An active set method in total variation based image
inpainting

Marrick Neri and Esmeraldo Ronnie Rey Zara

Institute of Mathematics
University of the Philippines
Diliman, Quezon City

{marrick, errszara }@math.upd.edu.ph

ABSTRACT

In this paper, we propose a semismooth active set method
to image inpainting. The method exploits primal and dual
features of a proposed regularized L? total variation model.
The model and the solution method is based on the work
of Hintermueller and Stadler in [8]. Numerical results show
that the method is fast and efficient in inpainting sufficiently
thin domains. We show that the method works comparably
well in relation to the recent split Bregman method.

1. INTRODUCTION

One of the aspects of image processing is inpainting. This
is the process of filling-in removed, damaged, or unwanted
regions in images. Image inpainting is synonymous with im-
age interpolation wherein continuously defined data is con-
structed on a region in such a way that the region blends
well with surrounding features. In [1], Bertalmio et al first
applied inpainting to digital images by using high order
PDE models. Since then, numerous approaches to inpaint-
ing have been developed: variational techniques , wavelet-
based methods, elastica model, isotropic diffusion, etc. See,
e.g., [3, 2, 6, 12]. In [4], Cai, Osher, and Shen presented
a split Bregman approach to solving a variation model for
inpainting, and in [10], a median filter was introduced.

In [5], Chan and Shen developed the following total variation
model that inpaints non-texture type images:

min a/ IVl dx+1/(u—u0)2 de (1)
w€BV(EUD)  Jpup 2/

where the observed image is denoted by wo, E is any fixed
closed domain outside D, and | - | denotes the Euclidean
norm. The image domain E U D is taken to be a square.
The model is closely related to the Rudin, Osher, and Fatemi
(ROF) model for image denoising. Since the TV model is
nondifferentiable, Chan and Shen introduced a global smooth-
ing parameter to the TV term and a steady solution is ob-
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tained using a low pass filter and a Gauss-Jordan iteration
scheme.

A variational model for image reconstruction on a rectangu-
lar image domain 2 with Lipschitz continuous boundary 02
is

1
min H/ |Vu|§—|——/ |Ku—d|2+a/ |[Vula.
weBV(Q) 2 Jq 2 Jq Q

In [8], Hintermueller and Stadler regularized the above model
by local smoothing on the TV term, i.e., by replacing fQ [Vu|
with

1
—|Vul}  if |[Vula <~
F(Vwy =4 2

|Vauls — % if |Vuls > 5

where v > 0. The resulting model is

LM 2 1 2
u’elg‘l/n(mQ/ﬂ|Vu|2+2/§;|Ku d| +a/ﬂ]-"W(Vu). (2)

Further, they developed a semismooth Newton-type method
that solves the resulting regularized version of the TV model
using an active set strategy. The method was shown to
converge superlinearly. In this paper, we used a modified
regularized variational model (2) that is amenable to image
inpainting. The primary change is in the restriction of the

1
fidelity term [ > |u—d|? to the non-inpainting domain £. We
develop an active-set approach to solve the resulting model
and we show that the results of the method compares well

with those of the split Bregman method recently presented
by Goldstein and Osher [11].

2. MODEL

We discretized the image domain £ U D to an n X n pixel-
grid. For ease in computation, we concatenate the columns
of the image matrix u to an image vector v € RV, N = n2.
The discrete total variation of v is formulated as
N
TV(v) = > [Vl

=1

I
M=

(Vav)i + (Vyo)} 3)
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where [Vo]; = [(Va0)1, (Vy0)i4n]T. The gradient compo-
nents V. and V, are approximated using forward differ-
ences. The discrete total variation image inpainting model
for (1) is

min TV (v)

vERN

.
+ @) = a Y IVl + 5l oy @
=1

where we define |x|(wy = (/>_,cyy 27 for an index set W.

