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ABSTRACT

Fibonacci cubes and Lucas cubes have been investigated ex-
tensively in several journal articles [1, 4, 9, 10], with the
Fibonacci cube being introduced to be an alternative to the
well-known hypercube as an interconnection topology for
parallel systems [4].

In this paper, a new graph called the Lucci cube, created by
modifying the definitions of the Fibonacci and Lucas cubes
such that no two 0’s are in the first and last bits of binary
strings simultaneously, is studied. Properties of the Lucci
cube such as structural decomposition, order, size, radius,
center, diameter, and maximum and minimum degrees are
determined. In addition, we discuss the hamiltonicity and
independence numbers of this graph.
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1. INTRODUCTION

This research paper will discuss definitions of Fibonacci string,

Lucas string, Fibonacci cube, Lucas cube, Lucci string, and
Lucci cube. The main objective of this paper is to generate a
formula for the order and size of a Lucci cube, to determine
structural properties such as radius, center, diameter, and
maximum and minimum degrees, and to discuss its hamil-
tonicity, and vertex- and edge-independence.

Basic graph-theoretic terminologies used in this paper are
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adopted from [2].

Definition 1.

1. A graph G is a finite nonempty set of objects called ver-
tices together with a (possibly empty) set of unordered
pairs of distinct vertices of G called edges. The vertex
set of G is denoted by V(G), while the edge set is de-
noted by E(G). The cardinalities |V (G)| and |E(G)|
are called the order and the size of G, respectively.

2. If e = {u,v} is an edge of a graph G, then u and v are
said to be adjacent. The edge is also denoted uwv.

We will also make use of the well-known Fibonacci and Lu-
cas numbers. The nth Fibonacci number F,, and the nth
Lucas number L, are the numbers described by the follow-
ing recurrence relations:
F,=F, o+ F,_1forn>2, where [} = F, =1
L,=Lu, o2+ Ly_1forn>2, where L1 =1 and L2 =3

The first few Fibonacci and Lucas numbers then are as fol-
lows:

(Fo)nso = (1,1,2,3,5,8,13,21,...)
(Ln)nso = (1,3,4,7,11,18,29,47, ..

2. FIBONACCI AND LUCAS CUBES

We present the Fibonacci and Lucas cubes as defined in [10]
and [9] together with some results on these graphs.

Definition 2. [10]

1. A Fibonacci string of length n is a binary string b1bs . . . by,
containing no two consecutive 1’s.



2. The nth Fibonacci cube I',, is the graph defined as
follows:

(a) The vertex set of I', is the set of all Fibonacci
strings of length n.

(b) Two vertices are adjacent in I', if they differ in
exactly one bit.

In Figure 1 are the first five Fibonacci cubes with their cor-
responding orders |V (I'n)].

R V()| =2=F,
T ————o—o V(['y)| =3=F
2 & o . [V(T2)] 4
Ts 001 101 |[V([3)| =5 = Fs
010 000 100
Iy 0010 1010 |[V(T41)| =8 = Fs
0000
0100 1000
0101 0001 1001
01001 01000 01010
Ts |[V([s)| = 13 = Fy
00000
00001 00010
00101
00100
10101
10100
10001 10000 10010

Figure 1: The first five Fibonacci cubes

The Fibonacci cubes are so named because of their orders,
given in the following statement.

THEOREM 1. [4] For every positive integer n, |V (Iy)| =
Frio.

To find the number of edges of ', the following property of
the Fibonacci cube is of much help.

THEOREM 2. [4] The Fibonacci cube I'y can be decom-
posed into two verter-disjoint subgraphs A and B, with A &
T'v—1 and B =2 T'y_2, where for every v € V(B), there is
ezactly one u € V(A) such that wv € E(T'y).

Thus, we have the following theorem, giving a recurrence
relation and an explicit formula for the size f, of T'y,.

THEOREM 3. [4] The size f, of I'y, is given by:

1. fo=fo-1+ fn—2+ Fn, forn>3

TLFn+1 + 2(')’1, + 1)Fn

2. fn=
/ 5

, form > 2

The Lucas cubes have the same adjacency relation as the Fi-
bonacci cubes, but have a stricter condition for membership
in the vertex set.

Definition 8. [9]

1. A Lucas string of length n is a binary string b1b2 ... b,
containing no two consecutive 1’s such that the first
and the last bits are not simultaneously 1.

