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ABSTRACT

In this paper we give the structure of the ternary image of
self-dual linear block codes and cyclic linear block codes over
the semi-local Frobenius ring Rs = F3 + vF3, where v? = 1,
with respect to an ordered basis. Sufficient conditions for
the ternary image of an Rs-code to be of Type III or cyclic
are presented.
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1. INTRODUCTION

The idea of p — ary image was introduced by Rabizzoni [10]
by generating a code of length nr over F, from a code of
length n over F,r using a basis of the Galois field F,~ over
F,, p prime, and 7 € N. This technique was generalized by
Sole and Sison [11] to the p"- ary image of linear block codes
over the Galois ring GR(p", m).

There are already a number of studies on images of codes.
The most notable among these was the discovery of the Ker-
dock and Preparata codes as Gray images of codes over Z4
[7]. Recently, images of codes over various types of rings
are now being studied, specifically self-dual and cyclic codes
over the ring IF,, + vIF, where v> = v when p =2 or v? =1
whenever p is an odd prime. The self-dual codes are of
great importance because most of the known best codes are
self-dual or cyclic. In addition, the said classes of codes pos-
sess efficient encoding and decoding schemes most especially
in syndrome decoding. Bachoc [1] began the study of self-
dual codes over Ry = Fy + vF2 along with its applications
to modular lattices. Further, an upper bound on the min-
imum Bachoc weight of self-dual codes over the said ring
was given and the notion of extremality was introduced in
the said paper. Dougherty, et. al. [6], by using the Chinese
Remainder Theorem (CRT) and the Gray map images, pre-
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sented several results on Type IV self- dual codes over the
commutative rings of order 4, which includes R>. Further,
in [2], self-dual and Type IV self- dual codes over Ry were
characterized based also on codes obtained by the Gray map
and CRT. Self-dual codes over R3 = 3+ vF3 were shown in
[5] to produce 2- modular lattices. In the same paper, they
also associated ternary self-dual codes with self dual codes
over Rs. On the other hand, Zhu, Wang and Shi [12] studied
the relationship between cyclic codes over the ring R and
binary cyclic codes using the Gray map on the said ring. In
addition, the generator matrix of the associated binary code
was derived and the Gray image of the dual of the code was
also studied. This study was followed by Cengellenmis [4] by
considering cyclic codes over the ring R3. Moreover, in [3],
codes over F3 were characterized using the Gray map on Rs.
It was shown that for an odd n, every code over F3 which is
the Gray image of a linear cyclic code over Rs of length n
is permutation equivalent to a linear cyclic code. Recently,
in [8] , linear block codes over the semi-local Frobenius ring
Fpr 4+ vIFpr were studied. Distance bounds on the minimum
Hamming distance of the p"-ary image of the linear block
code in terms of different parameters were derived in the
said paper.

In the present work, we also consider self-dual and cyclic
codes over the finite semi-local Frobenius rings Rs = Fs +
vF3 where v?> = 1. The ternary images of the block code
were obtained by defining a map, which is not necessarily a
Gray map, from Rs3 to F2 with respect to an ordered basis
of Rs over F3. Further, we gave sufficient conditions for the
self-duality and cyclicity of the image codes.

The material is organized as follows. Section 2 gives the
structural properties of the ring R3. Linear block codes over
R3 were studied in Section 3 while Section 4 is about the
ternary image. Results on the images of self-dual and cyclic
codes over R3 were given in Section 5 while the last section
presents examples of codes that illustrates the results of this
study.

2. THE RING 23

A commutative ring R that has finitely many number of
maximal ideals is called a semi-local ring. Any element of
the semi-local ring R that does not belong to any one of the
maximal ideals is a unit. The ring Rs = F3 + vIFs where
v? = 1 is commutative with unity 1, characteristic 3, and



order 9. Each element of R3 can be written as a + bv where
a,b € F3. The units in R3 are 1,2,v and 2v while its zero
divisors are 1 + v,2 + v,1 — v and 2 + 2v. Further, R3 has
two proper nontrivial ideals (1 +v) = {0,1 4 v,2 + 2v} and
(142v) ={0,1+ 2v,2 + v}. Since both ideals are maximal
and principal, R3 is a semi-local principal ideal ring. By the
Chinese Remainder Theorem, we can view R3 as the ring
Rs R:

3
A T8~y x s,
1+v)  (1—v)  *77°

Further, R3 is Frobenius with generating character

\/§+i>y.

x:Rs—T, x(:v+vy)=< 5

In addition, it can be shown that Rs3 is a 2- dimensional
vector space over Fs.

