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ABSTRACT

Let F, denote the finite field with p elements where p is
prime. We derive the homogeneous weight on the Frobe-
nius matrix ring M»(F,) in terms of its minimal left ide-
als and idempotent elements. A non-commutative ring, de-
noted by F,2 + vF,2, where v is an involution in M»(F;), is
constructed. It is shown that F,2 + vF,2 is isomorphic to
M;(FF,) and is a left F 2-vector space. The elements of F2
are derived from those of Ma(IF,) where F,2 = F 2. The
unital embedding uses a characterization of F,, with respect
to an irreducible polynomial f(z) = 2> +z+ (p—1). As a
result, our study of M»(F,) is restricted to the case where
p =2 or 3mod 5. A scaled isometry from (Ma(Fp), Wonon)
into (]—';’3, Wihon ), Where nhom is the normalized homogeneous
weight, is derived. This gives a construction of (m,p®)-

additive codes over F,2 with minimum Hamming distance
m = |GL(2,p)|.
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1. INTRODUCTION

Since the late 40’s of the last century, coding theorists con-
fined themselves to finite fields as code alphabets. In 1994
the Best Paper awarded by the IEEE Information Theory
Society used the integer ring Z4 in unlocking the twenty-year
old riddle in coding theory, the formal duality of Kerdock
and Preparata codes, using the so-called Gray isometry [7].
Since then numerous papers on codes over rings have been
published. Many of these papers focused on finite Frobenius
rings which are the most appropriate rings for coding theory
since the two classical theorems namely the extension theo-
rem and the MacWilliams identities generalize neatly in the
case of finite Frobenius rings.
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In this study we restrict ourselves to a small class of finite
Frobenius rings, the matrix ring over a finite field. In par-
ticular, we consider here the matrix ring M2 (F,). Until now
very few publications on codes over non-commutative rings
have been seen. It was only in 2012 that the theory of cyclic
codes over M>(F2) was derived [1]. The idea for the con-
struction of cyclic codes over M»(F2) came from [2] where
an isometric map from Mz (F2) onto F; was defined using
the Bachoc weight and the Hamming weight. It seems that
having an isometry over the ring under study can lead us
to a possible code construction. In this paper, we derive
the homogeneous weight on M2 (F,) using the homogeneous
weight formula introduced by T. Honold for arbitrary finite
Frobenius rings. The connection between the minimal left
ideals and the idempotent elements of M (F),) is used to gen-
eralize the homogeneous weight of the said matrix ring. We
also employ the unital embedding introduced by Greferath
and Schmidt to construct a non-commutative ring that is
isomorphic to Mz (F,) and is a left F,2-vector space. This
ring is denoted by F,2 + vF,2 where v is an involution in
M>(Fp) and the elements of F,2 are derived from those of
Ms(IF,) such that F,2 =2 F>. The unital embedding comes
from a characterization of the prime field F, in terms of
an irreducible polynomial f(z) = 2>+ 2 + (p — 1). This
polynomial restricts our study to the matrix ring Mz (Fp)
where p = 2 or 3 mod 5. As a consequence, scaled isom-
etry from (M2(Fp), Wanon) into (F3,Wpnen), Where nhom is
the normalized homogeneous weight, is derived. This gives
a construction of (m,p?) - additive codes over Fp2 with
minimum Hamming distance dpan = m = |GL(2,p)|, where
GL(2,p) is the set of all invertible matrices of Ma(Fp).

2. HOMOGENEOUS WEIGHTS

Let S be a finite ring. A weight function w: S — R is called
a left homogeneous, if w(0) = 0 and the following hold:

(H1) If Sz = Sy for z,y € S, then w(z) = w(y).
(H2) There exists I" > 0 such that for every nonzero x € S

Z w(y) =T'|Sz|.

yeSx

An analogous definition for a right homogeneous weight holds,
and we say that w is homogeneous if it is both left homo-
geneous and right homogeneous. The number T' is called



the average value of w. When I' = 1 then w is said to be
normalized.

