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ABSTRACT

Let Fpm denote the finite field with p™ elements where p is
a prime. In this paper, linear block codes over F,m are con-
sidered as images of linear block codes over the finite chain
ring R(p™,r) = Fpm +ulpm 4+ -+ 0" 'Fpym, where u” = 0
and m,r € N. An Fym-linear map is defined from R(p™,r)"
to F,m . Bounds on the minimum Hamming distance of the
resultant codes are derived. These bounds largely depend on
the minimum Hamming distance of the linear block code, the
average value of the homogeneous weight on the residue field
F,m and the nilpotency index of the ring. A code meeting
these bounds whose image is the extended binary Hamming
code of order 3 is also given.
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1. INTRODUCTION

Bachoc in [7] used linear block codes over IF;, + ulF, in the
construction of modular lattices. This work motivated the
study of linear block codes over finite chain rings of the
form F,m + uIF‘pm,u2 = 0. In particular, the ring Fy +
uFy = {0,1,u,1 + u},u® = 0 is of special interest since it is
additively analogous to [F4 and multiplicatively analogous to
Zs. The properties of linear block code over this ring were
studied in papers such as [1],[8],[11],[20] and [23]. Optimal
codes, that is, codes that has the maximal minimum distance
for a given length and dimension, were obtained in [14] and
[15]. Many of the results concerning these rings have been
extended over the finite commutative chain rings of the form
R(p™,r) ([21-16],91-[10].[16}-[17] and [21)).

A code of length n over the Galois field F,=~ induces a code
of length nm over the base field F,, by using a basis of F;,m
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over F,. This construction was used in [22] and an upper
bound on the minimum Hamming distance of the p™-ary
image was derived. In [24], a similar construction was used
to construct codes over Z,= from codes over the Galois ring
GR(p",m). Bounds on the minimum homogeneous distance
of the p"-ary image were then derived.

In this work, we consider linear block codes over the finite
chain ring Fpm + uFpm + --- + u™ 'Fpm with «” = 0 to
construct linear block codes over Fpm using a basis of Fpm +
uFpm 4 - 4+ 4" "'Fpm over Fpm. Bounds on the minimum
Hamming distance of the image codes are derived.

The material is organized as follows. A discussion on the
preliminary concepts is given in Section 2. In Section 3,
bounds on the minimum Hamming distance of the p™-ary
images of linear block codes over R(p™,r) are presented. A
code meeting these bounds is given in the last section.

2. PRELIMINARIES AND DEFINITIONS

2.1 Linear Block Codes over I, + ulF,m +
¢t + ur_le7rz,
Let p be prime and m,r € N. The ring Fpm + uFpm + -+
u" " Fpm,u” = 0, which we shall denote here by R(p™,r) is
a finite chain ring of length r with maximal ideal (u) and
residue field Fpm . Any element a of R(p™,r) can be written
uniquely as
a=a1 +au+-Fau"", a € Fpm.
The ideals of R(p™,r) are R(p™,7), (u), (v?),..., (u") which
are linearly ordered by set inclusion as shown below.
(0)C () € C (1) C (w) C R(P™, 7).

The cardinality of the ideal (u) is p" Y §=0,1,2,...,7.
The nilpotent elements of R(p™,r) are the elements of (u)
and its units are the elements of R(p™,r) \ (u). It is easy to

show that R(p™,r) isomorphic to the quotient ring Fpm [z]/(z").

Also, the said ring can be shown to be isomorphic to the ring
of all » x r matrices (a;;) where a;41 41 = ai;, whenever
i < j and zero elsewhere, and a;; € Fpm for all 7, j through



the map
ay a2 as Ay
, 0 a1 a2 ar—1
i—1
§ :aiut — 0 0 al QAr—2
i=1 : : :
0o 0 O a1

In addition, R(p™,r) is a Frobenius ring with generating

20,70

character x : R(p™,r) — T, x <Z aiui_1> =e ¥
=1

T is the multiplicative group of unit complex numbers.

, where

Further, the said ring is a vector space over F,m with di-
mension r. A basis of R(p™,r) over Fpm is given by the
set

,uT_l}.

A linear block code of length n over R(p™,r) is an R(p™,r)-
submodule of R(p™,r)". It was shown in [19] that any linear
block code over a finite chain ring has a unique form of gener-
ating matrix. In particular, linear block codes over R(p™, )
have generator matrices which after a suitable permutation
of the coordinates can be written in the form

{1,u,u2,...

Ine Aor Ao Aor—1 Ao r
0 UIkl uAio UAl,r—l UAI,T
0 0wl u? Az 1 A,
0 0 0 TAE N VL PR

Ao

uA1

QLQAQ

/U«T_].Ar—l

where the columns are grouped into blocks of sizes

ko,kl,...,kr_l,”n—k
r—1
with k; > 0 and k = Zk’ Moreover, |C| = p™" where
i=0

r—1

t= Z(r —14)k;. A linear block code over R(p™,r) is free if
1=0
and only if k = ko [18].

