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ABSTRACT

By configuring an adequate set of messages obtained by an
adversary and analyzing the information which can be ob-
tained by an adversary, it is possible to verify the secrecy of
cryptography protocols. We have already proposed a deduc-
tion system for analyzing whether an adversary can obtain
relational information between contents or keys of two ci-
phertexts, such as “the contents of two ciphertexts are equal”
or “the keys of two ciphertexts are different”. We have also
proposed the semantics of this system. In the semantics,
acquisition of relational information by an adversary is in-
tuitionistically defined as his ability to show the evidence
to succeed in obtaining the information. In this paper, we
reconsider the deduction system as a kind of epistemic logic,
and give Kripke semantics for the system. In Kripke seman-
tics, acquisition of relational information by an adversary
can be naturally defined as his knowledge of relational in-

formation. We also make a comparison between the two
semantics.
Keywords
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1. INTRODUCTION

Recently, communication networks have become highly de-
veloped and various types of information are flowing through
these networks. Much of this is confidential information
which should not be revealed to other persons, e.g. pass-
words for authentication, privacy of individual, etc. Usually,
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this kind of information is communicated with cryptogra-
phy. Even if cryptography is perfect, confidential informa-
tion may possibly be revealed to an adversary if he uses an
impersonation attack. To prevent such attacks and ensure
the security of network communication, security protocols
themselves should be secure. In order to confirm this, we
require verification methods for security protocols.

There are many works of verification methods, which ana-
lyze security properties such as secrecy, authenticity, privacy,
etc. Among these properties, it is possible to verify secrecy,
by configuring an adequate set of messages obtained by an
adversary, analyzing the information which can be obtained
by the adversary, and checking whether or not confidential
information is included in such information.

In [2], we proposed a deduction system for analyzing whether
an adversary can obtain relational information between con-
tents or keys of two ciphertexts, such as “the contents of two
ciphertexts are equal” or “the keys of two ciphertexts are
different”. In [8], we also proposed semantics for the sub-
system of the deduction system proposed in [2], and showed
the completeness of the subsystem for the semantics. In this
semantics, acquisition of relational information by an adver-
sary is intuitionistically defined as his ability to show the
evidence to succeed in obtaining the information. In this
paper, we reconsider the deduction system as a kind of epis-
temic logic, and give the Kripke semantics for the system.
In Kripke semantics, acquisition of relational information by
an adversary can be naturally defined as his knowledge of
relational information. We also make a comparison between
the two semantics, and show that if a formula is satisfied in
intuitionistic semantics, it is also satisfied in Kripke seman-
tics. This means that the subsystem proposed in [8] satisfies
soundness for the Kripke semantics.

This paper is organized as follows. First, in Sect.2 we define
a syntax of a logic which is an extended version of deduction
system in [8]. In Sect.3, we give Kripke semantics for the
logic. In Sect.4, we give intuitionistic semantics which is



an abstract version of the semantics proposed in [8], and
make a comparison between the two semantics in Sect.5. In
Sect.6, we discuss the relation between other works and ours.
Finally, we conclude our results in Sect.7.

2. SYNTAX OF EPISTEMIC LOGIC OF RE-
LATIONAL INFORMATION BETWEEN
CIPHERTEXTS

In this paper, we propose a logic for analyzing whether or not
an adversary can recognize relational information between
two ciphertexts regarding their content or their keys,. In
this section, we define the syntax for the logic.

2.1 Symbols

We first define symbols for representing messages as follows.

e K : a set of symbols representing symmetric keys.
e 7 : a set of symbols representing public messages.
e N : a set of symbols representing secret messages.

® R = Rhpon URudw : a set of symbols representing ran-
dom numbers which are used in encryption.

— Rhon : aset of symbols representing random num-
bers which are used by honest principals.

— Rudv : aset of symbols representing random num-
bers which are used by an adversary.

2.2 Messages and Extended Messages

The set of messages are inductively defined as follows.

1. K € K is a message.
. I € 7 is a message.
N € N is a message.

. If T1 and T> are messages, (71,7%) is a message.
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If T is a message, K € K and R € R, then {T}% is a
message.

(T1,T») is a pair of Ty and T». {T}% is an encryption of T
under K, where R is a symbol representing random numbers
which are used in encryption. We say {T}% is an encrypted
message.

ExaMPLE 1. We encrypt a pair of I and Ko under a key
K1, and then we encrypt it under a key Ks. The result is

represented as the message {{(I, Kg)}ﬁl}ﬁ;.

We extend the syntax of messages and refer to the contents
of encrypted messages and keys which are used in encryp-
tion. The set of extended messages is inductively defined as
follows.

1. A message T is an extended message.
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2. If E is an extended message, content_of (F) and key_of (F)

are also extended messages.

If F represents an encrypted message, content_of (F) and
key_of (E) are intended to represent its contents and a key
which is used in encryption for F, respectively. If E does
not represent an encrypted message, these are intended to
be undefined.

We use meta-variables T, Ty, T, . . . for messages, and meta-
variables E, F1, Fa, ... for extended messages.

2.3 Formulae

By using extended messages, we define the syntax of for-
mulae. Using formulae, we can refer to the constructability
of messages, and equality and non-equality of contents or
keys of ciphertexts. Furthermore, we can refer to an adver-
sary’s knowledge about these facts. The set of formulae are
inductively defined as follows.

1. If Ty, T> are messages, 11 > T5 is a formula.

2. If Eq, E5 are extended messages, F1 = Es and E1 # E»
are formulae.

3. If 1, p2o are formulae, p1 A p2, 1 are formulae.

4. If T is a message and ¢ is a formula, T'>y is a formula.

Ty > T represents that the value of T> can be generated
from the value of T1. E1 = E» represents that the values of
FE; and F> are defined and these values are equal. F1 # F»
represents that the values of Ei and Es are defined and
these values are not equal *. ¢1 A2 and -1, represent that
both o1 and 2 hold and that ¢; does not hold, respectively.
T'>p represents that an adversary having the value of T' can
recognize that ¢ holds. We say T 1> ¢ is a modal formula.

