A Computer Search Algorithm for Optimum Free Distance
Binary Convolutional Codes’

Herbert S. Palines, Virgilio P. Sison

Institute of Mathematical Sciences and Physics
University of the Philippines Los Bafios
College, Laguna 4031, Philippines

{hspalines, vpsison}@uplb.edu.ph

ABSTRACT

A computer search algorithm for optimum free distance (OFD)

binary convolutional codes is presented. The algorithm ob-
tains polynomial encoders for rate-1/2 and rate-2/4 OFD
binary convolutional codes. For rate-1/2 OFD binary con-
volutional codes, the search is done for memory 1, 2, 3, 4 and
5 and having Hamming free distances dfree equal to 4,5,6,7
and 8, respectively. Minimal-basic encoders are also derived.
The encoders for rate-2/4 OFD binary convolutional codes
have memory 2 and df..c = 8 and all are minimal-basic.
The resulting codes meet the Griesmer’s upper bound on
the free distance.
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1. INTRODUCTION

The existing digital communication systems such as digital
imaging, radio and mobile communications, and deep space
telecommunications, utilize error correcting block codes and
convolutional codes to achieve efficient and reliable data
transmission. Most of the time, these codes have optimum
distances. For convolutional codes, it is well known that the
free distance is the main parameter for the decoding error es-
pecially when Viterbi decoding [13] and sequential decoding
[2] are used. In constructing optimum free distance (OFD)
or optimum distance property (ODP) convolutional codes,
a computer search is usually employed (see for example [3],
], [6], [7], [10], [1], [9], and [8]).

The main objective in a computer search is to find for rel-
atively superior convolutional codes of various rates based
on the specified criteria, usually, the free distance and the
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distance profile of the code. In searching for OFD convolu-
tional codes, the goal is to find for codes with maximum free
distance among the codes with the same rate and memory.
However, for ODP codes, the distance profile is the major
concern of the search. It has been reported in [4] that an
exhaustive search becomes practically impossible even for
small constraint lengths. Therefore, methods are needed to
limit the search for good codes. For instance in [4], rate-2/3
and 3/4 OFD minimal codes were obtained by utilizing the
critical terminated code, the parity check matrix of the code
and the minimality of the code. In [10], the search for rate-
1/2 binary convolutional codes was simplified by considering
a smaller ensemble of systematic ODP encoders. The result
in [1] uses a fast algorithm in searching a tree (FAST) to
compute for the distance spectrum parameters and to find
for ODP or OFD rate-1/2 binary convolutional codes. A
different strategy was used in [9] where an OFD rate-1/2
convolutional code over the ring of integers modulo 4 where
constructed initially then Gray mapped it to a binary trel-
lis code which was found to be an OFD code. In the same
paper, OFD rate-2/4 binary convolutional codes were also
found.

It must be noted that the proposed algorithm in this study is
different from the papers mentioned above. Mainly because
we focus only on searching OFD convolutional codes. More-
over, the proposed search exclusively uses the most common
distance measures for convolutional codes, the column dis-
tance and row distance introduced by Costello [3]. In this
manner, this algorithm has a potential to be more algebraic
in nature.

The material is organized as follows. Section 2 introduces
the definition of binary linear block codes and binary con-
volutional codes and its distance measures. The reader is
referred to [11] for a more detailed discussion. Section 3
presents the algorithm used to construct the OFD rate-1/2
and rate-2/4 binary convolutional codes. Examples of OFD
rate-1/2 and rate-2/4 binary convolutional codes are given
in Section 4. The computer program is created using the
computer algebra MAGMA® on a personal computer (Acer
Veriton 7200, Intel® 1.6GHz, SDRAM 2GB). In Section 5,
the summary and some remarks are stated.

2. PRELIMINARIES AND DEFINITIONS



A rate-k/n binary linear block code B of length n is a k-
dimensional subspace of Fy, where F2 is the Galois field of
order 2. The code B is completely determined by a full
rank k X nm matrix G also known as the generator matrix
or encoder of B. The rows of G constitute a set of linearly
independent vectors in F3 that span B. Consequently, the
encoding map 7 given by

n:F; —Fy

u+— v =uG

is injective, where w is an information word encoded by G
as the codeword v. The code B is said to be systematic if it
is encoded by a systematic encoder G = (I A) where I
is the k x k identity matrix and A is a k X (n — k) matrix
over Fs.

