € E. Define the weight assigned to each
Given the minimum-weight star(v(G(J1 4))) and star(v(G(J3 4))) edge es.», as defined in (3) where ¥ = x and y = ;.
we see that the reference gene set

) a vertex
T

5. For each vertex x € Vy,, 1 < wu < t, such that |v(z)| =3
determine star(z). As what was done for Example 2,
we determine the star(x) for the identified gene con-
tents v(zx) of linear intervals from all genomes satisfy-

X = {1,2,3}

together with either of the sets of linear intervals
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ing the size constraint | X| = 3.

From the evaluation of weight of the identified star(:c)
the ones with minimum weight are star(v(G (J1 1)),

1
star(v(G(Jia)) = {(GULw)), star(v(G(J34)), star(v(G(J2)), star(v(G(J34)) and
v(G(J33)) | v(G(J5s)) | star(v(G(J35))). From these star(x) we identify the
(G 5)), 0(G(TEa))} solution gene cluster {1,2, 3} fromv(G(J1,4)), v (G(Jg 1))
8,5 1,2 and v(G(JT3)), and gene cluster {1,2,4} from v(G(J34))
star(v(G(J24))) = star(v(G(J14))) and v(G(J55)). Notice that the solution gene cluster
star(v(G(J§,5))) = (G (J1,2)) | U(G(JM)), {1,2,4} was not identified in the case wherein a ref-
5 4 erence genome was assumed. This is a consequence
v(G(Jis)),v(G(J22))} of assuming a reference genome since the possible so-
star(v(G(Jig))) — {'U(G(JllA)) | U(Q(J%A)), lution gene clusters which can be found are limited
2 2 to the available gene contents in the chosen reference
U(G(JS,B)) | ’U(G(J5 5)) | genome.
v(G(Ji5)), v(G(Ji )}
star(v(G(J34)) = {o(G(Ji)) | v(G(J25)) |
W(G(TEs)), 0(G (T 5)) 4. PROOF OF EQUIVALENCE
i’s ’ 8.8/0 We show the equivalence of AGCDP with the proposed trans-
v(G(J11))} formation into graph problem of finding minimum-weight
star(v(G(Jf’,g))) — {U(G(J%’I)) | U(G(JQI’Q)) | star(z) in an edge-weighted undirected t-partite graph. We
1 N show the equivalence for the presented two cases of AGCDP
v(G(J1,2)),v(G(J53)), wherein the first case we identify a reference genome from
v(G(Jfl))} among the input genomes and the second case wherein no
: reference genome is identified. We refer to Definition 1, 2,
star(v(G(J34)) = {v(G(Ji0) | v(G(J22)) | 3, and 4 as basis for the following proofs.
(G(J12)) | (G(JL2)),
a(J2 a(Jt With Reference Genome
5 v(G(Ts, f))’ v(G( 1’1)1)} Without loss of generality we identify genome g¢' as the ref-
star(v(G(J35))) = {v(G(Ji5)) | v(G(Ja5)) | erence genome. Recall that for any vertex x € Vi,x =
(G(J15),v(G(J34)), ’U(G(J}l,kl).) such that 1 < j < k < n;. Equation 3 can
4 then be written as
v(G(J11))}
star(v(G(J13))) = {v(G(Jis)) | v(G(J23)),
v(G(Jin)) | v(G(J5a)) | wey = WG i )N\G )| + 0 G i )\G (], k)
0(G(J23)), o(G(J3s))}

where the | symbol means “or”. and the total weight of a star(z) defined in (4) can then be
written as
6. Determine minimum-weight star(x) from among those

identified in the previous step.

weight(star(v(G(Ji4)))) = 0+2+1 Y ow G, s \GTS k)| + w' G5k \G (TS, )
= 3 1#1
weight(star(v(G(J34)))) = 0+2+1
= 3 If we let X represent any possible solution gene cluster G} kL
weight(star(v(G(J§_5)))) — 14142 the previous equation is equal to
= 4
weight(star(v(G JQU = 0+2+1 ;
( ( ( ( 13)))) _ Zw |X\G 7“ )| =+ ’I,U+|G(J7“kl)\X|
- i#£1
weight(star(v(G(J34)))) = 1+0+2
= 3 Note that this is just the objective function cost(X,.J) to
weight(star(v(G(Ji3))) = 2+2+2 be minimized for AGCDP with the first genome, g', de-
- 6 fined as reference genome. It is easy to see that a unique
weight(star(v(G( J2374)))) _ 94142 pair of gene cluster X and set of linear intervals J which

minimizes the objective function cost(X,.J) in AGCDP with
5 reference genome, (X*,J*), is mapped to a unique pair of