Let v” be the observed image in stacked form. We propose
the following regularized variation model for inpainting:

N
1
{aﬂ(w) +olo—v"fiay + 5 uwf} (P)
=1

min
vERN
where
)\ N 2 .
oo 2= [Vl if [[Voli] <~
Fo (Vo) =14 27 Nl ! )
ALY (90l = 3) it (Ve = 4
for { = 1,2,...,N. Clearly, model (Py) is convex and is

guaranteed a unique solution. When the inpainting region
D is empty, (P,) reverts to the working model in [8].

The active set method that we implement exploits the primal-
dual features of (P5), whose Fenchel pre-dual is

sup
PERZN,||[p]; [ <X
(Dy)
where
2 ((In — /J,A)ilx,.tﬂ if X = E:',
lolt ={ (@b =0 & X258 o
A is the discrete Laplacian, and div = —V ' is the dis-

cretized divergence (cf. [9]). Note that in (5), the restric-
tion to the specified pixel set indicates that only terms cor-
responding to indices in the pixel set are evaluated.

3. OPTIMALITY CONDITIONS

The solutions to the primal (P,) and dual (D,) problems,
given by ¥, and p, respectively, satisfy the following opti-
mality conditions:

—uATy + 0y, —divp, =0  onE (6)
—uAT, = div i, on D (7)
Yyl = AlVE, i =0 if [[[py]i]] < A 50T
o on FUD
{||[V"7'v]l|| [Py = AVoy e if [][pyl] = A
(8)

forl=1,...,N.

Let & € RN with x; = 1 if pixel-index i € F; 0 otherwise.
We combine equations (6) and (7) as

—uATy, —div iy, + k(0 —0°) =0 (9)
where Kz = D(k), the N x N diagonal matrix.
The optimal conditions in (8) can also be combined as:
max (7, [|[[Voy il ]) [Py]i = AVI[D4]: = 0 (10)

1, .. 1 1, .
{~30aiv o+ " Wey + 5101 s, - b i, |
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for every I = 1,2,...,N. In the next section, we present a
Newton-type solution method based on the optimality con-
ditions presented here.

4. A SEMISMOOTH METHOD

Using equations (9) and (10), we determine a Newton method
that mirrors the active set approach in [8] for image denois-
ing. Results in generalized differentiability and semismooth-
ness (cf. [7]) allow the use of a Newton step to (6),(7), and
(10) at the k-th approximations v* and p* :

—pA+ kg —div O
GV D(m") 5p
k P (k0
_ uAv +d1vkp + HEk( 1} +v ) (11)
AVY® — D(m")p
where
G = —ADLn+Xxa,,,DE")J(VV")
m" = max(yLy,n(Vo")) e R*Y
with the mapping 7 : R?N — R?M given by
(n(v)): = ||vi|| with v € R*N i =1,...,2N
Now, the active set indicator x.a,,, = D(t*) which is a
2N x 2N diagonal matrix with
g [ (V)i >y
T 0 i (V) <y

determines whether a component is part of the active set
Ak+1, by setting t; = 1, or not. The matrix J is the Jacobian
of n, that is

D(Vyv)

5v0) = 0awo)™ (g D))

D(Vyv)

With all components of m* > 0, this means that the diago-
nal matrix D(m") is invertible. We obtain 8, and §, as

6y = ADTH(mM) Vot —p* — DTHmF)ave,  (12)
and
Hydw = f (13)
with
Hy, = —pA + kjp + div D~ (mF)GV

fe = pAv* + div ADH(m*)VoF + k5 (—vk + vo) .

Whenever H} is not positive definite, we use the modifica-
tions in [8] to get the positive definite matrix H;f .