We also use the notation (1 V @2 and ¢1 — @2 as abbrevia-
tions for —(—¢p1 A mp2), (@1 A —p2), respectively.

EXAMPLE 2. Let T,T1,T> be messages.

o content_of (T1) = Tz is a formula representing that Th
is an encrypted message and the value of contents of
T, is equal to the value of Ts.

o key_of (Th) # key_of (T2) is a formula representing that
T1 and T2 are encrypted messages and the values of
keys which are used in Th and Ts are different.

o T'> content_of (T1) = T> is a modal formula represent-
ing that an adversary having the value of T recognizes
that T1 is an encrypted message and the value of the
contents of Th is equal to the value of Ts.

o T'>key of (T1) # key_of (T2) is a modal formula repre-
senting that an adversary having the value of T' recog-
nizes that Th and Ta are encrypted messages and the
values of keys which are used in Tv and Ta are differ-
ent.

!The formula E; # E» is syntactically different from the
formula —(E1 = FE»2). In the semantics defined in Sect.3,
interpretation of these two formulae are different.



3. KRIPKE SEMANTICS

In this section, we give an interpretation of messages, ex-
tended messages, and formulae defined in Sect.2. In order
to interpret modal formulae, we use Kripke semantics. Gen-
erally, Kripke semantics are widely used as semantics for
modal logic including epistemic logic. In Kripke semantics
for epistemic logic, various situations are regarded as possi-
ble worlds. An observer’s recognition of a fact is interpreted
as that the fact holds in all the situations (possible worlds)
which are indistinguishable from the current situation (the
current possible world) by the observer. In this paper, we
give a similar interpretation.

We give an interpretation for messages, extended messages
and formulae in Sect.3.1, Sect.3.2 and Sect.3.3, respectively.
In Sect.3.4, we give examples for interpretation of several
formulae, mainly including modal formulae.

3.1 Interpretation of Messages
A message is interpreted using message algebra.

3.1.1 Message Algebra

Message algebra is defined by A = (Akey, Apub, Asec, Acty Apair,

Rhion, Raav, pair, enc), where Apgey is a set of key data, Apus
is a set of public data, As. is a set of secret data, Aq is
a set of ciphertext data, Apqir is a set of pair data. Rpon
and Raqy are sets of random data used in encryption by
honest principals and adversaries, respectively. We say A =
Akey U Apup U Asec U Aet U Apair is a set of message data.
pair : A X A — Apqir is a pairing function which takes two
items of message data as input, and returns a pair of data
items as output. enc : A X Agey X (Rhon U Radv) — Act is an
encryption function which takes an item of message data,
an item of key data and an item of random data as inputs,
and outputs resulting ciphertext data.

Furthermore, Akey, Apub, Asec, Act, Apair are disjointed, which
means that an item of message data is uniquely determined
what kind of message data it is.

Furthermore, pair and enc are bijective, i.e. the following
properties hold:

o Vdi,dz,ds,ds € A (pair(di,ds2) = pair(ds,ds) = d1
ds Nde = d4),
Vd € Apuir3d',d" € A (d = pair(d’,d")),

o Vd,d € AVk, k' € Aey V7,7’ € RponUReay (enc(d, k,r) =

enc(d,k',v"y=>d=d Nk=kK Ar=r1'),
Vd € Au3d € A, 3k’ € ApeyIr’ € Rpon U Raaw (d =
enc(d' k', r")).

Let U be a set of message data. Then, the closure c/(U) of
U is the smallest set X of message data which satisfies the
following.

e UCX

° Apub cX

° d1,d2 ceX=> pair(dl,dz) e X
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o pair(di,d2) € X = dy,d2 € X
o d ke X,k € Agey,” € Raagwo = enc(d, k,r) € X

o enc(d,k,r), ke X =de X

Intuitively, cl(U) represents the set of message data which
can be constructed by an adversary by using U.

3.1.2  Interpretation of Messages

Let A = <Akey7 Apub, Aseca A(;t7 Apair; R}wna Radv ) paiT‘, 6TLC>
be a message algebra, m be an assignment which assigns
message data or random data of an appropriate type to mes-
sage symbols and random number symbols as follows:

e key data in Ay, are assigned to key symbols in IC,

e public data in A,.; are assigned to public message
symbols in Z,

e secret data in A, are assigned to secret message sym-
bols in N,

e random data in Rj., are assigned to random number
symbols in Rpon,

e random data in R,q, are assigned to random number

symbols in Rq4y,

where m assigns different data to different symbols 2.

By using A and m, we define interpretation [T]a,m of a
message T as follows.

[K]a.m = m(K)

[]4.m = m(I)

[N]a.m =m(N)

(T, T2)]am = pair([Ta]am, [T2]a.m)
HT}Helam = enc([T)am, [K]am, m(R))

3.2 Interpretation of Extended Messages

In this section, we give an interpretation for extended mes-
sages. In extended messages, we can refer to contents or
keys which are used in the encryption of encrypted mes-
sages. FEven if an adversary has an encrypted message, if
he does not have its key, he cannot understand either what
its content is or what its key is. In order to formalize such
an aspect, in Sect.3.2.1 we define permutation (called rein-
terpretation) on the set of message data, which maps ci-
phertext data into ciphertext data indistinguishable from it.
A reinterpretation of message data in a situation results in

2Tt is possible to define interpretation without the constraint
'm assigns different data to different symbols’. Even if we
does not adopt this constraint, theorem 1 stated in Sect.5
holds. In Sect.5, we will state that the deduction system
proposed in [8] is sound for this Kripke semantics. Since the
soundness of this deduction system requires the constraint
'm to assign different data to different symbols’, we include
the constraint about m.



another situation which is indistinguishable by the adver-
sary from the original situation. Various reinterpretations
produce various situations which are indistinguishable from
the original one, and such situations are regarded as possi-
ble worlds. This kind of method defining possible worlds by
using reinterpretation was used in [5], to propose Kripke se-
mantics of epistemic logic for privacy verification of security
protocols. In this paper, we modify this method to adapt it
to the epistemic logic of relational information between ci-
phertexts. By using reinterpretation, we give interpretation
of extended messages in Sect.3.2.2.