A binary linear code can be equipped by the Hamming
weight function wg to determine its minimum distance. It is
known that the minimum distance of a code is the main pa-
rameter that dictates its error detecting and error correcting
capability. The Hamming weight of a codeword v € B, de-
noted by wg (v), is the number of nonzero symbols in v. The
distance between any two codewords v’,v” € B is computed
as wg (v’ —v”). Equivalently, it is the number of coordinates
in which v" and v” differ. The minimum Hamming distance
d of the code B is the smallest possible nonzero distance be-
tween any two codewords in B. Since B is linear, d is also
given by

d= min {wn(v)}

ve B, v#0

A rate-k/n binary convolutional encoder can be regarded as
a linear mapping whose inputs (information sequence) are
of the form

U =" ""U-2U-1UULU2 ",

where each block u; has k symbols, that is,
uy = (ug_n u;z) ugk)) ,

and u?) € Fo, for ¢ = 1,2,--- , k. Each k-ary information
block u; is accepted by the encoder at a given time instant
j and an n-ary code block v; is produced. Each code block

v; is given by
(n)
v ) )

and ’u](-i) € o, for ¢ = 1,2,--- ,n. Thus, the corresponding
output, called as the code sequence or simply codeword, for
an information sequence v is given by

vj = (vj(l) vj(.Q)

V=" "0V-2V0-100V10V2 """ .

The sequences u and v must start at some finite time, usually
at j = 0, and may or may not end.

The main difference of a convolutional encoder from a block
encoder is that the j-th code block v; depends not only on
the current information block u;, but also on the earlier, say
m, fixed number of information blocks wj_1,u;j—2, - , Uj—m.
It is often convenient to express v; as

v; = u;Go+uj—1G1+ -+ Uj—mGm,
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where G;(s) are k X n binary generator submatrices. More-
over, we can derive the code sequence v via

S U_2U_1VeUIV2 - - = (- u—gu_1uouru2 -+ ) G
or
v =uG
where
Go Gi1 ... Gm
a— Go Gi Gm (1)

is a semi-infinite matrix and the blank spaces in G are as-
sumed to be filled with zeros.

In this paper, we consider a feedback-free convolutional en-
coder. That is, a causal information sequence, .i.e. u; =0
for all j < 0, given by

U = uouiruz - ,
is encoded as a causal code sequence
UV = VoUV1vV2 - - .

Another convenient way of writing these sequences is through
the delay operator D or D-transforms:

u(D) = uo +u1D 4 uagD*- -
and
U(D)=’U0+’U1D+’U2D2~~~ .

Note that (D) and v(D) belong to F2[[D]], the ring of for-
mal power series over Fo. Moreover, if we limit the given
sequences to be causal and finite, u(D) and v(D) become
polynomials of some degree. Clearly, the ring of polynomi-
als F2[D] is contained in F2[[D]]. The polynomial generator
matrix (encoder) G(D) for the code is given by

G(D)=Go+G1D+---+ G, D™.

In general, u(D) and v(D) are elements of the field of Lau-
rent series F2((D)). In [5], a rate-k/n binary convolutional
code C is a k-dimensional F2((D))-subspace of Fo((D))". In
this paper, we consider a rate-k/n binary convolutional code
as a Fa(D)-subspace of F2(D)™ with dimension k, where
F2(D) is the field of rational functions over Fo. Thus, the
encoder G(D) is a matrix with entries coming from Fa(D).
Now, the encoding can be summarized as

v(D) = u(D)G(D)

where G(D) is a matrix over Fo(D). Henceforth, it should
be understood that a codeword v(D) is also treated as a
code sequence.

