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1. ABSTRACT

In systems biology and genetics, data integration is a key
task towards providing a multi-perspective analysis of bio-
logical phenomenon. To validate algorithms developed for
such purposes, empirical testing is usually done. Theoretical
analysis of the algorithm would further highlight properties
of a method. In this paper, a method for integrating genetic
marker, quantitative trait loci (QTL), phenotypic, and gene
sequence data to identify candidate genes causal to a trait is
analyzed for algorithmic effectivity and efficiency. Results of
the analysis prove the correctness of the method. Addition-
ally, the results show that the method has time complexity
O(ng(m+g)), while the space complexity is O(n(m+g+q)),
where n is the number of individuals, g is the number of
genes, m is the number of markers used as input, and q
is the number of quantitative trait loci associated with the
trait.

2. INTRODUCTION

There is no denying how systems biology has become a thriv-
ing discipline in recent years. Endeavors including, but not
limited to, modeling [1}[2] (3, /4], predictive analysis [2} (3], and
exploratory analysis|5, |6l |7, |8] now has an infusion of sys-
temic approaches to carry out research activities and analy-
sis. Genetics has also benefited from the systemic approach
of analyzing genetic and genomic data. Aptly referred to as
systems genetics [2| 4], the discipline’s approach to analysis
involve the integration of several types of data sets. One
interesting application of systems genetics is inferring can-
didate genes causal to a trait |3| |6l [7]. Here, several data
sets are used in conjunction with gene expression data to
identify which genes are potentially causal towards the ex-
pression of a particular trait. Such analyses thus gives more
resolution to the inference made by the endeavor by intro-
ducing supporting factors that are not “visible” when using
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gene expression data alone.

With the growth of systems biology and systems genetics,
the need to develop computational methods for carrying out
tasks relevant to the field has also become evident. The
methods come in different varieties, but most prominent of
which are graph-theoretic approaches |2}, 4] and statistics-
based techniques |3} |5, 6} 7]. To validate the “usefulness” of
such methods, empirical testing is employed. This is done
by using existing data sets or generating simulated ones as
input for the method, and the output is checked against a
reference to check if they are similar. For practical purposes,
analyzing the capability of computational methods this way
definitely is an intuitive manner of checking if the method
is useful and, to a certain point, accurate in processing the
input into output. On the one hand, theoretical analysis of
the method, particularly on its correctness and algorithmic
efficiency, would further enhance the underlying properties
of the method.

Proving the algorithm’s correctness in a nutshell is showing
that the method comes up with the proper output given a
(proper) input [9]. This will effectively show that the pro-
cessing done by the method, under certain assumptions, will
work as intended and indeed adheres to specifications. Ana-
lyzing algorithmic efficiency is tantamount to obtaining the
theoretical running time and memory requirement of the
method, i.e. time and space complexities. Such analysis
will provide the behavior of the algorithm with regard to
processing speed and memory space needed as the nature of
the input, particularly the input size, changes.

To emphasize the merits of performing the theoretical anal-
yses, a systems genetics method will be examined and the
implications of the results will be discussed. The succeeding
sections of the paper are as follows: First, the problem of
inferring candidate causal genes to a trait will be described
and formally defined. Next, the systems genetics method for
inferring candidate causal genes and its features will be pre-
sented. Afterwards, the proof of correctness for the method
will be given. The method’s time and space complexity is
shown next. Finally, some of the implications of the results
of the analysis is discussed.



3.
TO A TRAIT

The task of inferring candidate genes causal to a trait in-
volves the selection from a set of genes a smaller subset
which are potentially causal to the expression of a trait. A
systems genetics approach to the endeavor is done via in-
tegrating different kinds of genetic and genomic data sets
[3L14]. The typical strategy for systems genetics-based infer-
ence is integration of sequence data, gene expression data,
and phenotypic (i.e. trait measurement) data [3, /6, |7].

3.1 Sequence and Gene Expression Data

Sequence data in the candidate causal gene inference task
typically involves genetic markers, areas in a species’ genome
whose locations are known and whose states can be observed
and recorded. Location of each marker is typically “stored”
in a marker map. In some cases |3} |§], certain areas of the
genome called quantitative trait loci or QTLs are also in-
cluded in the inference. QTLs are areas of the genome that
have been identified to be causing the expression of a trait
depending on their state. Simplistically, QTLs are identi-
fied (in a technique called QTL mapping) using statistical
analysis of genetic markers and phenotypic data [10].

Gene expression data consists of measurements of how ex-
pressed a gene is, usually by measuring the amount of mes-
senger RNAs (mRNASs) or proteins associated with the gene.
As with markers, genes are also known locations in the
genome. A main characteristic of a gene though, and thus
differentiating them from markers, is that they are regions
that are coded and transcribed into amino acids which serve
as building blocks for proteins.