3. LINEAR BLOCK CODES OVER PR3

A rate-k/n linear block code B over a ring Rs generated by
G e R’;X” is the Rs-submodule given by the set

B={veR}|v=uG,uc R}

If no proper subset of the rows of G generates B, then the
matrix G is called a generator matriz for B. If the columns
of G contain the columns of the k x k identity matrix Iy,
then G is said to be systematic. A code B is systematic if it
has a systematic generator matrix. In addition, the code B
is called free if the rows of G are linearly independent. Two
codes are said to be equivalent if one can be obtained from
the other by permuting the coordinates.

For the succeeding discussions, we let B be a rate- k/n linear
block code over R3 unless otherwise stated.

From [5], any code B is permutation equivalent to a code
generated by

I, bBi aAy bAy+ (1+20)By aAs +bBy
G = 0 aI;Q 0 aA4 0 (1)
0 0 bl 0 bBa

where a = 14+ v, b =14 2v, A; and B, are ternary matrices
and |B| = 9%13F23%3  If ky = k3 = 0, then the code B is
said to be free.

The Euclidean inner product (x,y) of z and y in R where
z = (z1,...,2,) and y = (y1,...,Yn) is defined as (z,y) =
z1y1 + ... + Tnyn. The dual code B+ with respect to the
Euclidean inner product of B is defined as B+ = {z €
(R3)"|{w,yy = 0 Yy € B}. B is Euclidean self-dual if B =
Bt. For brevity, whenever we use the term self-dual, it
is understood that we are referring to Fuclidean self-dual.
Ternary self-dual codes are called Type III codes.

It was mentioned in [5] that B = (1 +v)B" @ (1 +2v)B~
where

BT ={s € F§|(1 +v)s+ (1+2v)t € B}
and

B ={t € F5|(1+v)s+ (1 + 2v)t € B}.

In addition, the codes BT and B~ are permutation equiva-
lent to the codes with generator matrices given respectively
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by
+1 Ik, 0 241 24> 2As
R R T A
and
—_ (Ix, 2B1 0 2By 2Bs3
a 1= 20 LR
where A; and B; are ternary matrices and |[BT| = |[B™| =
31«13)«3.
Further,

Bt =(1+v)(BY)" @ (1+2v)(B7) . 2)

Also, it was shown that B is self- dual if and only if B+ and
B~ are both Type III.

Let x = (z1,22,...,2n) € B. Also, suppose z € R3 and
p: RY — R3 given by p(x1,%2,,2Zn) = (2&n,T1,...,Tn-1).
A z-cyclic code B over Rs is a linear code with the property
that if x € RY then p(z) € Ry. If z =1, then we simply say
that B is cyclic. We denote by o the permutation o(z) =
(zn,x1,...,2n—1). Let s be the quasi-cyclic shift on (F5)®
given by

ps(aMa®]..1a") = (o(aM)]o(a®)]... |o(a').

Then a code B C (F%)? is quasi-cyclic of order s and length
ns if ps(B) = B.

The Hamming weight wi(z) of a codeword z is the number
of the nonzero coordinates of x. The minimum Hamming
weight of B is min{wy (z) | ¢ € B,z # 0}. The Hamming
distance d(z,y) between codewords x and y is defined as
d(z,y) = wa(xz — y). Further, the minimum Hamming dis-
tance dg of B is min{d(x,y) | z,y € B,z # y}. It is known
that if B is linear, then dg is always equal to the minimum
Hamming weight of B.