3.2.1 Reinterpretation for message data

Let U C A be a set of message data which an adversary
has. Then, a permutation m on A (a bijection from A to
A) is called semi-reinterpretation under U if 7 satisfies the
following conditions 1-5.

1. d € Apey U Apup U Agee = 7(d) =d

2. w(pair(di,dz)) = pair(nw(dy), n(d2))

3. deAu=m(d) € A

4. enc(d, k,r),k € U = w(enc(d, k,r)) = enc(n(d), k, )

5. enc(d, k,r), k' €U and k # k' =
vd'vr'm(enc(d, k,r)) # enc(d, k', 7")

7 is called reinterpretation under U if 7 is semi-reinterpretation

under U and 7! is also semi-reinterpretation under 7(U).

If there exists a reinterpretation 7 under U such that 7w(dy) =
da holds, it represents that di and d2 are not indistinguish-
able by an adversary to whom only U is given. Condition
1 represents that an adversary can distinguish key data,
public data and secret data. Condition 2 represents that
adversary can distinguish pair(di,dz2) from data except for
pair(dy, dy) such that he cannot distinguish d1, ds from d, d
respectively. Condition 3 represents that an adversary can
distinguish ciphertext data from data of other type. Condi-
tion 4 represents that if an adversary has ciphertext data
enc(d,k,r) and its key k, he can distinguish enc(d,k,r)
from data except for enc(d’, k,r) such that he cannot dis-
tinguish d from d’. Condition 5 represents that if an adver-
sary has ciphertext data enc(d, k,r) and a key k' such that
k # k', he can distinguish enc(d, k,r) from any ciphertext
data enc(d’,k’,r") encrypted with the key k', since he can
try to decrypt enc(d, k,r) with k' and it fails.

Next, we extend the definition of 7 to adapt it to a set of
message data, i.e. 7(X) = {n(d)|d € X}. We write R(U) as

the set of reinterpretation under U.

Then, the properties 1 and 2 hold.

PROPERTY 1.
permutation.

1. id € R(U), where id is the identity

2. if m € R(U), then n~* € R(n(U)).

3. if € R(U) and 7’ € R(w(U)), then 7’ o € R(U).
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PROOF. Proofs for 1 and 2 are trivial. For proving 3,
First, we show that v’ o v is a semi-reinterpretation un-
der X if v is a semi-reinterpretation under X and v’ is a
semi-reinterpretation under v(X). Suppose that v is a semi-
reinterpretation under X and v’ is a semi-reinterpretation
under v(X). v’ ov trivially satisfies conditions 1,2 and 3.
Now we show that v’ o v satisfies condition 4. Suppose
that enc(d,k,r),k € X. Then, v(enc(d, k,r)),k € v(X)
holds. Hence, v’ o v(enc(d, k,r)) V' (v(enc(d, k,7))) =
V' (enc(v(d), k,r)) = enc(v'(v(d)), k,r) = enc(v' ov(d), k,r)
holds since v is a semi-reinterpretation under X and v’ is a
semi-reinterpretation under v(X). Therefore, we conclude
that v’ o v satisfies condition 4. Next we show that v’ o v
satisfies condition 5. Suppose that enc(d, k,r),k’ € X and
k # k' hold. Since v is a semi-reinterpretation under X,
v satisfies conditions 3 and 5, for any d”,k”,r” such that
v(enc(d,k,r)) = enc(d’,k",r"), k" # k' holds. Hence,
v'ov(enc(d, k,7)) = V' (v(enc(d, k,7))) = v/ (enc(d”’, k", "))
holds. Since v(enc(d, k,r)), k" € v(X) and ' is a semi-
reinterpretation under v(X), v’ satisfies conditions 3 and 5,

for any d”’, k"', r""" such that v’ (enc(d”, k", r")) = enc(d", k",

r""), k""" # k' holds. Therefore, we conclude that v’ o v sat-
isfies condition 5.

Next, we show that 7' om € R(U) if 7 € R(U) and 7’ €
R(m(X)). From m € R(U), (a) 7 is a semi-reinterpretation
under U. and (b) 77" is a semi-reinterpretation under 7 (U).
From 7’ € R(n(X)), (c) 7’ is a semi-reinterpretation under
7(U) and (d) 7'~' is a semi-reinterpretation under 7' (7 (U)).
From (a) and (c), 7’ o 7 is a semi-reinterpretation under
U. From (b) and (d), 7> o7'~! is a semi-reinterpretation
under 7' (7(U)). Since 77 on’™! = (7’ o) ™", we conclude
Tomre RU). O

PROPERTY 2. if m € R(cl({d1})) and d2 € cl({d1}), then
7T(d2) € Cl({ﬂ'(d1)}).

Property 2 can be easily shown by induction on the definition
of d2 € cl({d:1}).