It is well known that the normalized homogeneous weight
on the finite field F,, ¢ = p* k € N is given by

0 if =0

Wanon (2) = if @ #0.

q—
This idea comes from the generalization of the homogeneous
weight on a finite chain ring in [6]. But our goal is to develop
a generalization of the homogeneous weight on a matrix ring
over a finite field, which is not a finite chain ring but is a
finite (non-commutative) Frobenius ring.

In the case of finite Frobenius rings, Honold [8] observed that
every homogeneous weight on these rings with generating
character x is of the following form:

1
w:S — R, m»—)l“[l—m Z X(ux)]

uesSXx

where S* is the group of units of S.

Note that every finite Frobenius ring has a generating char-
acter [10]. The generating character of M, (F,) is given by

. { omitr(Tr(A)) }

x(A4)=e »

where ¢r is the trace map on F,. to Fp, ie. tr(a) = o+

of 4.+ o ,a € Fr and T'r is the classical trace of the
matrix A € M, (F;). The homogeneous weight on M, (F,)
is given by

w: My(Fy) — R, AT

1
eI g, 2 X(“A)]

ueGL(n,q)

where GL(n,q) is the group of all invertible matrices of
My (Fy) and |GL(n, q)| = ¢"" "V T, (¢" — 1) [3].

Our main concern in this section is the homogeneous weight
on M2 (F,) and before we give the generalized homogeneous
weight on M3 (F,) we first give the structure of M (Fy).

Remark 1. The matriz ring My (Fy) has no proper ideals
but it has proper left ideals [9]. In particular M2(F),) has p+1
minimal left ideals [2]. This idea is essential in this section
so we take it as a theorem.

Theorem 1. The matriz ring M2(F,) has p+1 minimal
left ideals and each minimal left ideal contained p* elements.

Proof:
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Let A € Ma(Fp) where A = (az as

) and note that

0 0
of Mz(F,) where r € Fp,. Thus, the proper left ideals

are of the form <a0 740 ) and <0 a1>. Hence, there
az Tras 0 as

are p+ 1 minimal left ideals in M>(FF,) since the inter-
section of any two minimal left ideals of Ms(FF,) is the
zero matrix and every minimal left ideals of Ma2(Fp)
has p? elements. |

(1 T) and <8 (1)> are nonzero nonunit idempotents

The main problem about the generalization of the homo-
geneous weight on M(Fp) lies on 3° (. ,) X(uA) where
A € M>(F,). The case when A is the zero matrix is obvi-
ous. Theorem 2 below is on the invertible matrices while
Theorem 3 involves the zero divisors.

Theorem 2. ZuGGL(Q‘p) x(u) = Zueguz,p) x(uA) =p
where A € GL(2,p).

Proof:

Let D be the set of all the zero divisors in M2 (IF,). We
have ZAE]\J;;(FP) x(A) =0 [8]. So,

> - > x(B) = x(0).
wEGL(2,p) BeD
Since M3(Fp) has p 4+ 1 minimal left ideals, xr, (A) =
X(A) for all A € I, and x7,(0) = 1 in [8], where
X1, is character defined in the minimal left ideal I, of
M>(F,). Hence,

x(u) = (1)

Yo o xw=-p+1) Y xn(B)-1 ()
we€GL(2,p) BelIr\{0}

=—-(+1)(-1) -1 (3)

=p. (4)

|

Theorem 3. ZukEGL(Q,p) x(uxB) = p — p? for all B €
I\{o}.

Proof:
_Zuk€GL(2,p)X(ukB)

=[ > x(B)) > x(wB)| (5
Bjel\{o} uy €GL(2,p)

= > > xwBXB) (6)
B; eI \{0} up €GL(2,p)

= > x(ux B + Bj) (7)
BjEIL\{O}ukeGL(Q,p)

= > Y xwB+B) (8)

up €GL(2,p) B; €1, \{0}



For each u, € GL(2,p), there exists B, € I \{0} such
that u.B + Bs = 0. Note that Bs is not unique for
every u,. Therefore,

ZukeGL(Q,p) EBJ-EIL\{O} X('U.kB + Bj)

= Y XxwB+B) (9)
u,.€GL(2,p)
+ Y xwB+B) (10)
up€GL(2,p) B;elIr \{0}
where upB + B; # 0
= Y 0+ Y Y xwB+B)
ur€GL(2,p) up €GL(2,p) B;€IL,\{0}
(11)
where ux B+ B; # 0
=|GL2.pl+ D > x(uwB+ B))
uR €GL(2,p) B €I, \{0}
(12)

where uy B + Bj # 0.