4. TERNARY IMAGE OF LINEAR BLOCK
CODES OVER R;

Let Bo = {v1,v2} be a basis of Rz over Fs. Thus, we can
uniquely express each element z € Rz as avi + bvs where
a,b € F3. Define a mapping v : Rs — F3 such that ¥(z) =
(a, b) which is an F3- module isomorphism. Though there are
several bases of Rs, the main focus of our discussion will be
on the ordered bases A1 = {1,v} and A2 = {1 +v,1+ 2v}.
We note that when the ordered basis is Ai, the resulting
map is the Gray map on R3 which is an isometry from R3
(Lee weight) to F3 (Hamming weight). We denote by 1
and 92 the mapping ¥ using A; and Az as their respective
basis.

The images of each element of Rs under the mapping 1
and 12 were given in Table 1.

We now extend ¥ coordinatewise to Ry. If x = (21, 22, ..
B and x; = a;v1 + b;v2, then
Y(z) = (a1, ae, .. ,bn) € F".

We refer to the set ¢(B) = {¢(z)|x € B} as the ternary
image of B under the mapping ¥ with respect to the

'7an7b17b27"'
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Table 1: Image of the elements of R3 under 91

zER | di(2) | ¥a(z)
0 (0,0) | (0,0)
1 (10) [ (22)
5T (@0 | (L)
v (0.1) | (2,1)
30 (0.2 [ (1.2)
T1o | (L) | (LD)
1120 (12) | (0,)
210 | (21) | (0,2)
2120 [ (22) | (2,0)

basis B,. Clearly, |B| = |¢(B)|. In addition, in [8], it was
shown that ¢(B) is a linear block code of length 2n. The
generator matrix of the ternary image is given in the next
theorem.

THEOREM 1. If G is the generator matriz (1), then ¢ (B)
is permutation equivalent to the code with generator matrix
Gy given by

$(uilpy)  @(vibBy)  W(viaAy) ¢(vi(adz +bB3)) ¥(vi(aAz +bB3))
w(valp,)  @(vabBy)  (vzady)  P(va(ady +bB3))  ¥(va(aAz +bB3))
0 ¥(aly,) 0 w(aAy) 0
0 0 P(bIy) 0 w(bBy)

where a = 1 +v,b = 14 2v, A;’s and B;’s are ternary
matrices and |11 (B)| = 9%13F23%s,

The following theorem is immediate from the definition of
Y1 and Ya.

THEOREM 2. Let A be a kxn ternary matriz, 0 be a kXn
zero matriz and ( Y(A) ) be the matriz whose rows are the
image of the rows of A under 1. Then, we have

P1(A) A 0

’1[11 (’UA) _ 0 A

Yvi((1+v)A) | A A

P1((1 4 20v)A) A 2A

and

P2 (A) 2A 2A

P2(vA) 124 A

va((1+0v)A) | [ A O

Y2((1 4 2v)A) 0 A

Hence for 11 (B), the generator matrix would be

Ty 0 B; 2B) A Ay D B F J
0 Iy, 2By By A Ay K L M N
0 0 Iy Ipy 0 0 Ay Ay O 0
0 0 0 0" Iy, 2Ly, O 0 By 2By

where D = A2+BQ, F = A2+232, F = A3+B:«;,J =
A3-|—233, K = A2+232, L=A + Ba, M = A3+QB3, and
N = Asz + Bs. In addition, for ¢2(B), we have

Iy 0 0 0 0 24 24, 0 243 0
o Iy 0 0 2B 0 0 2Bg 0 2Bg
0 0 Tk, 0 0 0 Ay 0 0 0 )
0 0 07 Ipy 0 0 0 0 0 By

Based on their generator matrices, it is easy to see that both
11(B) and 2(B) are free codes.

Now we will find the generator matrix of ¢)(B) in terms of
the associated ternary codes of B. The following lemmas
will be used in deriving G.

LEMMA 1. Let A be a k x n ternary matriz and (A) be
the matriz whose rows are the image of rows of A under
the mapping ¥. Then Y(wA) = (aA ® bA) where Y(w) =
(a,b),w € Rs.