2. The nth Lucas cube A, is the graph defined as follows:
(a) The vertex set of A, is the set of all Lucas strings

of length n.

(b) Two vertices are adjacent in A, if they differ in
exactly one bit.

In Figure 2 are the first five Lucas cubes with their corre-
sponding orders |V (Ay)|. Similarly, the Lucas cubes are so
named because of their orders.

Ay H V(A =1=1L,
A ——————eo o V(A =3=1L
o1 00 10 IV (A2)] 2
As 001 [V(A3)|=4=Ls
010 000 100
Ay 0010 1010 [V(AL)| =7=La
0000
0100 1000
0101 0001
01001 01000 01010
As [V(A5)| =11 = Ls
00000
00001 00010
00101
00100
10100
10000 10010

Figure 2: The first five Lucas cubes

THEOREM 4. [9] For every positive integer n, |V (Ay)| =
L.
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THEOREM 5. [9] The nth Lucas cube An can be decom-
posed into two verter-disjoint subgraphs A and B, with A =2
In_1 and B = T'y_3, where for every v € V(B), there is
ezactly one uw € V(A) such that uwv € E(Ax).

THEOREM 6. [9] The size l,, of A, is given by:

1.l = fnfl +fn73 + Fn717 fOT n>4
2. lp,=nF,_1, forn>3

3. THE LUCCI CUBE

We define a new graph by modifying the condition for mem-
bership in the vertex set. This time we disallow the first and
last bits to be 0 simultaneously.

Definition 4.

1. A Lucci string of length n is a binary string b1b2 ... b,
containing no two consecutive 1’s such that the first
and the last bits are not simultaneously 0.

2. The nth Lucci cube ¥, is the graph defined as follows:

(a) The vertex set of ¥, is the set of all Lucci strings
of length n.

(b) Two vertices are adjacent in ¢y, if they differ in
exactly one bit.

Shown in Figure 3 are the first 7 Lucci cubes together with
their corresponding orders |V (1,,)|. From these first few
examples, it appears that |V (¢n)| = Fnt1. It will be proved
that this is true indeed for any positive integer n.

3.1 Decomposition, Order, Size

First, we prove a decomposition theorem for the Lucci cube
analogous to Theorems 2 and 5. We adopt the following
notation from [10]. Let o and 3 be binary strings. The
concatenation of « and 3 is denoted by af. If S is a set of
binary strings, let aS8 = {asf | s € S}. Then, letting C,, =
V(T'y), 10C,0 is the vertex set of a graph isomorphic to I'y,
and the vertices are formed by appending 10 to the start
and 0 to the end of each vertex of I',. The corresponding
graph will be denoted 10T,,0.

THEOREM 7. If n > 5, then v, can be decomposed into
three vertex-disjoint subgraphs A, B and C, with A = B =
Tn—3 and C = T'y_4 such that for every w € V(C), there
is exactly one u € V(A) such that uw € E(,) and ezactly
one v € V(B) such that vw € E(¢r).

PROOF. A Lucci string starts with either 0 or 1.

Case 1. Suppose a Lucci string starts with 0. Then, it must
end with a 1, which must be preceded by a 0. Thus, such a
string has the form 0001, where b may be any binary string
of length n — 3 that does not have consecutive 1’s; that is,
b may be any element of C,,_3. Therefore, the subgraph
induced by these vertices is isomorphic to I',,—3.
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P1 . [V(@1)|=1=F
P2 . ° [V(2)| =2=F3
01 10
*——eo——o |4 =3=F
Ye0r 101 100 IV ws)l !
Py ° . . . ° [V (¢4)| =5 =Fs
0101 0001 1001 1000 1010
01001 00001 10001 10000 10010
Y5 [V(¢5)| =8 = Fs
00101 10101 10100
010101 000101 100101 100100
’(/)6 |V(1/)6)| =13 = F7
100010
010001 1000001 100001 [ 100000

001001 101001 101000 101010

Y7 [V(¥7)| =21 = Fy

VAN

Figure 3: The first seven Lucci cubes

Case 2. Suppose a Lucci string starts with 1. Then, the
second bit must be 0, so the string has the form 10b, where
b may be any element of C,_2. Now, b may end with either
Oor 1.