3.2.2 Interpretation of Extended Messages
Let m be a reinterpretation of message data. Then, we define
interpretation [E]7 ,, of an extended message E as follows:

b [[T]]lﬂn = 7T([[/--[']].A,ﬂ%%

o lcontent_of (E)]m :{ undef otherwise
k if [E]%,,, = enc(d, k,r)
undef otherwise

o [key_of (E)])a,m

where undef is special data representing undefined, and
undef € A holds. Extended messages are interpreted with
reinterpretation 7. If an extended message is a message T,
we reinterpret message data obtained by interpretation of T'.
If a message data obtained by interpretation of E is cipher-
text data d, content_of (E) and key_of (E) are interpreted as
the contents of d and the key used in encryption of d, oth-
erwise content_of (E) and key_of (F) are interpreted as data
representing undefined.

d  if [E]%.n = enc(d,k,

k]



3.3 Interpretation of Formulae

Let A be a message algebra, m be an assignment which as-
signs message data or random data to message symbols and
random number symbols, 7 be a reinterpretation. A, m, 7 Ex
o represents that a formula ¢ is true in A, m, 7, which is de-
fined as follows.

° .A, m, |=K T, > Ty & [[Tz]];’m S Cl({lITl]]ﬁA,m})

° A,m,ﬂ‘ ':K E1=FEy &
[Ex]m = (B2l m ALEA] G m # undef

e Am,mEx E1 # E) &
ﬂElﬂl,m # IIE2]];,m
/\[[El]]ZTA,m # undef A\ HEQHQ,W # undef

o A7m77T ':I( Y1 /\(/32 4
Am,mEK o1 A Am, T Ek ¢2

° -Aamaﬂ- '=K P ®A7m7ﬂ- %K ©1

e AmrErTrp <
vr' € R(m(cl([T]a,m)))(A,m,n" o =K ©)

T1 > T> is interpreted as true if the data of T> can be con-
structed from the data of T1. E1 = Ex(w.r.t. Ey # E3) is
interpreted as true if both the data of F; and the data Fs
are defined and these are equal (w.r.t. different). The inter-
pretations of A, — are the usual ones. For modal formulae,
interpretation is similar to interpretation for usual epistemic
logic. This means, T > ¢ is true in the current situation if
 is true in all the situations which are obtained by reinter-
pretation of the original situation. Intuitively, an adversary
owning the data of T" recognizes that ¢ holds, if ¢ holds for
all the interpretations which are indistinguishable from the
current interpretation of messages.

Let id be the identity permutation. If A, m,id E=x ¢ holds
for any A, m, we say ¢ is valid in the Kripke semantics,
written by Ex .

3.4 Examples of Interpretation
In this section, we show the interpretation of several formu-
lae as examples.

EXAMPLE 3. i ({N}, K) > N holds, since [N]'4,, €
cl([({N} &, K)]'4 ) holds as follows.
[{NYE, KIS m = 4d([{NYE, K)]am) = [{N}E, K)]am
= paiT(@nC([[N]]__A,m, HK]]Arm7 m(R))a HK]]-Arm)' Hence,
Cl([[({N}ﬁv K) %,m) = cl({pair(enc([[N]]A,m, [K]]-A«,mv m(R))v
[K]am)}) = cl({enc([N]a,m, [K]a,m,m(R)), [K]am}). Since
[[N]]A,m S Cl({f?nc([[N]]A,m, [[K]]A,m»m(R))v HK]]AJ"}) ) and
El]\[l](]iA»m = HN]]%,m hOld; HNﬂf,m S Cl(l[({N}ﬁvK) f,’rn,)

oLas.

This represents the fact that if an adversary has the en-

crypted message {N}ﬁ and the key K, he can extract its
content.

EXAMPLE 4. =x ({N}E, K)>({N}E,K) > N holds ob-
viously, due to example 8 and property 2 in Sect.8.2.1. This
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represents that if an adversary has the encrypted message
{N}R and the key K, he recognizes the fact that he can ex-
tract its contents.

EXAMPLE 5. |=x content_of ({N}#) = N holds, since
the following hold.

o [{NIE]A m = id([{N}E]am) = {N}E]am
= enc([[N]]-A;mv IIK]]A:mvm(R))

o [content_of ({N})4 o = [N]am = [N]4

This represents the fact that {N }ﬁ is an encrypted message
and its contents are equal to N.

EXAMPLE 6. =x ({N}E, K) > content_of ({N}%) = N
holds as follows.
A,m,id Erx ({N}E, K) > content_of {N}) = N
& vr € RG(U(I({N}E, K)]am)))
A,m,moid = content_of ({N}R) =N
& v € R(cU([({N}YE, K))am))
A,m,m =k content_of ({N}E) =N
& vr € R(cl({enc([N]a,m, [K]a,m,m(R)),[K]am}))
[content_of ({N}i) i m = [N]o.m
Now, since enc([N]a,m, [K]a.m,m(R)), [K]am €
Cl({enc( [N]A,ma HK]].A,ma m(R)), [[K]].A,m}) hOldS,
ifm € R(cl( {enc([N]a,m, [K]a,m,m(R)), [K]a,m})) holds,
the following holds.
{NYED o m = m([{N}E]am)
= m(enc([N]am, [K]a,m,m(R)))
= enc(m([N]a,m), [K]a,m,m(R))). Hence,
[content_of ({N}i6)]%,m = 7([N]am) = [N]Zm
Therefore, we can conclude =x ({NYE, K)>content_of ({N}%)
= N holds.

This represents that if an adversary has the encrypted mes-
sage {N}% and the key K, he recognizes the fact that the
content of {N}#% is equal to N.

EXAMPLE 7. E=x {N}% b content_of {N}E) = N does
not hold as follows.