For every By € I.\{0, B} we have u, B+B; € I.\{0,u,B}
(i.e.By +{I.\{0, Bs}}=I.\{0,u,B}) and for fixed B,
and u, we can always find [ such that u; # w, and
urB+ Bt = ur-B. Thus, we can collect all the elements

of I \{0}. And since |I,\{0}| divides |GL(2,p)|,

IGL(2,p)| + X0, corem ZBjeIL\{O} Xx(uxB + Bj)

= |GL(2,p)| (13)

|IGL(2,p)|[1:\{0}| — |GL(2,p)| _

* 2\ {0] ng\{o}"(f’”
(14)
=@ -p° -+ -p)(P*-2)(-1) (15)
=p’ —p. (16)

Thus,
> xwB)=p-p”. (17)
up€GL(2,p)

n

Theorem 4. The normalized homogeneous weight on Ma(Fp)

is given by
0 if A=0
1
e if A€ GL(2,
Wanon (A) = P -0 -1 (2.7)
p .
—_— otherwise.
(r*-1)
Proof:
If A =0 then
® -1 —p)
wnnen(A) = 1= (1) (7 = p) (18)
=0. (19)
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If A€ GL(2,p) then

— —_ +

wnhom(AA) =1 (p2 — 1)(1)2 _p) (20)
1
—1- DD (21)
If A€ D then
'LUnhom(*A) =1 (p2 — 1)(p2 _p) (22)
p?

_ e (23)
| ]

3. [Fp2-LINEAR MAP

In this section we first characterize the finite field F;, in such
a way that the polynomial f(z) = 2> +x + (p — 1) is irre-
ducible over F,. Then we give a corresponding cyclic algebra
that is isomorphic to M2 (F;) and is a left F,2- vector space.

Lemma 1. Let p = 2 or 3 (mod 5) then the polynomial
flx) =x* 4+ 2+ (p — 1) is irreducible over Fp.

Proof:

The case when p = 2 is trivial. Note that the discrim-
inant of the polynomial f(x) is equal to 5 € F,. Then
f(w) is reducible over ), if there exists a y € F;, such
that y> = 5 (mod p). By the Law of Quadratic Reci-
procity, when p is odd ? = 5 (mod p) is solvable iff
p=1or-1(mod 5). [ ]

Remark 2. The numbers p in Lemma 1 are the prime
numbers ending in 2, 3,or 7.

Theorem 5 (Greferath and Schmidt [5]). Let K be
an Artinian commutative local ring and let f =37 a:x; €
K[z] be a monic irreducible polynomial. Then the mapping
B: Klz] — Mn(K), g(x) — g(X) induces a unital embed-
ding of Kx]/f into M, (K) where

0 0 - 0 —ao
1 0 -+ 0 —a

x_l0o 1 0 —as
0 0 1 —an

Remark 3. The matriz X is known as the companion
matrix.

Proposition 1. LetF,> = Fy[w] where v’ +w+(p—1) =
0 then 7: F 2 — Ma(IF,) defined by

b

a
a+tbwi (b a+(p—1

)b> is an embedding.



Proof:

The proof follows immediately from Lemma 1 and The-
orem 5. |

Remark 4. For the rest of this paper, we denote

Fp2:=7(Fp2).

b=

Theorem 6. Letm(w) =

then v* =1, 7(w)® + 7(w) + 7(p — 1) = 0, T(w)v = v7(w)?
and Fp2 + vFp2 =2 Ma(F,).

Proof:

We just need to note that w? = (p— 1)w+ (p— 1) and

T(Ww)? = (g:} p 8 1) and follow the definition of

the isomorphism of rings.

4. GENERALIZED FROBENIUS TRACE

The main goal of this section is to define a left generalized
Frobenius trace from the noncommutative ring Fp2 + v[F,2
defined above to the field IF,2. As a preparation we review
some concepts in [4].