Case 2.1 If the Lucci string ends with 0, then it would have
the form 1060, where b € C,,_3. The subgraph induced by
the vertices in this subcase then is isomorphic to I',,_3.

Case 2.2 If the Lucci string ends with 1, then the second
to the last bit must be 0, yielding 10601, where b € C,,_4.
The subgraph induced by the vertices in this subcase then
is isomorphic to I',_4.

We take A = 0I',_301, B = 10[',,_30 and C' = 10I',,_401.
Note that A and B are not linked by any edge since a vertex
in A will differ in the first and the last bits with a vertex in
B.

Let w € V(C). Then, w = 10b01 for some b € Cy,_4, which is
adjacent to u = 00601 € V(A), and it is clear that any other
vertex in A differs in at least two bits from w. Similarly, the
only vertex in B adjacent to w is v = 10000. [

The decomposition theorem thus gives us an algorithm to
obtain ), for n > 5. For illustrations, see the 5th, 6th
and 7th Lucci cubes in Figure 3. The thickened portions
correspond to A, B and C, and the slim edges are those
that link A and B to C.



The theorem also connotes an attractive geometric symme-
try in the Lucci cube. To demonstrate this symmetry, place
C = 10I',,_401 in the center, between A = OI';,_301 and
B = 10T',_30. Given a binary string b, let b denote the string
obtained by reversing its bits. For every 0001 in V' (A), there
corresponds a vertex 1060 in V(B), and vice-versa. Mean-
while, any edge from A to C must link vertices of the form
00601 and 10601. To this edge corresponds one joining B
to C, namely the edge formed by 10600 and 10601. These
correspondences between V(A) and V(B), and between the
edges from A to C and the edges from B to C establishes ge-
ometric symmetry in 1, for n > 5. Again, this is illustrated
by the 5th, 6th and 7th Lucci cubes in Figure 3. Though the
theorem holds only for n > 5, we see from the same figure
that the Lucci cubes with 1 < n < 4 also possess symmetry.
Thus, geometric symmetry in v, holds for n > 1.

Furthermore, because there are edges that link A and B to

C, the graph is connected when n > 5. The graph is also
connected for n = 3 and 4.

COROLLARY 1. The nth Lucci cube ., is connected for
n > 3.

The decomposition theorem also implies that topologies that
can be embedded in Fibonacci cubes can also be embedded
in the Lucci cube, thus the Lucci cube can be considered as
an interconnection topology for multiprocessor systems.

Another importance of the theorem is its use in obtaining
explicit formulas for the order and the size of the Lucci cube.

THEOREM 8.

1 |V(¥n)| = Faia
2. |E(’L/)n)| = anfg + fn74 + 2F,_o fOT‘ n>5

(n+4)F, +2(n—5)F,_1
5

3 |EWn)| = forn =2

PRrOOF.

By the decomposition of the Lucci cube, if n > 5, then

|V('¢)n)| = 2|V(Fn73)| + |V(Fn74)| =2F, 1+ F, 2
=F,+F, :FnJrl

Moreover, this could be verified by substitution for 1 < n <
4.

Furthermore, if n > 5, then

|E(n)| = 2|E(Ty—3)| + |E(Tn_a)| + 2|V (Tp_s)]|
=2fn3+ fua+2F, 2

We now establish the explicit formula for the size of .
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Suppose n > 5. Then, using the recurrence relation for F,,

(n—3)Fn—2+2(n—2)F,_3

[E(¥n)] = 2 5
n (n—4)Fn—3 —1:52(71, —3)Fn-4 LoF,
_ (277, + 4)Fn_2 + (577, — 12)Fn_3 + (277, — 6)Fn_4
a 5
_ (477, — Q)Fn_z =+ (377, — 6)Fn_3
5
_ (Bn—=6)F, 1+ (n+4)F, 2
5
_ (m+4YF+2(n—5)F, 1
B 5

By substitution, the result can be verified easily for n = 2,
3and 4. O

We conclude this portion with a remark worth noting. No-
tice that if n > 2, I';, and ¥n+1 have the same order: Fj,4o.
However,

nFpi1 +2(n+ 1)F,
5
(n+5)Fnt1 +2(n —4)Fy,
5
_ —5Fu41 + 10F,
S —
=2F, — Fnp1
=F,—F,1>0

[E(Tn)] =] E(dn+1)]

Thus, while the topologies use up the same number of ver-
tices, the (n + 1)th Lucci cube uses less connections.