First the following hold.
A,m,id Ex {N}R b content_of {N}R)=N
& vV € R(cl(enc([N]am, [K]a,m, m(R))))
[[content_of({N}f})]]im = HN]]Z,m
Now, since [K].a,m & cl(enc([N]a,m, [K].a,m,m(R))) holds,
the following m is a reinterpretation under cl(enc([N]a,m,
[K]am, m(R))).
enc([N].a,m, [K]A,m.m(R)) — enc(n/,k’',7")
enc(n/7 klv T/) = enc(ﬂN]]A,mv [[K]].A,’ITH m(R))
[N]a.m = [N]a.m
[K]am = [K]am ’
n' —n'
kl — k/
where [N].a,m #n' holds.
Now, the following holds.
[N FET = 7 (N YELtm)
= w(enc([N]a,m, [K]a,m,m(R))) = enc(n',k',7")
Hence, [content_of ({N} ) Tm =0 # [N]am



= 7([Nlam) = [NIam
Therefore =x {NYE>content_of ({NYE) = N does not hold.

This represents that if an adversary has only the encrypted
message {N }f} and does not have its key, he cannot recog-
nize the fact that the content of {N}% is equal to N.

EXAMPLE 8. If R € Ruay holds, =x (N, K)>content_of (
{N}E) = N holds, due to a similar reason to example 6.

This represents that {N }f} is an encrypted message which

was encrypted by an adversary, he recognizes the fact that
the content of {N}5% is equal to N.

EXAMPLE 9. The following formulae are valid.

o Axioms of classical propositional logic.
e Formulae characterizing equality = and non-equalityz,
e.g.
— F=F,

— E15E2—>E2EE17

— EFi=FENE; =FE; — E; EE3,
— E1$E2/\EQEE3—>E1¢E3;
— E17_éE2—>—|E1 EEQ.

e Formulae characterizing content_of , key_of , e.g.
— content_of {T}YR) =T,

— key_ of T}R) = K.

Axioms for epistemic logic, due to property 1, i.e.
—Tr(p—=¢) = Tre—Trvy),
—Treo—o,

—Tre—=T>Trp,
— T —T>-T>-p.

o Monotonicity of adversary’s knowledge, i.e.,

—Ti 2T — (Tavp—Ti>p).

4. INTUITIONISTIC SEMANTICS BASED

ON CONSTRUCTABILITY OF EVIDENCE

In this section, we introduce intuitionistic semantics based
on constructability of evidence, which was proposed in [8].
In the Kripke semantics defined in Sect.3, acquisition of rela-
tional information by an adversary can be directly defined as
his knowledge of relational information. On the other hand,
in the intuitionistic semantics proposed in [8], acquisition of
relational information by an adversary is intuitionistically
defined as his ability to show the evidence to succeed in
obtaining the information, which in brief, is defined as in-
clusion of evidence in the closure. In [8], we proposed the
intuitionistic semantics defined on the computational model
by using probabilistic polynomial time Turing machines. In
this section, we redefine the intuitionistic semantics on the
symbolic model by using message algebra.

We define the intuitionistic semantics for a subset of the
syntax defined in Sect.2. In Sect.4.1, we restrict the syn-
tax defined in Sect.2. In Sect.4.2, we give the intuitionistic
semantics based on the constructability of evidence.

4.1 Restriction of Syntax
The Intuitionistic semantics gives an interpretation for for-
mulae of the following forms:

o Ty > 1o,

e I'>Fy = Fy, T> FE; # Es>, where 1, Fs are extended
messages of the form content_of (T"), key_of (T”) or T".

4.2 Intuitionistic Semantics
In the intuitionistic semantics, we adopt the interpretation
of messages defined in 3.1.

Let A be a message algebra, and m be an assignment which
assigns message data or random data to message symbols
and random number symbols. A, m |=; ¢ represents that a
formula ¢ is true in A, m, which is defined as follows.

For formulae of the form 71 > T», we give the same inter-
pretation as defined in Sect.3.3.

e Am =T 2Ty & [To]am € cl({[T1]a,m})

For formulae of the form T'> F1 = E2 and T > E1 # E», we
define interpretation by 12 cases according to the form of F1
and Fs.

1. ToTh =T,
T 1T, = T is true if an adversary can construct evi-
dence of the equality of the values of T3 and 15 from
the value of T', where the evidence is the identical val-
ues of 1 and T%.

.A,m |:I ToTh =T, &
|IT1]].A.,m» |IT2]].A,m € Cl([[T]].A,'m) /\IIT1]]A,m = IIT2]]A,m

2. ToT) £ T,
T Ty # T is true if an adversary can construct evi-
dence of a difference between the values of T} and 715,
where the evidence is the different values of T1 and T5.

A,m |=1 T £T) <
|IT1]].A.,'rn) |IT2]].A;m S Cl(IIT]].A,'m,) /\IITl]].A,m 7é IITQ]].A,m

3. T'> content_of (Th) = T>
T>content_of (Th) = T» is true if an adversary can con-
struct evidence of equality between the value of con-
tents of 71 and the value of T>, where the evidence is
([T1].A,m;s [T2] Am, k) such that [Ti].a,m is ciphertext
data, k is a key data, and the result of decryption of
[T1]A,m by k is equal to [T2].4,m-

A,m =1 T v content_of (T1) =Te <
Elk(ﬂTl]]A,"ly |IT2]].A,m7 ke CZ(HT]]A,m)/\
|IT1]].A,m S Act ANk € Akey/\ dec([[Tl]].A,m, k) = |IT2]].A,m)

dec is the decryption function satisfying the following,
and | is a special data representing ’decryption fail-
ure’.

di d=enc(di,k,r) for some r

dec(d, k) :{ 1 otherwise
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4. T > content_of (Th) #Z Ta
T > content_of (T1) # To is true if an adversary can
construct evidence of a difference between the value of
contents of 71 and the value of T, where the evidence
is ([T1]A,m, [T2] A,m, k) such that [T1].4,m is ciphertext
data, k is key data, and the result of decryption of
[T1].4,m by k is different from [T2].4,m.