‘We now consider some structural properties of an encoder
G(D) of a rate-k/n binary convolutional code. We say that
G(D) is basic if it is polynomial and has a polynomial right
inverse. Equivalently, G(D) is basic if all of its k X k mi-
nors are relatively prime [12]. The i-th constraint length of
a polynomial encoder G(D), denoted by v;, is defined to be



the maximum among the degrees of the component poly-

nomials of the i-th row of G(D). The overall constraint
k

length of G(D) is given by v = Z vi. An encoder G(D) is
=1
minimal-basic if it is basic and the overall constraint length
v is minimal over all equivalent basic encoders. A binary
convolutional code is systematic if it is encoded by a sys-
tematic encoder G(D) = (I, A(D)) where I is the k x k
identity matrix and A(D) is a kx (n — k) matrix over F2(D).
Two encoders are equivalent if they generate the same code.

Before we discuss distance measures of a convolutional code,
we introduce first the Hamming weight of a causal and finite
code sequence. The Hamming weight of the sequence v =
vou1 . . . vj, denoted by wg (v), is the number of nonzero sym-
bols in v. Similarly, if v(D) = (v1(D) wa(D) v (D))
is a polynomial codeword, the Hamming weight of v(D) is
the sum of the numbers of nonzero coefficients of polyno-
mials v;(D), for i = 1,2,...,n. Because of the linearity of
convolutional codes, the free distance dfyee of a code C is
given by

{wn (v(D))}.

dfree = min
k v(D)EC,v(D)£0
An important upper bound on the free distance of a rate-k/n
binary convolutional code of memory m is the Griesmer’s
bound which states that the inequality

kil
free .

j=0

is satisfied for s = 1,2,--- . Table 1 gives the upper bounds

on free distances of rate-1/2 and rate-2/4 binary convolu-

tional codes of memory m = 0 up to 14.

Table 1: Griesmer’s bounds for rate-1/2 and rate-2/4
binary convolutional codes.

m 0 1 2 3 4 5 6 7
rate-1/2 || 2 4 5 6 7 8 10 10
rate-2/4 ] 2 5 8 10 12 14 16 18

m 8 90 10 11 12 13 14
[rate-1/2 [12 12 14 15 16 16 18 |

We are now ready to discuss the fundamental distance mea-
sures of convolutional codes. The main reference of the fol-
lowing discussion is [11]. Let C be a rate-k/n binary convo-
lutional code with a polynomial encoder G(D) of memory
m. Moreover, we let u(D) and v(D) be the polynomial infor-
mation word and the encoded codeword, respectively. Note
that we can express u(D) and v(D) as u = wouiUs ... Uy
and v = voviv2 ... vy, respectively, for some positive inte-
gers t' and t”. We further consider the following notation
for a finite and causal sequence = given by

m[O,t] = ZToxX1x2 ...,
for some positive integer t.
The j-th order column distance dj of the generator matrix

G(D) is the minimum Hamming distance between two en-
coded sequences v|o, ;) resulting from the causal information

sequences ujg,;) with differing uo. Since C is linear, it follows
that dj is also the minimum of the Hamming weights of the
paths vjg ;) resulted from causal information sequences with
uo # 0. Thus, we have

dj = min{ws (vo,;1)}- @
uQ

Consider a polynomial encoder G(D) with a semi-infinite
matrix G given in (1), we truncate G after j + 1 columns
and we denote the resulting matrix by Gj, that is

Go Gi Gy ... Gj
Go Gy Gy

G5 = G G (3)
Go

where G; = 0 when i > m. Consequently, (2) can be rewrit-
ten as

d; = min{ws (up;G5)}-

The column distance is an encoder property and not a code
property. To this effect, we define an encoding matrix G(D)
such that G(0) is of full rank. By doing this, we can say that
the column distance is invariant over the class of equivalent
encoding matrices. Thus, the j-th order column distance of
C is the j-th column distance of any encoding matrix of C.

It is reported in [11] that the column distances of an encod-
ing matrix satisfy the following conditions:

(ii) the sequence dg,ds,ds,. .. is bounded above; and

(iii) dj becomes stationary as j increases.