Proof:

Let A = (y1,¥2,..,Yn) where each y;,1 < i < n is
k x 1 ternary matrix representing the columns of A.
Now, wA = (wyi,wys2,...,wy,) where w € F3 and
Y(w) = (a,b).

Hence,

wA = ((av1 + bv2)yi1, (avi + bva)ya, ..., (avi + bv2)yn)

= ((ay1v1 + by1v2), (ay2v1 + by2vz), ..., (aynvi + bynva)).
Then, we have

w(WA) = (ayl , QY2 - .-
= (aA @ bA).

,ayn,bm,byz, e ,byn)
|

LEMMA 2. Let x; and y; represent the rows of BT and

B~ respectively. Then,
1+ v)zr, + (14 20)yk,
G = (1 + v)xkz
(1 + QU)yk‘s

Proof:

Let z; be the ith row of G. For 1 < i < k1, we have
(14+v)z: = (14+v)x; and (14 2v)z; = (14 2v)y;. Also,
zi = 2((1+v)x; @ (1 + 2v)y;). Hence, zk, and yi, are
multiples of (1 +v)z; ® (14 2v)y;.

For k1 4+ 1 <i < k1 + ko2, we have z; = (1 +v)x;. Also,
for ki + ko +1 < i < ki + ko + ks, z = (1 + 20)y;.
Hence, we have the result. |

THEOREM 3. If ¢(1+v) = (a,b) and ¥(1+ 2v) = (¢, d),
then
_ (aG[B*] bG[BT)
Gy = <cG[B_] dG[B‘]) :
Proof:

By Lemma 1, for 1 < < ki1, we have
¥(2:) = Y((1+v)zi) ®Y((1 + 20)yi)
= (az; @ bx;) ® (cy; @ dy;).

Note that (ax; @ bx;) is not a multiple of (cy; & dy;)
because of the presence of a,b and c, d.

Further, for k1 +1 <i < ky + ko,

¥(z:) = (1 +v)w:)
= (az; ® bx;).
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For k1 + ko +1 < i < ki1 + ko + ks,

¥(z:) = »((1+20)w:)
= (ayi ® by;).
The existence of (ax; ® bx;) = (ax; ® bx;) and (ay; B

byi) = (ay; @ yz;) is impossible because the rows of
BT and B~ are linearly independent.

Hence, by Lemma, 2,

ark, brg, aTr, br,
G = cyr, dyk, _ | awk, bk,
ATk, bTpy Yk, Ayr,
CYks  AYks Yk dYkg

_<aG[B+] bG[B+]>
=\ecB] dciB])

5. IMAGES OF SELF-DUAL AND CYCLIC
CODES

PROPOSITION 1. The image of the dual of B is given by:
$(BY) = (a(B")" @c(B7)") @ ((BY)" @d(B™)")
where Y(1 +v) = (a,b) and Y(1 + 2v) = (¢, d).

Proof:

From (2), B* = (1 +v)(B")* @ (1 +2v)(B)*.
Therefore, by Lemma 1,
$(BY) =¢((1+0)(BY)) @ y((1+20)(B7)")
= (a(B")" @b(B)") @ (e«(B7)" @d(B7)")
= (a(BY)" @c(BT)" )@ (b(BY) @d(B7)").

We now derive sufficient conditions for the image to be self-
dual or cyclic.

ProPOSITION 2. If B is self-dual, then ¥(B) is Type IIT
if (W1 +v),¥(1+2v)) =0.

Proof:

Define (A, B) = {(z,y)|x € A,y € B} where A and B
are linear codes. Let ¥(1+v) = (a,b) and ¥(1+2v) =
(¢, d). Hence, by Proposition 1,

Y(B) = (aBT +¢B~,bBY +dB")
and
$(BY) = (a(B")" +¢(B)",b(BY)" +d(B)h).

Let x = (z1,22,...,2,) € B where z; = s;(1 +v) +
ti(14+2v) and vy = (y1,%2,...,Un) € B where y; =

si(1+v) + (1 —v).
Hence,

W(x) = (asi+cti,...,as,+cty, bs1+dty, . .., bsy+dty)
and

W(y) = (asy+cty, ..., asn+cn’,bsi4dth, ... bs,+dt,).