A,m =1 T > content_of (Th) # Tz &
Elk(HTl]]A,my |IT2]]A,m7 k € CZ(HT]]A,m)/\
[Tl]].A,m €Au Nk e Akey/\
dec([T1]a,m, k) # L A dec([T1] ams k) # [To] am)

5. T > content_of (T1) = content_of (12)

T > content_of (Th) = content_of (T2) is true if an ad-
versary can construct evidence of equality of the values
of contents of T and T, where the evidence is either
([T1]a,ms [T2] 4,m) such that [T1].4,m and [T2].4,m are
identical ciphertext data, or ([Ti].4,m, [T2]4,m,k, k")
such that [T1].4,m and [T2].4,m are ciphertext data and
k and k' are key data and the result of decryption of
[T1]4,m by k is equal to the result of decryption of
[[TQ]]A’m by k/.

A,m =1 T > content_of (Th) = content_of (Tz) <
([T1]ams [To]am, € cl([T]am)N
[[Tl]]A,m, [[T2]]A,m S Act)

Vv 3k7 k/( [[Tl]].A,m» [[T2]]A,’mw k7 k/ € CZ(HT]]AW”)/\
[[Tl]].A,m, |IT2]].A,m S Act A k, k/ [S Akey/\
dec([Th] am, k) # LA
dec([T1]a,m, k) = dec([T2]a,m, k"))

6. T > content_of (T1) # content_of (1)

T > content_of (Th) # content_of (T2) is true if an ad-
versary can construct evidence of a difference between
the values of contents of 71 and T, where the ev-
idence is ([T1].4,m, [T2].4,m,k, k") such that [T1].4,m
and [T2].4,m are ciphertext data, k and &’ are key data,
and the result of decryption of [11].4,m by k is different
from the result of decryption of [T2].a,m by k'

A,m =1 T v content_of (T1) # content_of (T2) <

dk, k:l([[T1]]A,m, [[Tg]]A,m, k, kK e Cl([[T]]A,m)/\
[Tu]a,m, [Te]am € A ANk, K € Ageyn
dec([Th]am, k) # LA dec([To]a,m, k') # L
Adec([Th]a,m, k) # dec([Te].a,m, k"))

7. T> key_of(Tl) =15
T > key_of (Th) = T> is true if an adversary can con-
struct evidence of equality between the value of a key of
T and the value of T», where the evidence is ([T1].4,m,
[72].4,m) such that [11].4,m is ciphertext data, and de-
cryption of [T1]a,m by [T2]4,m succeeds.

AmErTokey of(h) =T
[T1]a,m, [To]a,m € cl([T]a,m)A
IITl]].A,m € Act A |IT2]].A,m S Akey/\
dec([T1]a,m, [To]am) # L

8. T key_of (Th) Z T
T > key_of (Th) # T> is true if an adversary can con-
struct evidence of difference between the value of a
key of T and the value of T, where the evidence
is ([T1].4,m, [T2].4,m) such that [T1]a,m is ciphertext
data and [T>].4,m is not a key, or decryption of [11] 4,m
by [T2]a,m fails.
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10.

11.

12.

A mEr Tokey of(Th) ZTe <

[T1]am, [To]am € cl([T]am)A

[[Tl]].A.,m € Act/\

(IIT2]]A,m € Akey \ dec(ﬂTl]]A,m, |IT2]]A,m) = J—)

. T key_of (Th) = key_of (T2)

Tvkey_of (Th) = key_of (T2) is true if an adversary can
construct evidence of equality of the values of keys of
T1 and T, where the evidence is either ([T1].a,m, [T2].4,m)
such that [T1] 4,m and [T2] 4,m are identical ciphertext
data, or ([T1]A,m,[T2]4,m,k) such that [T1]a,m and
[T2] A,m are ciphertext data and k is key data and both
decryption of [T1].a,m and [T2].4,m by k succeed.

A,m 1 T key_of (Th) = key_of (T) &

(IT1]a,m, [T2]am € cl([T]a,m)A

[Ti)am = [T2]am)V

Fk([T1]a,m, [T2]a,m, k € c([T]a,m)N
[[Tl]].A,m, [[TQ]].A,m S Act Ak S Akey/\
dec([T1]a,m, k) # LA dec([T2] a,m, k) # L)

T > key_of (T1) # key_of (T2)

Tvkey_of (Th) # key_of (T2) is true if an adversary can
construct evidence of a difference between the values of
keys of T} and T, where the evidence is ([T1] 4.m, [T2].4,m,
k) such that [T1].4,m and [T2].a,m are ciphertext data,

k is a key data and either of decryption of [T1].4,m or
[T2].4,m by k succeeds.

A,m =1 T o key_of (Th) # key_of (T2) <
3k(|[T1]]A,m, |IT2]]A7m’ ke Cl([[T]]A,m)/\
|IT1]].A,m; |IT2]].A,m € A(;t Nk € Akey/\
((dec([T1]a,m, k) # L A dec([T2]a,m, k) = L)V
(dec([Ti]am, k) = L A dec([T2] a,m, k) # 1))

T > content_of (Th) = key_of (1)

T > content_of (T1) = key_of (T2) is true if an adver-
sary can construct evidence of equality between the
value of contents of 77 and the value of a key of T5,
where the evidence is ([T1].4,m, [T2].4,m, k) such that
[T1].4,m and [T2].4,m are ciphertext data, k is key data
for decryption of [T1].4,m, and decryption of [T2].4,m
by the contents of [T1].4,m succeeds.

A,m =1 T > content_of (T1) = key_of (T2) <
3k(|[T1]]A,m, [[T2]]_A,m, ke Cl([[T]]A,m)/\
[Tl]].A.m7 |IT2]].A.m S Act/\
k, dec([T1] a,m, k) € ApeyA
dec([T2]a,m, dec([Ti]a,m, k)) # L)

T > content_of (T1) # key_of (T%)

T > content_of (Th) # key_of (T2) is true if an adver-
sary can construct evidence of difference between the
value of contents of 71 and the value of a key of Tb,
where the evidence is ([T1].4,m, [T2].4,m, k) such that
[T1].A,m and [T2].4,m are ciphertext data, k is key data
for decryption of [T1] 4,m, and the contents of [11].4,m
is not a key, or decryption of [T2].4,~ by the contents
of [T1].a,m fails.