In other words, dj is a non-decreasing function of j. Thus,
we have

ds, = Jlirgc d;.
Using the above result, it can be shown that
dfree = doe.
Therefore, the column distances given by
do <di <d5 <...<dg

will eventually give the value of dfre.. However it is much
practical, even though possibly hard, to determine at what
particular value of j this sequence becomes stationary.

We now introduce the row distances of a code. From a
computational point of view, the j-th order row distance
d; of a polynomial encoder G(D) is given by

d;z min {’wH (U[07j]G;)}, (4)
ufp, 5170
where
Go G1 ... Gpn
Go Gy ... Gp
Gy = (5)
Go Gi ... Gpn



derived in (1) by truncating G at its first j + 1 rows.

The row distances of a generator matrix G(D) satisfy the
following conditions:

() diy <dj,j=0,1,...;
(i) dj >0,57=0,1,...; and

(ili) d} becomes stationary as j increases.

It follows that the row distances of a code is a non-increasing
function of j. The j-th row distance of G(D) is also given
by

dj = dn(Gj),

where dmir (G;) is the minimum Hamming distance of the
linear block code generated by G7.

The following are given in [11]:

0<dy<di<d;<...<do<di<...<dy<di<dp
(6)
and if G(D) is basic (or non-catastrophic (see [11] or [12])),

d(;o = dfree = dgo (7)

The inequalities in (6) and the equation in (7) play the main
role in creating the computer search algorithm presented in
the next section.

3. THE COMPUTER SEARCH ALGORITHM

The main objective of the search is to find for polynomial
encoders G(D) of rate-k/n OFD binary convolutional codes
whose free distances meet the Griesmer’s upper bound. The
idea is to search through the set of all possible k& x n(m + 1)
binary matrices (GU Gy Gm), G s are kxn matrices
and Gy is of full rank, such that the convolutional code gen-
erated by the polynomial encoder G(D) = Go+G1D+-- -+
G D™ is an OFD code. For convenience, we let dg (M)
be the minimum Hamming distance of the linear block code
generated by a matrix M. Moreover, we let d’jl’,';’m be the
Griesmer’s upper bound on the free distance for the rate-k/n
binary convolutional code of memory m.

In general, the algorithm is given by the following steps:

1. Collect in Sp all k x n(m + 1) binary matrices given
by

Mo = (Go Gi Gm)

k,n,m
opt

where G is of full rank, satisfying dg (Mo) = d

2. Each matrix My € Sp is used to form the correspond-
ing k(5 + 1) x n(m + 1) matrix

Go Gi ... Gn
Go G Gm

M; =
Go

Gl G'rn

given in (5), for a chosen value of j.
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3. All matrices Mo € So with corresponding matrices M,
in Step 2 satisfying dm (M;) = d’;,’ftl"m are collected
in Si. Note that |S1]| < |So|. Consequently, the j-th
order row distances (from 0 up to j) of the polynomial
encoder G(D) =Go+G1D+ -+ G, D™ determined
by a given Mo € Si are all equal to d’jz’,';’m. That is,
dp =di =---=dj = dfl’f:’m because of the results
given in (6) and (7).

4. Each matrix Moy € S1 in Step 3 is used to construct
the corresponding k(i + 1) x n(i + 1) binary matrix

Go Gl G2 Gz
Go Gi Gi—1

N; = Go Gi2 ,
Go

given in (3). For all My € S1, save the corresponding
matrices N; in the following manner: Ny in To, Ny in
Ty, N2 in Ty ... N; in T;, where the stopping value of
i is obtained in the last step.

5. Simultaneously with Step 4, increment ¢ starting from
i = 0 and obtain the i-th order column distances dy
using the matrices N; € T;. If there exists L such that

(8)

for some Ny, € Tr, the search ends. All matrices Mo
that corresponds to Ny, satisfying (8) are collected in
So.

c _ gk,nm
L_do;;Jt ’

As a result, the set of polynomial encoders G(D) = Go +
G1D + -+ + G;,,D™ determined by matrices Mo € Sy are
all encoders of rate-k/n OFD binary convolutional codes of
memory m with dfrce = dffﬁ’m since dj = dlf,z’;;‘m = d, for
some positive integers 7 and L.