3.2 Formal Definition of Systems Genetics-Based

Candidate Causal Gene Inference
Before formally defining candidate causal gene inference,
some preliminary notions will be introduced. First, individ-
uals that make up the population to be used for the inference
are defined:

Definition 3.1 (Individual). Let M = {1,2,3,...,m} be a
finite set of indices each uniquely representing a marker. De-
fine a 2-tuple Ind = (S, trait_val), representing an individ-
ual to be used in the inference where S = {S;|i € M} is a set
of discrete random variables where S; € {0,...,k} fori €
M and some k € ZT. The set S represents a set of markers
states for the individual. trait_val € R is the measured trait
value for an individual.

Next, QTLs are defined based on the manner of their iden-
tification, as mentioned in the previous subsection:

Definition 3.2 (QTL). Let P = {Ind;|]1 <i<n}. We
thus refer to components of Ind; as (S°, trait_val;) to mean
the marker state set and trait value for the it" individual in
P, respectively. Define Q C M be a set of QTLs such that

Vg € Q and a function ¢ : Z x R — R, the cost function

Z c(Sy, trait_val;) < &

1<i<n

for some threshold value e € R;e > 0.
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INFERRING CANDIDATE GENES CAUSAL Finally, here is the formal definition of the systems genetics-

based approach to inferring candidate genes causal to a trait:

Definition 3.3 (Systems Genetics-based Approach to Infer-

ring Candidate Genes Causal to a Trait). LetG = {1,2,3,...,g}

be a finite set of indices each uniquely representing a gene.
Define the Systems Genetics-based Approach to Inferring
Candidate Genes Causal to a Trait as looking for a set of
candidate genes causal to a trait Goeor C G such that given
a set of individuals P, a set of QTLs @Q, and a function
f:SxGxR—R, the cost function

Z f ({Sé|q S Q} ,GCCT,trait,vali> <6

1<i<n

for some threshold value § € R, 6 > 0.

3.3 Using Gene Sequence Data In Lieu of Gene

Expression Values
The strategy of integrating sequence, gene expression, and
phenotypic data assumes that sufficient number of samples
for each type of data exists. This may not be the case how-
ever, especially with gene expression data. For example, if
one were to apply the framework in [3] to rice salt stress
response and only using publicly available data, one would
find that available and appropriate rice gene expression data
would be insufficient (around 11 samples are only available
as per [11]).The workaround to this is to instead use gene
sequence information instead of relying on their expression
values. The basis for this alternative procedure is similar to
the idea of QTL mapping: identifying regions of the genome
that affect expression of a trait based on their state. This
modified approach thus serves as the basis for the develop-
ment of the proposed method.

4. A SYSTEMS GENETICS METHOD FOR

INFERRING CANDIDATE CAUSAL GENES

The method being presented integrates several types of data
to obtain a set of candidate genes which are inferred to be
causal to the expression of a trait. More particularly, the
data integration method is designed for use on data obtained
from recombinant inbred lines or RILs. The preference for
RILs largely stems on reducing the number of states a partic-
ular location on a genome could have [10] and thus simplifies
designation of gene states and even the calculation of simi-
larity of the states of adjacent loci. The preceding premise
is a crucial factor in the execution of the algorithm to be
shown in a later section. Figure [l shows the framework of
the algorithm.

4.1 Input and Output

The method takes in as input three kinds of data from a set
of individuals: marker map data, marker state and quanti-
tative trait loci (QTL) data, phenotypic data, and gene map
data. Markers are known regions within the genome whose
state can be observed and documented. QTL are regions in
the genome that were identified to affect the expression of
a (quantitative) trait based on their state. The process of
identifying QTLs is known as QTL mapping. Genes, apart
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from the common notion that they are units of heredity,
are regions within the genome that can be transcribed and
coded to form amino acids, and subsequently proteins. As
markers, QTLs, and genes are regions within a genome, their
location particularly in what chromosome they are located
as well as their distance within the chromosome is known.

The marker map data contains the location of the markers
to be used for the analysis. The location includes containing
the chromosome where the marker is located, and the dis-
placement of the marker from the physical beginning of the
chromosome. The location may be represented as an integer
if it refers to a physical location in the chromosome, the unit
of which is in megabase pairs (Mb) or as a real number if it
refers to a measure of genetic linkage, the unit of which is in
centimorgans (cM). Either way, the marker map can be rep-
resented programmatically as a two-dimensional array (later
referred to as mmap) with 2 rows and m columns, wherein
the columns represent the markers, the first row contain-
ing the chromosome where the markers are located, and the
second row containing the location of the marker within the
chromosome.