3.2 Radius, Center, Diameter

We determine other structural properties of ¥, which are
important in viewing graphs as interconnection topologies.
We also define the following terms.

Definition 5. Let G be a connected graph.

1. The eccentricity eq(v) of a vertex v of G is the maxi-
mum distance of any vertex of G from v.

2. The radius rad(G) of G is the minimum eccentricity
among the vertices of G.

3. The center Z(G) of G is the set of all vertices in G
whose eccentricity is equal to the radius.

4. The diameter diam(G) of G is the greatest possible
distance between any two vertices of G.

Note that the adjacency rule of the Fibonacci, Lucas and
Lucci cubes implies that the distance between any two ver-
tices in these graphs is the number of bits in which they
differ.

We will also be adopting the following notation for binary
strings from [1]. If b is a binary string of length k, the
string b* is formed by concatenating [2] copies of b and an



additional copy of the first r bits of b, where n =r mod k,
if 0 < r < k. In other words, b¥ is the string formed by
writing the string b repeatedly until n bits are written. For
example, (101)% = 1011011011.

THEOREM 9. For any n > 3,

n

1. rad(yn) = [ 7]
2. Z(¢n) = {1(0)"*1}.

PRrROOF. The results on the radius and center can be ver-
ified for n = 3 or 4. Let n > 5. Consider ¢ = 1(0)" 21. A
vertex of maximal distance from c has the form 10v; or v201,
where v1 is a vertex of maximal distance from (0)"~*01 in
I'n_2 and o is a vertex of maximal distance from 1(0)" 3
in I',_2. To construct vi, replace the 1 in (0)"’401 by 0
and then replace the remaining (n — 3)-string of zeros by a
Fibonacci string of maximal distance from (0)™™* in T',_3.
The vertex v2 can be obtained by a similar argument. Since
(0)F € Z(T') and rad(I'x) = [%5L] [10], we obtain the dis-
tance d(c, 10v1) = d(c,v201) = 1+ [252] = [2]. Since 10v;
and v201 are of maximal distance from c, ey, (c) = [%].
Let v € V(¥n), v # c. In order to conclude that Z(¢n) =
{c}, we show that ey, (v) > ey, (¢) by constructing a vertex

n

v* that is at a distance greater than [Z].

By Theorem 7, v is a vertex in 0C,,_301, 10C,,_30 or 10C,,_401.

Suppose v € 0C,,_301. Either v is in 00C,,_401 or in 010C,, _501.

(For the case when n = 5, the only vertex of the second
form is 01001, and ey, (01001) = 4 > [5]). Suppose v €
00C,,—401. Let v = 00s01, and k be the number of 1’s in s.
We construct v* by replacing the first 0 in v with 1, the last 1
with 0, all the 1’s in s with 0, and the string of (n—4) —k+1
0’s formed by the 0’s in the substring sO by a Fibonacci
string of maximal distance from this string as a vertex of
Din—4y—rt1- Then, d(v,v*) =14+ 1+ k+ [2=5=2] > [2].
Therefore, ey, (v) > ey, (c).

Suppose v € 010C,,_501. Let v = 010s01 and k be the
number of 1’s in s. We construct v*, this time by replacing
the 01 at the beginning by 10, the last 0 by 1, the k 1’s in s
by 0, and the (n—5) — k+2 string of 0’s in the substring 0s0
by a Fibonacci string of maximal distance from it as a vertex
of I'(,—5)—k+2. This v™ is also at a distance greater than |[§]|
from v. This proves that ey, (v) > ey, (¢), in this case. We
repeat the above arguments for the case when v € 10C,,_30,
leaving the case when v € 10C,,_401.

If v € 10C,,_401 \ {c}, then it has the form 10s01, where
s € C,,—4 and has at least one 1. Let k be the number of
I'sin s. Either K > 2or &k = 1. If £k > 2, we construct
v* by replacing the last 1 in v with 0, the k 1’s in s by
0, and the remaining (n — 4) — k + 1 string of 0’s in s0
by a Fibonacci string of maximal distance from it. Then,
dv,v*) =14+k+ [[%]] > |[’—2‘]] Since k > 2, equality of
these expressions is impossible.