We propose the following active set method for inpainting:
Algorithm: Active Set Method

1. Set k = 0 and initialize (v°,p°) € RY x R?V.



2. Determine the members of the active set by solving
2N x2N
XA, € R .

3. Compute H if p® is not feasible for alli =1,..., N.
Otherwise set H;" = Hy.

4. Solve for §, in H,;"&U = fr and compute 6p.
5. Update v**! = v* 4 6, and p**! = p* +4,,.

6. Stop, or set k:= k+ 1 and go to step 2.

We note that the proposed method for inpainting is analo-
gous to that in [8] for denoising. Numerical implementations
of the algorithm are presented next.

5. NUMERICS

The algorithm is implemented in MATLAB R2011a on a
machine with a speed of 3.40 GHz and with 8 GB of RAM.
Our test images are square grayscale images which are nearly
noise-free and blur-free degraded only by thin lines and text
which are the inpainting domains. The goal of inpainting
is to reconstruct the inpainting domain by using the image
information surrounding these domains.

O
e

(a) Original Image

Figure 1: Image Example 1

There is no ideal value for =; however, the smaller = is,
the better the observed inpainting and restoration of edges.
With this, we set v = 10™*. The value of « is set to 0.01. In
assessing the performance of our method, we shall use the
Split Bregman method which splits problem (4) into sub-
problems in order to find its minimizer. This is an efficient
method capable of remarkable results in the least amount of
time. Refer to [11] for the discussion of the method and [13]
for its implementation.

Our first image sample is a 300 x 300 image (figure 1(a)).
The image masked with thin lines (about 2 to 4 pixels wide)
is figure 2(a). The mask is user-defined and is created us-
ing an image editing software. The benchmark method ob-
tained the result shown in figure 2(b) after 23 iterations in
0.87 seconds with a residual of 7.471. The result obtained
using the active set method is shown in figure 2(c). This
result is obtained at 2 iterations, with a time of 2.9 sec-
onds. The method converged in 14 iterations with a residual
of 4.699. Convergence is determined once the norm of the
vector composed of the left-hand-sides of optimality condi-
tions (9) and (10) has sufficiently decreased from its initial
value. The residual of the proposed method is lower than
that of the benchmark method. On closer inspection of the
reconstructed images, one can see that the active set method
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did a better job of inpainting the lines. In particular, the
criss-crossed lines in the square are still evident in the split
Bregman result whereas these were completely inpainted in
the active set result. There also appears a lightening of the
colors in the split Bregman than in the active set method.

The second masked image has text to be inpainted (figure

3(a)).

Using the Split Bregman method, the inpainted image 3(b)
is acquired at 20 iteration for 0.7 seconds with a residue of
3.860. The reconstruction by the active set method is given
in figure 3(c) is obtained in 2 iterations and 2.8 seconds.
The method converged after 12 iterations in 21.3 seconds
incurring a residue of 2.503. Again, upon inspection, the
active set method did a better inpainting job, specifically in
the donut shape.

The second image example is a 300 x 300 grayscale image
(figure 4(a)). Thin lines constitute the inpainting domain.
The reconstruction using the active set method effectively
removed the lines in 9 iterations with a time of 14.3 seconds
and residue of 5.527. The split bregman method took 26 iter-
ations in 0.89 seconds to obtain the figure 4(c) with a residue
of 5.704. The reconstruction of the active set method fared
well with the split Bregman. However, the band effect of
the variational model is more evident in this reconstruction
than with the other method.

6. CONCLUSION

We presented a variation model for image inpainting and a
semismooth primal-dual active set method to solve it. Our
numerical experiments show that the method is very effec-
tive in providing good reconstructions. Also, the method is
at par if not better with known methods such as the split
bregman method, though, the proposed method do have
some drawbacks concerning with its runtime. The algorithm
is applicable for filling in small domains in non-texture based
images.
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(a) Image with Lines

°H

(b) Split Bregman Method

°H

(c) Active Set Method

Figure 2: Inpainting lines
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(a) Image with Text

°H

(b) Split Bregman Method

°H

(c) Active Set Method

Figure 3: Inpainting text

(d) Active Set Method

Figure 4: Image Example 3
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