The marker state data on one hand contains the state of each
marker of each individual in the data set. Marker states can
be represented as nonnegative integers, and that the range
is limited, say from 0 to k - 1, where k is the of alleles used
in the analysis. This can be represented in programs as two-
dimensional arrays with n rows and m columns. n represents
the number of individuals from which the data was obtained,
while m represents the number of markers. In the later parts
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of the paper, the reference to this data is mstate. The QTL
data can be fashioned in a similar manner, only this time
the number of rows is ¢ < m, where q is the number of QTLs
in a trait.

Phenotypic data contains the measurements of the trait ob-
tained from the individuals. The values are real numbers. In
the case of qualitative or nominal data, each value is assigned
a numerical equivalent. The structure used to represent this
is a linear array of length n.

The gene map data is somewhat similar to the marker map
data in that it contains the location of each gene to be used
in the analysis. The difference is that the location/offset
of the “start” of the gene sequence (which we will refer to
subsequently as the 57 end) as well as the “end” of the se-
quence (the 3’ end) within a chromosome is noted. As such,
a two-dimensional array (later referred as gmap) with 3 rows
and g columns (g being the number of genes) can represent
the gene map data. In this structure, the columns represent
the genes, the first row contains the chromosome where the
gene is located, the second row contains the location of the
5” end within the chromosome, and the third row contains
the location of the 3’ end.

The output of the algorithm is a set of candidate genes in-
ferred to be causal to the expression of the trait. This can be
represented as a linear array of length g, where an index i in
the array correspond to a gene from the gene map data. The
values of the elements in the array are of boolean data type.
An element has a value of “true” if the gene corresponding
to index i is a candidate gene (i.e. selected by the method as
a potentially causal to the expression of the trait), or “false”
otherwise.

4.2 The Algorithm

The algorithm is divided into two phases: the gene state
interpolation phase and the candidate gene selection phase.
In the gene state interpolation phase, the (allelic) state of
the gene is interpolated based on the (allelic) state of the
markers nearest to the ends of its sequences. The output
of this phase is the interpolated state of each gene for each
of the individuals. Algorithm gives the pseudocode for
the gene state interpolation phase. To determine the value
of the variable representing the allelic state of a particular
gene, genetic markers used in QTL mapping are employed.
Markers near the 5’ and 3’ ends of a gene’s sequence are
identified (lines 3-20). Without loss of generality, assume
that there are only two possible marker states. A simple
two-point probability formula for 2-way selfed RILs |12] can
be employed to infer the allelic state of one end of the gene
sequence based on the state of the nearest marker. Given
two adjacent points/loci in the genome of a 2-way selfed
RIL, z;, x;, the probability that the allelic state of the two
points/loci are different is given by :

2r
14 2r

p(gﬂ%‘ 7é gﬂ”j) =

where g, , gz, is the allelic (or marker) state of point/locus
zi,x; and r is the recombination rate of x; and z;. The



Algorithm 1 Gene State Interpolation

Input: mstate[n][m], mmap[2][m], gmap|3][g]
Output: gstate[n][g]
1: for i <~ 1 ton do
2: for j <+ 1to g do
3: min_dist_mkr_5 < oo
4 closest_mkr_b < oo
5: min_dist_mkr_3 < oo
6: closest_mkr_3 < oo
7 for k < 1 tom do
8 if mmap[1][k] = gmap(1][k] then
9 dist_mkr_5 < |mmap|2][k] — gmap[2][]|

if dist_mkr_5 < min_dist_mkr_5 then
11: min_dist_mkr_d < dist_mkr_5
12: closest_mkr_5 < k
13: end if
14: dist_mkr_3 < |mmap|2][k] — gmap[3][J]|
15: if dist_mkr_3 < min_dist_mkr_3 then
16: man_dist_mkr_3 < dist_mkr_3
17: closest_mkr_3 < k
18: end if
19: end if
20: end for
21: rrate_mkr_5 < recombn_fn(min_dist_mkr_5)
22: prob_mkr_5_state_dif f + %
23: rrate_mkr_3 < recombn_fn(min_dist_mkr_3)
24: prob_mkr_3_state_dif f + #m
25: if prob_mkr_5_state_dif f < 0.5 then
26: 5_state <— mstate[i][closest_mkr_5]
27: else
28: 5_state < alt_state(mstateli][closest_mkr_5])
29: end if
30: if prob_mkr_3_state_dif f < 0.5 then
31: 3_state < mstate[i][closest_mkr_3]
32: else
33: 3_state < alt_state(mstateli][closest_mkr_3])
34: end if
35: if (5_state = 3_state) then
36: gstatelt][j] < H_state
37: else
38: gstateli][j] < O
39: end if
40: end for
41: end for

42: return gstate

computation of the two-point probability is done in lines 21-
24. In the pseudocode, the auxiliary function recombn_fn in
lines 21 and 23 converts the (physical) distance of a marker
and a gene to the corresponding recombination rate, and is
done so in a constant number of steps.