weight(star(v(G(Jgﬁ)))) = 14042 vertex x and a set of vertices star(x), (z,star(x)), which
_ 3 also minimizes the objective function weight(star(x)) for
] 4 the minimum-weight star(x) finding problem in an edge-
weight(star(v(G(J13)))) = 1+2+2 weighted undirected t-partite graph G accpp.
5
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We have shown that the objective function weight(star(x))
to be minimized for the minimum-weight star(x) finding
problem in graph Gaccpp is just equal to the objective
function cost(X, J) to be minimized for AGCDP with genome
g* set as the reference genome. The equivalence from ob-
jective function of AGCDP to the objective function of the
minimum-weight star(x) finding problem can be shown by
constructing graph Gagcpp from the input parameters of
AGCDP. O

With No Reference Genome

For the case wherein a reference genome is not chosen in
AGCDP we can extend the proof for AGCDP with a ref-
erence genome to look also into the inter-genome similarity
of gene contents of linear intervals. We consider each gene
content in each genome satisfying the size constraint as a
possible solution gene cluster for AGCDP instead of enu-
merating all the gene set X C U such that |X| = D or |X|
isin [D~, D1].

Since we are looking into the inter-genome relationship of
gene contents, an edge in Gacepp = (V, E) is defined such
that for all pairs z,y, = € V,,y € V;, and i # v, (z,y) € E.

Recall that for any vertex = € V,z = v(G(J:

J'Iiak"li)) for 1 <
i < t. Equation 3 can then be written as

wx«,y = w_|G(J7uuku)\G(J;wkl)| + w+|G(J7Z'Lgk1)\G(J7uu’ku)|

and the total weight of a star(z) defined in 4 can then be
written as

dow Gk NG )|+ w' IG( e )\G (), k)
iF#u

Suppose that vertex = v(G(J}. x,)) in the definition of
star(z) in Definition 3. G(J}! ;. ) then is a possible solution
gene cluster. If we denote G(J} ;. ) as X in the above
equation, the total weight of a star(x) can then be written
as

S w  IX\G(, x|+ wh |G )\X]
iFu

Notice that this is also just the objective function cost(X, J)
to be minimized for AGCDP. A unique pair of gene cluster
X and set of linear intervals J which minimizes the objec-
tive function cost(X,J) in AGCDP, (X*,J*), is mapped
to a unique pair of vertex z and a set of vertices star(x),
(z, star(z)), which also minimizes the objective function

weight(star(x)) for the minimum-weight star(x) finding prob-

lem in an edge-weighted undirected t-partite graph G accpp-
The equivalence of the transformation from AGCDP to the
minimum-weight star finding problem in graph Gsccpp can
be shown by constructing GAGCDP from the input para-
maters of AGCDP or by reversing the presented proof. [
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S. CONCLUSION

In this paper the authors presented the Approximate Gene
Cluster Problem (AGCDP) as a combinatorial optimiza-
tion problem. A proposed transformation of AGCDP into a
minimum-weight star(z) finding problem in an edge-weighted
undirected t-partite graph was presented both for the cases
wherein a reference genome is assumed from the set of input
genomes and the case wherein no reference genome is iden-
tified. Also, proof of equivalence of the transformation from
AGCDP to the grap problem were presented for both cases
and it was shown that the objective function in AGCDP
subject to minimization is equivalent to the objective func-
tion in the graph problem. It was observed that there is a
possibility that some solution gene clusters within the input
genomes may not be found when a reference genome from
the input genomes is assumed. That is the case for the so-
lution gene cluster {1,2,4} in Example 3. It is worth to
further investigate other approaches to identifying solution
gene clusters given gene contents from all genomes, i.e. con-
sensus gene cluster. The authors hope that by presenting the
proposed transformation of AGCDP into a graph problem
further results on AGCDP will materialize based on what
was presented by the authors in this paper.

6. ADDITIONAL NOTES

Finding Nearby Stars

We could widen the range of the solution space to finding
minimum-weight star(x) in a graph to include star(z) which
are within the neighborhood of the best solution. Same with
the idea of neighborhood in AGCDP as discussed in [5],
a threshold v can be identified such that given the weight
weight(star(z)) of the star(xz) with the minimum weight,

weight(star(z;)) < (1 + v)(weight(star(z)))

such that v > 0.

7. FUTURE WORKS

For future works on this topic, the authors aim to achieve
the following:

e Classification of the complexity of the graph problem

e Enhancements on the proposed transformation from
AGCDP to minimum-weight star(z) finding problem

weight star in a graph, both for cases with reference
genome and without reference genome

e Evaluation of the proposed transformation based on
variations of AGCDP

e Investigate the idea of Consensus Gene Cluster in iden-
tifying solution gene clusters given gene contents from
all input genomes
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