If k =1 and n is odd, v* is constructed in the same fashion,
and d(v,v*) = 1+ 1+ [2==2] = 2+ 22 > [2]. This
leaves the case when k = 1 and n is even.
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The sole 1 in s is either in an odd or an even bit position,
counting from the leftmost bit. Without loss of generality,
assume it is in an odd position, and consider v* = (01)%.
Then, d(v,v*) = % +1 > [2]. Therefore, in all cases, there
exists a v* such that d(v,v™) > ey, (c). This proves that
ey (V) > ey, (C).

Hence, the eccentricity of any vertex of ¢, different from
c is greater than that of c. Therefore, rad(¢n) = [%] and
Z(Yn)={c}. O

THEOREM 10. For any n > 3,

n )
n—1 ,

2. the number of pairs of vertices which are at a distance
equal to the diameter is 1 if n is even and n — 2 if n
is odd.

if n is even

1. diam(¥,) = if n is odd

ProOF. We know that 1, is connected for n > 3. If
n is even, then the vertices (10)% and (01)% differ in all
n positions, hence diam(t,) = n. Moreover, this is the
only pair of vertices that have distance n. If n is odd, the
only binary strings that differ in all n positions are (10)%
and (01)%. However, the second string has zeros in both
the first and last bits, and so is not a vertex in 1,,. Thus,
diam(¢,) < n — 1. But there are vertices, in particular
OOl(Ol)nT_5 and 100(10)%3, which differ in exactly n — 1
bits. Hence, diam(i,,) = n — 1 for n odd.

Furthermore, if n is odd, then a distance of n — 1 between
two vertices can be achieved only if the vertices each have
at least 21 1’s. But, the vertex v = (10)% cannot have
a vertex of distance n — 1 from it since any vertex has the
same first two bits, or the same last two bits as v. Thus,
the maximum number of 1’s in an n-Lucci string that has a
vertex that is of distance n — 1 from it, where n is odd, is

n—1
-

There are two types of these vertices: those of the form
(10)0(10) “2" ~ and those of the form (01)"7*140(01)5 where
1<¢< 2t Now, vy = 100(10)% is of the first form,
and the only vertex of distance n — 1 from this is v =

001(01)%, which is of the second form. Conversely, the
only vertex of distance n — 1 from vy is v;.

For each 2 < /¢ < ";1 , there are two vertices of distance n —
n—1 n—1
_ —t

1 from (10)0(10) 2 ~“ = (10)**(100)(10) =z ~*, namely
(01)4=1(010)(01) ™= —* and (01)*~(001)(01)“= —*, which
are both of the second form. This gives an additional n — 3
pairs of vertices of distance n — 1. Arguing similarly, any
vertex in the second case besides va has exactly 2 vertices of
distance n— 1 from it, and both are of the first form. Hence,
there is no new pair of vertices formed, resulting in a total
of n — 2 pairs of vertices having distance n — 1. [

3.3 Maximum and minimum degrees
Another useful property of a graph G is its maximum de-
gree A(G) and minimum degree §(G), where the degree



of a vertex is the number of vertices adjacent to it. It is
clear that A(¢Yn) = n — 2 for n > 2, where the vertices
of maximum degree are 1(0)" "' and (0)" 1. Meanwhile,
it is known that 6(I'x) = [%£2] [4]. Now, by Theorem 7
and a further decomposition of I',,_3, ¥, can be decom-
posed into 10I',,—5010, 10I'5,—400, 10T, —401, 00T',,—401 and
010T",,—501, where every vertex in each subgraph is adjacent
to at least one vertex outside the subgraph it belongs to.
Hence, 6(¢n) > 1+ 6(I'n-5) = [%]. But there exists a

vertex, namely 10(010)717_5010, that is of degree [2] in n.
Therefore, §(¢n) = [%]I for n > 6, and this can be verified
for 2 < n < 5. Thus, we have the following statement.

THEOREM 11. Letn > 2.

1. A(n)=n—2

3.4 Enumerative Properties
Because of the adjacency rule for the Lucci cube, if a vertex
has an odd number of 1’s, then any vertex adjacent to it must
have an even number of 1’s, and conversely. This leads us
to distinguish between vertices with an even number of 1’s
and those with an odd number of 1’s.

Definition 6. Let n > 1.