4. THE RATE-1/2 AND RATE-2/4 OFD BI-
NARY CONVOLUTIONAL CODES

The algorithm given in Section 3 is utilized first to search
for rate-1/2 OFD binary convolutional codes of memory 1 <
m < 5. The results are summarized in Table 2.

Table 2: The number of rate-1/2 OFD convolutional
codes of memory 1 < m < 5 obtained from the search.
[m ][ [So] [IS:] | L | [S2] | Minimal-basic | dyree |

1 12 1 0 1 0 4
2 48 2 5 2 2 5
3 192 16 | 8 2 2 6
4 768 | 156 | 7 2 0 6
5 || 3072 | 168 | 13| 4 4 8

Table 3 gives the minimal-basic encoders obtained in the
search.

It must be noted that the given encoders described in Tables
2 and 3 are not necessarily new. In fact, sufficient studies
on ODP and OFD rate-1/2 convolutional codes of memory
m > 20 have been done already. See for instance [6], [7], [1]
and [8]. However, the encoders obtained using the proposed



Table 3: The 1 x 2 minimal-basic encoders obtained
from the search.

m || Minimal-basic dfree
2 1+D? 1+D+D? 5
1+ D+ D? 1+D2§ 5
3 14+ D?*+D?> 1+ D+ D? 6
1+D+D? 14+D*+ D3 6
5 1+D+D?*+D*+D° 1+D?+D3 3
1+D+D?>*+D*+D° 1+D*+D* 8
1+D+D?*+D% 1+D*+D3+D° 8
1+D+D*+D* 1+D+D*+D*+D°) | 38

algorithm are used to validate the MAGMA® routines that
were created to materialize this search. Thus, the authors
are focusing instead on finding OFD codes of rate 2/4.

In searching for rate-2/4 OFD binary convolutional codes of
memory m = 2, Step 1 of the general algorithm has been
modified. It is basically because of the very large ensemble
of 2 x 12 binary matrices given by

Mo = (Go G Gz),

Gi(s) are 2 x 4 binary matrices, that were used supposedly
as the basis for the 2 x 4 polynomial encoders G(D) = Go +
G1D+GyD?. Instead, the search starts from the set of 2 x 4
binary matrices that will be used to form My. Whereas, we
have the following.

1. Consider the set of all distinct full-rank 2 x 4 binary
matrices G;.

2. From Step 1, save in S all matrices G, such that
du(Gi) = 2.

3. Form the set given by
So = {Mo = (Go G, Gz) |G0,G1,G2 c S}

4. Proceed using the general algorithm discussed in Sec-
tion 3 starting from Step 2.

Table 4 summarizes the results for the search of rate-2/4
OFD binary convolutional codes of memory m = 2. Each
polynomial encoder has the column distances given by
2,3,4,5,6,6,7,8,8,. ...

Table 4: The number of rate-2/4 OFD binary convo-
lutional codes of memory m = 2 obtained from the
search.

[So]
1560

ENR2
186 | 7

|52
52

Minimal-basic
52

The 52 distinct minimal-basic polynomial encoders are found
in Appendix A.
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S. SUMMARY AND REMARKS

Preliminaries and definitions that are relevant in this paper
have been discussed. A computer search algorithm that em-
ploys column distances and row distances of rate-k/n binary
convolutional codes was presented. The algorithm was used
to find for rate-1/2 and rate-2/4 OFD binary convolutional
codes. Rate-1/2 OFD binary convolutional codes of memory
1 < m < 5 were obtained and minimal-basic encoders were
also derived. For rate-2/4 OFD binary convolutional codes
of memory m = 2, the general algorithm has been modified
due to very large ensemble of 2 X 12 binary matrices. There
were 52 distinct minimal-basic 2 X 4 polynomial encoders of
memory m = 2 obtained in the search. The computer pro-
gram was developed using MAGMA® on a personal com-
puter (Acer Veriton 7200, Intel® 1.6GHz, SDRAM 2GB).