A, m =1 T > content_of (T1) # key_of (T2) <
Elk(IITl]]A,my |IT2]]A,m7 ke CZ(HT]]A,m)/\
[[Tll]A,ﬂ% [[T2]]A,m € Act Nk e Akey/\
dec([T1 ] a,ms k) # LA
(dec([T1]a,m, k) & AgeyV
dec([To] a,m, dec([Ti]a,m, k) = 1))



If A,m =1 ¢ holds for any A, m, we say ¢ is valid in the
intuitionistic semantics, written by |=r ¢.

In [8], we proposed a deduction system for analyzing whether
an adversary can obtain relational information. This deduc-
tion system deduces the formulae of the restricted form de-
fined in Sect.4.1. We introduce this system in Appendix A.
If a formula ¢ is derivable by this system, we write Fip .
This deduction system is sound and complete for the intu-
itionistic semantics as shown in the following proposition.

PROPOSITION 1. Let ¢ be a formula of the restricted form
defined in Sect.4.1. Then, Fsp @ holds, if and only if =1 ¢
holds.

This proposition can be proved in a similar way to the proof
in [8].

5. RELATION BETWEEN THE TWO SEMAN-

TICS

Between the Kripke semantics proposed in Sect.3 and the
intuitionistic semantics introduced in Sect.4, the following
relation holds.

THEOREM 1. Let ¢ be a formula of the restricted form
defined in Sect.4.1. Let A be a message algebra, m be an
assignment which assigns message data or random data to
message symbols and random number symbols. Then, if
A,m |=1 ¢ holds, then A,m,id Ex ¢ holds.

PROOF. (Case for ¢ is of the form T > T1 # Tb)
Suppose that A,m E=;r T >T1 # T, ie. [T1]a,m, [T2]a,m €
Cl([[T]]_A,m) /\[[Tl]]A,m #* |IT2:|]_A7m. Let m € R(Cl([[T]]_A,m)) be
arbitrary reinterpretation under c¢/([T].a,m). Then, [T1]% ..
= 7([T1]a.m) and [12]% . = 7([12]4.m) hold. Now, m(
[Ti]a,m) # 7([T2]a,m) holds, since [Ti]am # [T2]A.m
holds and 7 is a permutation, i.e. bijection. This means,
A,m,m = Th # T» holds. Therefore, A,m,id =x T>T1 #
T> holds.
(Case for ¢ is of the form T > content_of (T1) = T>)
Suppose that A, m =1 T>content_of (T1) = T», i.e. there ex-
ists k such that [T1]4,m, [T2]a,m, k € cl([T]a,m)A [Ti]am €
At Nk € ApeyN dec([Ti]a,m, k) = [T2]a,m. Then, due
to [[TI]].A,m € Ay Nk € Akcy/\ dec([[Tl]]A,m,k) = IITQ]]A,m,
there exists r such that [T1].a,m = enc([T2].4,m, k, r) holds.
Let m € R(cl([T].,m)) be arbitrary reinterpretation under
c([T]am). Then, [T1]%,m = 7([T1]am) = 7(enc([T2]a.m,
k,r)) holds. Now, due to [Ti]a,m,k € cl([T]a,m) and
condition 4 of semi-reinterpretation, 7(enc([T2].a,m, k,7)) =
enc(m([T2].4,m), k,r) holds. Hence, [content_of (T1)| 4 m =
m([T2]am) = [T2]%.,, holds. This means, A,m,m Ex
content_of (T1) = T> holds. Therefore, A,m,id Ex T >
content_of (T1) = T> holds.
(Case for ¢ is of the form T > key_of (11) # T2)

Suppose that A, m =1 Tokey_of (Th) # T2, i.e. [Ti]a,m, [T2]a,m

c Cl(IIT]].A,m)/\ [[Tl]]Amq c AuN ([[TQ]]A,m g Akedeec(ﬂTlﬂA,M7

[To]a,m) = L). Then, due to [Ti]a,m € Act, there exists

d, k,r such that [T1].a,m = enc(d, k,r). Let m € R(cl([T].a,m))

be arbitrary reinterpretation under cl([T]a4,m). (1) Let us
consider the case of [T2]a,m & Agey. There exists d', k', 7’
such that [T1]7%.,,, = n(enc(d, k,r)) = enc(d', k', 7"), by con-
dition 3 of semi-reinterpretation. Hence [key_of (T1)]%4,,. =
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k' € Aiey. On the other hand, [T32]% ., = 7([T2]a,m) &
Apey, since [To]a,m ¢ Agey and 7 does not change data
types. Therefore [key_of (T1)]% . # [T2]74,m holds. (2)
Let us consider the other case of [T2]a,m € Apey. Then,
dec([T1]a,m, [T2]a,m) = L, which means k # [T2].4,m.-
From this, there exists d’, k', ' such that [T1]% ., = 7(enc(d,
k,r)) = enc(d,k',r") and k' # [T2].a,m, by condition 3
and 5 of semi-reinterpretation. Hence [key_of (T1)]a,m =
k" # [T2] A,m- On the other hand, [12]% ., = 7([T2]a.m) =
[T2].4,m, by condition 1 of semi-reinterpretation. Hence,
lkey_of (T1)]% . # [T2]%.m holds. For both cases of (1)
and (2), we conclude A,m,n [=x key_of (T1) # T> holds.
Therefore, A,m,id Ex T > key_of (T1) # T> holds.