1. E, = set of vertices of ¥, with an even number of 1’s

2. O, = set of vertices of ¥,, with an odd number of 1’s

3. €n = |Ey|
4. 0n = |On|
5. hn = €n — On

Note that E, U O, = V(¢») and E, N O, = &, and each
of the two sets of vertices are independent, that is, no two
vertices in each set are adjacent. In this case, we say that
the sets I, and O,, form a bipartition (Ey,Oy) of V().

Define &y to be 1 and 9o to be 0. Thus, ho = 1. We give the
values of €y, 0, and h,, for the first few nonnegative integers.

n|l]0 I 2 3 4 5 6 7
en |1 O 0O 1 3 5 7 10
om0 1 2 2 2 3 6 11
Aol -1 -2 -1 1 2 1 -1

Table 1: The values of €., o, and h, for small values
of n.

The analogues for Fibonacci cubes of the sets and quantities
defined above are denoted by E,, On, €,, 0, and h,, with
eo = 1, oo = 0. We shall use the following results.
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LEMMA 1. [10] For n > 0, hnyo = hnt1 — B, hnys =
—hn and hnteé = hn.

Analogous properties also hold for the Lucci cube. To this
end, we first prove the following statement.

LEMMA 2. For n > 0, €y43 = Ont1 + On and Ony3z =
€n+1 + én.

PROOF. A Lucci string having length n + 3 and an even
number of 1’s must be either of the form 10b, where b €
Ch+1 and has an odd number of 1’s, or of the form 0601,
where b € C,, and has an odd number of 1’s. This shows
that €,43 = on+1 + 0, for n > 1, and this can be easily
verified for n = 0. The result for o,, is derived from a similar
argument. [

Using these facts, we can derive the results in the following
theorem, including the closed form of the ordinary generat-

ing function H(z) := Zﬁnfcn for the sequence (fn)n>0.
n=0

THEOREM 12. The sequence (hn)n>o satisfies the follow-
ing properties:

1. hpys = —hni1 — hy, forn >0
2. hnys = —hy, forn >0

3. hnte = hn, forn > 0, and the repeated values are 1,
-1, -2, -1, 1 and 2.

4. The ordinary generating function for (hy)n>o0 is H(z) =
1—-22

1—az+a2

PROOF.

1. By Lemma 2,

hn+3 =€nt3 — On+3
= On+1 + on — €nt1l — €En
= _hn+1 — hn

2. By the previous statement and Lemma 1, [
_hn+1 - hn = hn—? + hn—3 = _hn-

3. By the previous statement, Rnie = —hnys = hn.
Thus, (hn)n>0 has period 6 and the repeated values
are as given in Table 1.

4. The ordinary generating function H (z) for h,, is H(x) :=

hnz". Before proceeding, note that by Lemmas 1

hn = —hn—2 — hn_3
=—hn-1—hn-2—hn3+hn_1
=hn+1 — hn—s — hn_4
= _En—Q + E’n—l



Thus, 7y — Rn—1 + ha—a = 0, giving us

(1 -+ H(z) ho + hiz + Eﬁnx" — hoz

n=2
_Zﬁn +1+Zﬁnxn+2
n=1 n=0
= ho+ (E1 — f_l,o)m

(E - En—l + En—Q)m"

Mx

2
“1-1lz=1-2z

,_.
+ 3
—~

O

3.5 Hamiltonicity and Independence Numbers
Recall that a path in a connected graph G is said to be
Hamiltonian if it passes through all vertices of G (exactly
once), and a cycle in G is said to be Hamiltonian if it contains
all vertices of G. A graph is said to be Hamiltonian if it has
a Hamiltonian cycle.

The fact that (E,,O,,) is a bipartition of V (2,) is useful in
deriving the following result.

THEOREM 13.

1. ¥y is never Hamiltonian.

2. Yy has a Hamiltonian path if and only if n Z 2 mod 3.

PRrROOF. Since (E,,O,) is a bipartition of V (¢,), a Hamil-
tonian cycle must alternate between vertices in either set
and end where it begins. If the vertices are to be exhausted
in this process, the two sets must have the same number
of elements. Since from Theorem 12, [é, — 0n| = |hn| =1
or 2 only, 9, cannot be Hamiltonian. This proves the first
statement.

It is easy to see that v (trivial), v3 and ¢4 have a Hamil-
tonian path, while ¥ does not. Now, assume n > 5.