In [13], a homogeneous weight wy, on arbitrary chain rings
is defined. We provide here the case of R(p™,r). The ho-
mogeneous weight on R(p™,r) with I' = (p™ — 1)pm(r_2) is
given by

(pm —1)pmr2
wp(x) = ¢ pmrY
0

if € R\ (u" %)
ifxe (u 1)\ {0}.
otherwise

We extend this to a (homogeneous) weight function in R(p™,r)™:
n

if x = (z1,22,...,2,) then wy(z) = th(mi). Also, we
i=1
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equip a linear block code over R(p™, r) with the usual Ham-
ming metric which we shall denote by wr. The homoge-
neous (resp. Hamming) distance between any distinct vec-
tors z,y € R(p™,r)", denoted by dy(z,y) (resp. du(z,y)),
is defined as wn(x — y) (resp. wr(x —y)). We will denote
the minimum homogeneous (resp. Hamming) distance of a
linear block code over R(p™,r) by dp (resp. dm).

The following bound given in [12], referred to as the Plotkin
bound, gives an upperbound on the minimum homogeneous
distance of a code over finite Frobenius rings.

THEOREM 2.1. (M. Greferath and M. E. O’Sullivan, [12]).
Let R be a finite Frobenius ring that is equipped with a ho-
mogeneous weight w of average value I'. Let C' be a (not
necessarily linear) block code of length n over R with mini-
mum w-distance dmin. Then

I'n.
=le-1"

(1)
2.2 The p™-ary Images of Linear Block Codes
over R(p™,r)

T
Let Zaiui be an element of R(p™,r), i.e., a; € Fpm and
1=1
the u;’s are distinct elements of a basis for R(p™,r) . Define
the mapping

b RG™r) = Fjm

a1u1 + agu2 + - - - + arur — (a1, a2, ..., ar)

We now extend ¢ to R(p™,r)" coordinate-wise. Suppose
c=(c1,c2,...,cn) € R(p™,7)" and ¢; = a1, u1+az, uz+- -+
ar;ur. Then, ¢¥(c) = (a1,,a2,, .. 1,502, Or, )-
It is easy to show that v is an F,m-module isomorphism.

sy lrysy e

THEOREM 2.2. If B is a linear block code over R(p™,r)
of length n, then ¥(B) = {¢(c)|c € B} is a linear block code
over Fpm with length rn. Moreover, if B is free with rank k,
then (B) is free with rank rk.

Proof. First we show that for every ¢ € B,¢(c) € Fym. Let
c=(c1,c2,...,cn) € B. Y(c;) € Fpm forany j =1,2,...,n.
Thus, ¥(c) € Fpm.

Next we show that ¢(B) is a subspace of Fym. Let y,11 €
(B) and s € Fpm. Then there exist z,z; € B such that
y=1v(z) and y1 = (x1). Now, y + sy1 = ¢(z) + syp(21) =
Y(x + sz1) since ¢ is a group homomorphism. Moreover,
y + sy1 € Y(B) since z + sx1 € B whenever z,z1 € B.

Thus, ¥(B) is a subspace of Fyi.
code over Fpm of length rn.

i.e., ¥(B) is a linear block

Suppose that B is free with a k-dimensional basis with ele-
ments b;,1 = 1,2,...,k. Then every x € B can be written
as

x = $1b1 + s2b2 + - - - + Skby

r—1
where s; = Zaiui € R(P™,r),i=1,2,... k.
i=0



Now,

r—1 r—1

x = aru’ | b+ E az,iu’
i—0 i=0
-1

7
ajiu bj.

r—1
> ba+---+ (Z ariu’

=0

)o

-3

j=1l4

aJZwa)

I\
<}

That is, B = {3(u'b;)|i = 0,1,...
spanning set of 1(B).

,r—1,5=1,2,...,k}isa

Since v is injective, 1(x) = 0 if and only if z = 0. So,

k r—1
o (3 S mestu)
j=1i=0
the elements of B are linearly independent.

) = 0 if and only if a;,; = 0, that is,

Thus, B is an rk-dimensional basis for ¢(B).m

3. DISTANCE BOUNDS

A simple way to measure the goodness of a code is through its
minimum distance. A code over a finite field is able to cor-
rect at most L‘s—;lj errors where § is its minimum distance.
Hence, we are interested with upper bounds of the minimum
Hamming distance of the images of the linear block codes
over R(p™,r). The simplest of these bounds is similar to
the Singleton Bound for fields which gives an upper bound
for the size of a code in terms of its rate and the size of the
alphabet used. For the succeeding discussions, we let B be
a rate-k/n linear block code over R(p™,r). Also, we denote
by ¢ the minimum Hamming distance of P(B).