Because of the limited computing capacity of personal com-
puters, the authors aim to do some more refinements on
the algorithm to improve the results. The plan is twofold:
(1) obtain a more efficient algorithm, hopefully an algebraic
one, by limiting the search to a much smaller ensemble of
binary matrices that will serve as the building blocks for the
encoders of OFD and ODP binary convolutional codes, and
(2) compare the result of the search to the existing OFD and
ODP codes to determine which of these codes are superior
in terms of a given criteria.
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APPENDIX ,

D2+ D

A. THE 2x4 POLYNOMIAL ENCODERS FOR (

RATE-2/4 OFD BINARY CONVOLUTIONAL .
CODES. (621
(D2 D24+ D D41 D24+D+1
D41 1 D24+ D41 D24+ D <
D2 4+ D
(D2+D D2 D41 D2+D+1>
1 D+1 D24+ D+1 D2 4+ D (
D2 4+ D
<D2 D+1 P24+ D D2+D+1)
D+1 D24+D+1 1 D® 4+ D (ngp
p2 4
(D2 D41 D24 D41 D2+D>
D+1 D24+D+1 D24+ D 1 (D2 D
( 0 D241 D24 D+1 D2+D+1>
D24+ D+1 D D D24+ D+1 ( b
D2 41
( 0 D24+D+1 D241 D2+D+l)
D24+ D41 D D P24+ D41
(D +1
D2
( 0 p24+1 D24 p+1 D2+D+1
D24+ D+1 D D24+ D+1
(D +1
D
( 0 P24+ D+1 D24+ DA1 D2+1>
D24+ D41 D D24+ D41 D (D2+1
D
( 0 D24+ D+1 D2 41 D2+D+1>
D24+ D41 0 D24+ D41 D2 41 <D2+1
D
(D2 D+1 D241 D24+ D+1
D+1 D2 D24+ D41 D2 41 ( L
p24+Dp

( 0 pP2+D+1 D24+ D41 D2 41 )

D24+ D+1 0 D2 +1 D24+ D+1 <D2+1
D
(D2 D+1 D24D+41 D241 )
D+1 D2 D2 41 D24+ D+1 (D2+1
D
( D D241 D2 41 D241 D+1
D2 41 D D24+ D+1 D2 41 ( .
D24+ D
<D2+D 1 D241 D24+ D+1
1 p24+Dp D24D+1 D2 41 (
D2
( D D241 pP2yD41 D241
D2 +1 D D2 +1 D2+ D+1 (
D
(D2+D 1 P24 D+1 D241
1 D24+ D D2 41 D24+ D+1 (
D
(D2 1 D24 D+1 D24+ D+1
D+1 D24+ D41 D2 D2+ D
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1 D24+ D+1 D24+D+41
D24+ D+1 D24+ D D2
D24+ D+1 D241 D24D+1
+1 D2+ D+1 D D
D24+D+1 D24+D+1 D241
+1 D24+ D41 D D
D2 41 D24+ D+1 D24+ D41
+1 D24 D+1 0 D2 41
D2+ D+1 D24+ D41 D2 41
+1 D2 41 0 D2 + D41
D2 41 D24+1 D24 D41
P24+ D41 D D2 41
1 D24+ D41 D+1
D24+ D41 D2 D24 D41
P24+ D+1 D241 D241
D2 41 D D24+ D+1
D2 41 D24+ D+1 D24+D+41
+1 D24+D+1 D2 41 0
D24+ D+1 D2 41 D24+ D+1
+1 D2 41 D24+ D+1 0
+1 D24D+1 D241 o0
1 p2+p+1 D241 D
1 D41 D24+ D+1
D24+D+1 D24+ D+1 D2
D24+ D41 D2 41 D2 41
D2 +1 D24+ D+1 D
D2 D2+ D D24+D+1
D2+D+1 D2+D+1 1
D2 D24+ D+1 p2 4D
D24 D41 1 D24+ D41
0 p24+D+1 D24+ D41
D24+ D+1 D D24+ D+1
D D241 D41 D2 41
D24+ D+1 D D24+ D+1
D2 4+ D D+1 D24+D+1
D24+ D+1 D2 D+1
0 D24+D+1 D24+D+1
P24 D+1 D24 D41 D
D D241 D24+ D41
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