Suppose n =2 mod 3. First, from the bipartition of V' (¢»),
any path in 9, must alternate between vertices in FE, and
O,,. Since [e, —0,| = |h | = 2 for n = 2 mod 3, there
cannot exist a path passing through all the vertices of ¥,.

Suppose n Z 2 mod 3. We will be using the fact that for
any m, I'y, has a Hamiltonian path beginning at 0(

m

and ending at (100)3 [1]. Clearly, the path tracing thls in
reverse is also a Hamiltonian path.

Assume first that n = 0 mod 3. Arguing that the last bit of
a Lucci string is either 0 or 1, one could see that any vertex
has the form 1060 where b € C,,_3, or b01 where b € C,,_o.
Thus, ¢, can be decomposed into 10I',,_30 and I‘n 201. A

501 beginning at 0(100) 5" *01 and
ending at (100)%_201 exists. The last vertex is adjacent to
(100)%200 a Vertex in 10I",—30. This vertex be expressed
as 100(100) 5 *0 because n
nian path in 10I', _30 beginning at 100(

Hamiltonian path in I'),

= 0 mod 3. NOW, a Hamilto-
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at 10(100)%30 exists. Stringing these two paths together
makes a Hamiltonian path in .

Assume n = 1 mod 3. By Theorem 7, v, can be decom-
posed into 10I',,—30, 10I',,_401 and OI',,_301. A Hamilto—

nian path exists in 101" - 30, begmmng at 10(100) %0 and
ending at 100(100)“3 1 mod3, n—-5 =

2 mod 3 and S0 100(100) 510 can also be expressed as
100( last vertex is adjacent to 100(100) 3 01,
a vertex in 10I‘n 401. A Hamlltonlan path exists in 101_‘n 401,
beginning at 100(100)“% 01 and endlng at 10(100) 5 *01.
This last vertex is adjacent to 00(100) T 01, a vertex in
0I',-301. A Hamiltonian path in 0I'n 301 that begins at
00(100)“3" 01 and ends at 0(100)"7 01 exists. Stringing
together these three paths, a Hamiltonian path in ), is con-
structed. [

Recall that a trail in a nontrivial connected graph G using
all the edges of G exactly once is called an Eulerian trail.
If the first and last vertices of the trail are the same, then
it is called an Eulerian circuit, and the graph is said to be
Eulerian. Two classical results in graph theory are that a
graph is Eulerian if and only if all of its vertices have even
degree, and that a non-Eulerian graph has an Eulerian trail
if and only if it has exactly two vertices of odd degree.

THEOREM 14. ), is not Eulerian, and has an Fulerian
trail only when n = 3 or 4.

PROOF. The result is easily verified for n = 1, 2, 3 and
4. Suppose n > 5. It suffices to show that v, has at least
three vertices of odd degree, because then the graph would
not have an Eulerian trail, much less an Eulerian circuit.

Case 1. Suppose n = 2k + 1, k > 2. We claim that
u=1(0)*, v = (0)**1 and w = 1(0)**~'1 each have degree
2k — 1. The vertices adjacent to u are formed by changing
any of the last 2k — 1 0’s to 1. The first two bits cannot be
changed. Thus, the degree of u is 2k — 1. Similarly, for v,
only the first 2k — 1 0’s may be changed. For w, only the
first and the last 0 cannot be changed so the degree of w is
2k — 1 indeed.

Case 2. Suppose n = 4k, k > 2. We claim that u = (10)%*,
v = (01)%* and w = (10)**73(100)? each have degree 2k — 1.
For u, only the last 2k — 1 1’s may be changed. For v, only
the first 2k — 1 1’s may be changed. For w, only the last
2k — 2 1’s and the last 0 may be changed. That proves the
claim.

Case 3. Suppose n = 4k + 2, kK > 1. We claim that
u = (10)**00, v = 00(01)** and w = (10)?*01 each have
degree 2k + 1. For w, only the last 2k — 1 1’s and the last
two 0’s may be changed. For v, only the first 2k — 1 1’s and
the first two 0’s may be changed. For w, only the 2k + 1 1’s
may be changed. This completes the proof. [

REMARK. Though it was not explicitly stated in papers on
T, and A, among these graphs only A4 is Eulerian. Among
the rest, only I'1, I'2, I's, I's and A2 have an Eulerian trail.