THEOREM 3.3. (Singleton-type Bound) Let B be free. Then,

we have

d<r(n—k)+1 (2)

Proof. If B is a free rate-k/n linear block code over R(p™, 1),
then ¥(B) is a free rate-rk/rn linear block code over Fpym.
Applying the Singleton bound for codes over fields, inequal-
ity (2) holds. @

THEOREM 3.4. (Plotkin-type Bound) If B is systematic,
then

pm(7k 1)
< |- .
5< |7 = 1) Q

Proof. Recall that the residue field of R(p™,r) is Fpm. Since
B is free rate-k/n, (B) is free rate-rk/rn. So, |¢(B)| =
p™k . Also, the Hamming weight on Fp» is homogeneous

with ' = 22 o7 - Thus, inequality (3) holds. m

The next bound for the minimum Hamming distance of the
image of B is in terms of the average homogeneous weight
I" on Fpm and the minimum Hamming distance of B.
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THEOREM 3.5. (Rains-type Bound) For a code B, we have

(4)

du <0 <rdu.

Proof. Note that ¢ is bounded above by rn. If for every
z € B, wu(z) = du then ¢ < rdy. Now, ¢ is bounded
below by dm since 1 is the minimum nonzero value of the
Hamming weight on F,m. Thus, inequality (4) holds. m

The next bound requires the concept of subcodes introduced
by V. Sison and P. Solé in [24]. Let B be a linear block
code over a ring R. Then the subcode of B generated by the
codeword x € B, denoted by By, is the set {az|la € R}. A
generalization of the Rabizzoni bound was derived in [24]
using the concept of subcodes. Here we prove a parallel
bound for linear codes over R. The proof presented here is
based on the proof in [24].

THEOREM 3.6. Let x € B,x # 0. The subcode B, is free
if and only if |Bz| =

Proof. (=) Let B, be free then the equation ax = 0 has
only the trivial solution @ = 0. In particular, (a — b)z = 0
which infers that a = b. Hence, a # b implies ax # bx.
Thus, |Bz| =p™".

(<) Let |B| =p™". Then for any nonzero a and b, ax # bz
provided a # b . In other words, a = b if (a — b)z = 0. But
x generates B, by definition. So, B, is free. m

THEOREM 3.7. (Rabizzoni-type Bound) Let x be a mini-
mum Hamming weight codeword, i.e., wi(x) = dg. Then

5< LBf—w_'lp — 1rdHJ . 5)

Moreover, if B, is free, then
p7"(7"—1) m X
5< | L~ rda . ©

Proof. Let x be a minimum-weight codeword in B, that is,
wp(z) = dg and consider the subcode B, = {az|a € R} of
B generated by x. Let 6. denote the minimum Hamming
distance of ¥(B.).

The minimum Hamming distance of B, is still dg since B
is a subcode of B. Also, ¥(Bz) is a subcode of ¢(B) with
0 < ;. The effective length of ¢(B;) is rdi coming from
the dg nonzero positions in z. Applying Theorem (2.1).
results to

_[Bz| pm—1
SBl-1 pm

Thus, inequality (5) holds.

0 < 0 rdm.

By Theorem 3.6, inequality (6) follows. m

4. EXAMPLE



Consider the free rate-2/4 cyclic code B over Fy + ulF2 with

generator matrix
1 0 1 u
01 u 1)°

The codewords of B are (0,0,0,0), (0,1, u,1),(0,u,0,u), (0, 1+

u, u, 1 + u)7 (170) 17“’)7 (17 17 1 + u, 1 + U), (1,'(1,, 170)7 (17 1 +
Uu, 1+ U, 1)’ (’LL, 07“7 0)7 (U, ]-aOa 1)7 (’LL, U, U, ’LL), (ua 1+ U, 07 1+
w), (1+u,0,1+u,u), (14+u,1,1,1+u), (1+u,u, 1+u,0), (1+
u, 1+wu, 1,1) with homogeneous distances 0 and 4. Also, the
code is self-dual. Thus, the code is a Type II code in terms of
the homogeneous weight. The minimum Hamming distance
of Bis dyg = 2.

Using the basis {1,1 + u} of F2 + uF2 over Fa, the binary
image has minimum Hamming distance 6 = 4 and is also
a Type II code. Moreover, the image is equivalent to the
extended binary Hamming Code of order 3.

In the table below, we can see that 6 meets the upper bound
of all distance bounds except for the Singleton-type bound.

Table 1: Comparison of bounds for ¢

Singleton-type 6<5
Plotkin-type | 6 <4 = [4.26]
Rains-type 1<6<4

Rabizzoni-type §<4

Notice that the minimum-weight codeword in B are (0, u, 0, u)
and (u,0,u,0). Thus, B, is not free and |B| = 2.
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