Thus, (y(z), ¥ (y))

= Z (asi + cti)(as; + cti) + Z (bsi + dt;)(bs; + dt;)

i=1 1=1

n n
=1 =1

= (ac + bd) Z (sit; + sits) =0

since ac + bd = (¢Y(1 + v),¥(1 + 2v)) = 0. Thus,
W(B) =(B*) = (¥(B))". u

Using the previous proposition, the following result is imme-
diate from the images of 1+v and 1+ 2v under the mappings
’L/Jl and d’g.

COROLLARY 1. If B is a self-dual, then ¢1(B) and ¥2(B)
are both Type III.

Using the fact that B is self-dual if both the associated codes
are self-dual, then we have the following corollary.

COROLLARY 2. If BT and B~ are both self-dual, then
Y1(B) and ¥2(B) are also Type III.

The following theorem considers cyclic codes.
THEOREM 4. If B is cyclic, then ¥ (B) is quasi-cyclic of
order 2.

Proof:

Let z = (z1,22,...,2Zn) where x; = $;v1 + t;v2. Since
B is cyclic, then o(z) = (Zn,21,...,2n-1) € B.

Hence,

Y(o(r)) = (8n, 81,1 8n—1,tn,t1, ..., tn—1)

= (0(s),0(t)) = p(¥(2)) € Y(B).
Thus, ¥(B) is quasi-cyclic of order 2. [ |

We also have the following results.



PROPOSITION 3. Let x = avi+bva € Rs. Then, ¥p = b
if and only if Ve € R3, zx = bu1r + ave.

Proof:
Let © = (z1,22,...,2n) € R% where z; = asv1 +

biva,1 < i < n. Also, let z € R3 such that zz; =
a;v2 + bjv1. Thus,

Y(px) = Y(2an, T, Tn-1)
= (bn7a17a27' .. 7an7b17b27~~~7bn71)
=o(¥(z))

It is worth noting that under v1, if z € R3 is a unit or equal
to 2 + 2v, then the statement above holds.

THEOREM 5. The ternary image of a linear z-cyclic code
C is a linear cyclic code if v1 and v are units in Rs.

Proof:

Since v; and w2 are units in Rs, then there exists z
such that zv1 = v2 and zv2 = v1 Let C be a z-cyclic
code over R3. Then, by Proposition 3, for all ¢ € C,
a(¥(c)) = ¥(p(c)) € Y(C). Hence, ¥(C) is cyclic MW

6. EXAMPLES

For the following examples, we consider the mapping v with
respect to the basis {1,v}. We created a M AG M A® routine
to compute for the distances of the following codes. We
denote by di and § the Hamming distances of the Rs- code
and image code respectively.

EXAMPLE 1. The rate-2/4 systematic linear block code B
over R3 with generator matrix
1420
2v

1 0 v
0 1 2+2v

has dag = 2. Then, ¥(B) is a rate-4/8 ternary linear block
code generated by

100 0 0 1 1 2
01001021
00102 2 0 2
00012 2 20

with minimum Hamming distance § = 4 and |B| = |(B)|
81.

EXAMPLE 2. The rate-2/4 systematic self-dual linear block
code B over Rs with generator matrix

1 0 2v 2v

01 v 20
has dir = 3. Its image ¥(B) is a rate-4/8 systematic self-
dual ternary linear block code generated by

1000 0 2 0 2
010020 20
0010010 2
000110 20

37

with 6 = 3 and |B| = [v(B)| = 81.

EXAMPLE 3. The rate-2/4 linear block code over Rs gen-
erated by

- 1+w 1 2+2v 1+20
“\14+2v 1+vw 1 2+ 2v

is cyclic with dg = 2.
Its image under 11 is a rate-4/8 quasi-cyclic ternary linear
code of order 2 generated by

100001 11
G, _|01t00 1011
17100101120

0001110 2

with § =4 and |B| = |¢(B)| = 81.
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