We can prove the other cases in which ¢ has other forms in
a similar way, we omit the proof. [

On the other hand, the converse of theorem 1 does not hold.
For instance, N > content_of ({N}5t) = content_of ({N} %) is
valid in the Kripke semantics, although it is not valid in the
intuitionistic semantics.

Due to proposition 1 and theorem 1, the following corollary
holds.

COROLLARY 1. Let ¢ be a formula of the restricted form
defined in Sect.4.1. Then, if Fip ¢ holds, then =k ¢ holds.

This corollary means that the deduction system proposed in
[8], which is shown in Appendix A, is sound for the Kripke
semantics.

6. RELATED WORKS

There have been various studies about verification methods
of security protocols by using epistemic logic. The most fa-
mous study is BAN logic proposed by M. Burrows, M. Abadi
and R. Needham in [3]. BAN logic is used in verification of
authenticity for cryptographic authentication protocols. In
BAN logic, the authenticity property is verified by deducing
a formula representing authenticity from axioms represent-
ing protocol definitions. For BAN logic, Kripke semantics
was given in [1]. Various succeeding works of BAN logic
were also studied, e.g. [6, 10, 11, 7].

Protocol Composition Logic (PCL) in [4] is used for verifi-
cation of authenticity and secrecy for protocols. PCL can
be regarded as epistemic logic. PCL is Hoare-style logic, of
which formulae have preconditions, postconditions and pro-
grams representing protocol description by process calculus.
PCL has Kripke semantics of which reachability relation is
defined by using traces of programs.

For verification of the anonymity of protocols by using epis-
temic logic, there have been several studies such as [9] and
[5]. By these logics, the anonymity property is verified by
showing that a formula representing anonymity is satisfied in
the Kripke model which is obtained from various behaviors
of the participants of the protocol.

The definition of authenticity and anonymity of security pro-
tocols is based on the transmission and receiving of mes-
sages. Hence, these logics above use atomic propositions



representing the transmission and receiving of messages. On
the other hand, the logic proposed in this paper is intended
to be used for verification of secrecy of relational informa-
tion between ciphertext. Therefore, our logic uses atomic
propositions representing the equality and non-equality of
contents or keys of ciphertexts. Our logic is quite different
from these logics above on this point.

7. CONCLUSION

In this paper, we applied Kripke semantics to the logic for
analyzing whether an adversary can obtain relational infor-
mation between contents or keys of two ciphertexts. We
constructed the semantics of an epistemic logic by regarding
relational information obtained by an adversary as the ad-
versary’s knowledge. Hence, this semantics is naturally de-
fined, compared with the intuitionistic semantics proposed
in [8]. We also made a comparison between this Kripke se-
mantics and the intuitionistic semantics, and showed that
if a formula is satisfied in the intuitionistic semantics, it is
also satisfied in the Kripke semantics. This means that the
deduction system proposed in [8] is sound for the Kripke
semantics.

The logic proposed in this paper is intended to be used for
verification of secrecy of relational information between ci-
phertexts in security protocols. For instance, it is intended
to verify that an adversary can recognize equality or non-
equality between a key which was used in the encryption of
a ciphertext transmitted in the past and a key which was
used in encryption of a ciphertext being transmitted now.
Our future work is to provide a sound and complete ax-
iomatic system of this logic. This work makes it possible to
verify the secrecy of relational information by deduction of
axiomatic system.
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APPENDIX

A. DEDUCTION SYSTEM OF OBTAINABIL-
ITY OF RELATIONAL INFORMATION
BY ADVERSARY

We introduce a deduction system of obtainability of rela-
tional information by an adversary, proposed in [8]. This
deduction system deduces formulae of the restricted form
defined in Sect.4.1.

The inference rules of deducing formulae of the form 77 > T5
are as follows:

T>T, T>1, wherel €Z,

ToTy, T>1T: TZ(Tl,TQ) TZ(Tl,TQ)
Ty (T1,T2) T=T , T=2T

T>{TE T>K
T>T ’

T>T1 T>K
T>{}E | where R € Rugp.

The inference rules of deducing formulae of the form T>F; =
FE> and T> Ey # E> are as follows.
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e If an adversary obtains a message T1 from T, then he
obtains relational information that the value of 71 and
the value of T are equal.

T>T
ToT =T

e If an adversary obtains two different messages 77 and

Ts, then he obtains relational information that the value
of T1 and the value of Ty are different.

T>Ty T>T
ToTh 2T ,

where T1 and T are syntactically different messages.

e If an adversary has relational information that the value
of {T1}£ is equal to the value of {T2}%,, then he also
obtains information that the two messages {T1}§ and

{T»}%, have the same contents and are encrypted with
the same key.

T {T}} = {1}
To f{T}) = F{T}HE),

where f is either content_of or key_of.

e If an adversary obtains an encrypted message {Tl}f}
and its key K, then the decryption succeeds and he ob-
tains relational information that the value of the con-
tents of {T1}% is the value of T1.

T>{Ti}k T>K
T content_of ({T1}%) = Th

e If an adversary obtains an encrypted message {T1}%
and its key K, then the decryption succeeds and he
obtains relational information that the value of a key
of {T1}% is the value of K.

T>{Tjix T>K
Tokey of (W} ) =K

e If an adversary obtains an encrypted message {T1}§
and a message T» which is different from the key K,
then T, is not a key or the decryption fails, and he
obtains relational information that the value of the key
of {T1}% is different from the value of Ts.

T>{TW% T>T
T key_of {T1}§) # T,

where T is syntactically different from K.

e Symmetry and transitivity of equality and non-equality
hold.

ToFE,=F TDElq_éE
T>E=FE; ToE#E;

TDEEEQ TDEQEEl
T>FE=F

T>FE=F, T[>E2$éE1
ToE % E;

If a formula ¢ is derivable by this system, we write Fp .