We conclude this paper with the independence numbers of
Yn. Recall that X C V(G) is said to be independent if no
two vertices in X are adjacent, and Y C E(G) is said to be
independent if no two edges in Y have a common vertex.
The vertex independence number a(G) of G is the largest
cardinality of an independent set of vertices of G, while the
edge independence number o’ (G) of G is the largest cardi-
nality of an independent set of edges of G.

THEOREM 15.

2. a(thn) = max{En,on} [[F 2y 1]]

PROOF. Let Y be an independent set of edges of v,,. For
any v € Ey, there is at most one edge in Y passing through
v. Similarly, for any u € O, there is at most one edge in Y’
passing through u. Thus, |Y| cannot exceed €, and 3,, and
so & (¢») < min{e,,0,}. To establish equality, it suffices
to construct an independent set of edges containing exactly
min{€,, 0, } elements.

First, suppose n # 2 mod 3. Then, v, has a Hamiltonian
path and such a path must alternate between vertices in
E, and O,. Thus, taking the first edge of the Hamiltonian
path and every other edge after that in the path, we form an
independent set of edges whose cardinality is min{e,,o,}.
Moreover, when n # 2 mod 3, [€,—0,| = 1. Frome,+0, =
Fri1, it follows that min{e,,o,} = # Since Fpi1
is odd whenever n # 2 mod 3, this quantity is equal to

[=+=1
1]

Suppose n = 2 mod 3. Then |&, —0,| = 2, and therefore
min{€,,0,} = Fﬁ’;—_Q Recall that the vertices of 1, can
be partitioned into those of 10I',,_s and OI',,_301, and that
V()| = Fats |V(Ta2)| = Fu and [V s)| = Fuos.
When n =2 mod 3, Fi,41 is even, while F,, and F,_; are
both odd. In [4], it was proved that a Fibonacci cube with
odd order has a cycle containing all its vertices except one.
These cycles in 10I',,_2 and 0I',,_301 have lengths F,, — 1
and F,_1 — 1, respectively. By taking every other edge from
each of these cycles, a set of fu—t 4 Fnoaml o a2

2 2
independent edges is formed. Therefore, indeed, o (¢,) =

Fri1-2 . Frqp1—2 Fpy1—1 .
—il = Since Fy1 is even, —H— = [[ 1=l ]] This

2 2
proves the first statement.

Let us now establish the result for a(¢). Assume €, < 0.
Now, a(tn) > On, since O,, is an independent set. By the
previous result, ¥, has €, independent edges. From the
bipartition of V (¢,), it follows that every vertex v, in E,,
can be paired with a vertex v, in O,, such that the edges
formed by this matching are independent. Thus, a set T
of independent vertices must contain only at most one of
ve and its corresponding v,. This implies that |I| cannot
exceed 0,. Hence, a(¢n) = 0n. The same argument shows
that if 5, < €,, then a(¢,) = €,. Therefore, a(yn) =

max{ényan} - Fn+1 - [I:Fn+21*11|] = H:% + ]-]] D

4. SUMMARY AND COMPARISON

By tweaking the condition on the vertices of the Fibonacci
cube and the Lucas cube, we constructed a new graph, the
Lucci cube, which curiously also has a Fibonacci number as
its order. See Table 2 [4, 9, 10] for a comparison of I'y, Ay,
and Y.

- Ln A, v
V(G Frrs i o
B(G)| | Mt g, | R,
rad(G) [=$] [%] [2]
* 0)" R —
(@) { {<o§$,)yj}** {("} {1(0)"21}
diam(G) n * . ’r_ll x nT_l 1
ap—~ n>1 n#0 mod 3 n £ 2 mod 3
G I (=] [E]
S) [==] [% +1] [ +1]

* Here, the first case holds when n is even; the second when
n is odd. _ _—

*U, =(0)" 2 1(0) 2
*** Existence of Hamiltonian path

Table 2: Comparison of properties of the Fibonacci,
Lucas, and Lucci cubes

For future work, finding the degree sequence of the Lucci
cube as in [7] and generalizing Lucci cubes as in [5, 6] may
be worthwhile endeavors. One may also want to measure the
observability of ¥, (see [3]). And one could seek to relate
the graph to the resonance graph of some hydrocarbon, as
done in [8, 11].
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