Definition 1  (Greferath and Nechaev [4]). An ex-
tension of S of the ring R with the same identity 1 is called a
left generalized Frobenius extension (GF — extension)
if there exists an isomorphism:

¢:s S —g Hom(rS,r R),

for which w(S) = R where w € Hom(rS,r R)

Theorem 7 (Greferath and Nechaev [4]). Let R be
a Frobenius ring. Then an extension S of R with the same
identity is a Frobenius ring if and only if it is a GF -extension
of R.

Remark 5. Mx(F,) is an extension of GF(p*) and both
Ms(Fp) and GF(p?) are finite Frobenius rings in which the
2 X 2 identity matriz as their identity.

Definition 2 (Greferath and Nechaev [4]). A homo-
morphism of left R-modules

T’I‘}% :RS—>RR

is called (left) generalized Frobenius trace (GF — trace)
from S to R if :
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0 1 do (1 0
1 p-—1 anev = p—1 p—1

(i) Tri(S) = R, and

(i) ker(Trg) does not contain any nonzero left ideal of S.

Theorem 8. Let S = F 2 +vF,2 where v>’=1and R =
Fp2. The GF-trace from S to R is given by Tra(a+vp) = a
where o, 8 € Fpz.

Proof:

It is sufficient to note that ker(Try) = vF,2 and since
det(v) # 0, then v3 € GL(2,p) for all 8 € F,2. Thus,
vF,2 is not a left ideal of S. |

5. GROUP CODES AND SCALED ISOME-

TRY
Let S be a GF — extension of the ring R with GF — trace.
Let G = S* be the multiplicative group of the ring S and let
R[G] be the group ring, i.e. theset of all f : G — R equipped
with natural addition, and multiplication * defined by

frg(z) =23, ,—. f(x)g(y) for all f,g € R[G].

To every 6 € S there corresponds an element ¢(d) € R[G]
defined by

c(8):G— S, g Tra(g o).

For every subset J of S we define C(J) = {c(d) | § € J}.
If G = {91,92,...,9m} we can consider C(J) as a code of
length m over R:

C(T) = {(Tr5(976), s Tris(gm'0)) | 8 € J}.

If ws is the normalized homogeneous weight of S, and wgr
is the normalized homogeneous weight of R. Then for ¢t € N
and ¥y >0 € R, amap o : S — R satisfying the condition
that for all a,b € S there holds wr(o(a),o(b)) = yws(a,b)
is called an scaled isometry with scaling factor ~.

Theorem 9. Let S = M2(Fp), R = F,2 andm = |GL(2,p)|.
Then the map Ma(Fp) — F3, 0 — c(9) is an Fp2-linear
scaled isometry from (M2(Fp), ws) into (F)2,wr) such that
wr(c(0)) = mws(d) for all § in S.

Proof:

Since M2(Fp) = Fp2 +vFy2 and F,2 = F2 then the
proof follows from Theorem 22 in [4] and Theorem 7
above. |

Theorem 10. Let J be a minimal left ideal of M2 (Fp)
then C(J) is an (m,p”)-additive code over Fpz with dyan =
m = |GL(2,p)|.



Proof:

Clearly, the length of C(J) is m. We only need to
show that |C(J)| = p* and C(J) has the minimum
Hamming distance dgam = m.

Let ¢ € J such that 0 = o + v3 where o, 8 € F,» and
v = ( il pO ) Also let f: J — Fp2 such that
f(8) = o. Then f is a monomorphism since F,2 = [,
and ker(f) = {a S vﬁ‘lf(a +vA) = 0} = {v8} = {0}.
Thus, |C(J)| =

Let wiyon be the normalized homogeneous weight on
C(J). From Theorem 4 and Theorem 9,

Wanen(c(8)) = (p° = p)(P* — 1) (#)

for all § € J\{0}. Thus, wya(c(d)) = (p p)(p* — 1)
for all 6 € J\{0} since wunon(x) =

F,2\{0}. Hence, the minimum Hammlng distance of
C(J) is dran = (P> = p)(P* — 1) = m. u
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