If p(ge; # gu;) is less than or equal to 0.5, then the allelic
state of the 5’ or 3’ end of the gene sequence should the same
as the state of the nearest marker (lines 25-26 and lines 30-
31). Otherwise, the 5’ or 3’ end’s allelic state is set to the
“alternative” state, i.e. different from the nearest marker’s
state (lines 27-28 and 32-33). The alt_state auxiliary func-
tion in lines 28 and 33 just returns the “alternative” state
that is different from the input marker state, and is done
so in a constant number of steps. To finally infer the allelic

15

state of the gene sequence, the inferred allelic states of both
5 and 3’ ends are checked (line 35). If the allelic states of
both ends are the same, then the probe set assumes that
allelic state (line 36). If the allelic states of both ends are
different, then the gene can be thought of as having a het-
erozygous allelic state (line 38). Such genes are not included
in the analysis.

The output of the gene state interpolation (referred in the
pseudocode as gstate) in conjunction with QTL data and
phenotypic data would be used as input to the candidate
gene selection phase. In the candidate gene selection phase,
genes inferred to be causal to the expression of a trait are
selected. This is done by performing partial regression co-
efficient analysis on the genes using the interpolated state
as variables. For the analysis, a multiple linear regression
model is used:

q g
Yik = pi + Za,jwjk + Zﬁzzm
=1 =1

where Yii is the estimated value of i*" phenotypic trait for

individual k, y; is the intercept for i*" phenotypic trait, a;
is the additive effect of j** QTL, 2% is the coded variable
representing allelic state of j** QTL in individual k, §; is the
contributory effect of I*" gene, and ys, is the coded variable
representing allelic state of [*" gene in individual k. In the
regression model, the intercept and the QTL-related vari-
ables are held constant, while the gene-related variables are
the ones being subjected to selection. The motivation be-
hind this is that since QTLs are already established causal
factors towards trait expression, we check if there are certain
genes that significantly affect trait expression given that the
QTLs are also affecting it.

To perform selection of candidate causal genes, forward step-
wise regression is done. This is performed by adding variable
to the regression model, one by one, and checking which
variable would significantly lessen the error of the model.
The variable that gives the model the most significant drop
in error is selected to be part of the regression equation.
The method then iterates and checks which of the remain-
ing variables may be selected for inclusion in the model. The
selection process terminates if no other variable can provide
significant drop in the error, or if all variables have been
included. Forward stepwise regression was chosen as the en-
deavor would entail exploratory analysis on a large number
of variables to be considered for inclusion, and as such the
aforementioned method is suitable for the stated purpose
|13].

5. PROOF OF CORRECTNESS

Proving the correctness of a algorithm would involve es-
tablishing the adherence of the algorithm to postconditions
given certain preconditions [9]. With the data integration
algorithm divided into two phases, proving its correctness
may be done by proving that each of the two phases are
correct.



In the gene state interpolation algorithm, the precondition
is that the input structures, i.e. mstate, mmap, gmap, are
of the proper form. The postcondition would be that the
gstate contains the interpolated states of each gene for each
individual based on the state of the closest marker to each
gene. The first and second for-loops (lines 1-2) account for
iterating through each individual and gene. So to prove the
correctness of the aforementioned loops, and thus the whole
algorithm, the focus of the analysis will be mostly on the
statements contained inside the second for-loop, i.e. lines
3-39 as those statements are what really assigns the state of
a particular gene of a particular individual.

The first 3 statements (lines 3-6) are trivially correct as they
assign the “infinity” value to the variables corresponding to
the distance of the closest markers to the 5’ and 3’ ends of
gene j (line 3 and 5) which the process intends to do. Addi-
tionally, the index of the closest marker in the marker map
structure (line 4 and 6) to the 5’ and 3’ ends are assigned
“infinity” values . These statements though are actually im-
portant in establishing the correctness of the third for-loop
(lines 7-20).

To prove the correctness of the third for-loop , a loop in-
variant must be established [9]. The loop invariant is a
condition relevant to the algorithm that holds true at any
point during the execution of the loop. In this case, the
loop invariant is the condition that the distance of the clos-
est markers to the 5 and 3’ ends of gene j (represented
in the pseudocode as min_dist_mkr_5 and min_dist_mkr_3
respectively) found at any point of the loop is indeed the
minimum among all others that have markers checked thus
far. The base case is that before the loop begins, no markers
have yet been checked, so the distance of the closest markers
to the 5" and 3’ end may be assigned any value as it would
still be minimum. The value of infinity is chosen as the ini-
tial value as it would guarantee that a smaller distance value
would be found at each iteration of the loop. The inductive
step would have us assume that for some k, 1 < k < m, we

have a current value for min_dist_mkr_5 and min_dist_mkr_3.

Now at the next iteration step k + 1, we check the (k
+ 1)th marker. If the distance between the (k + 1)th
marker and the 5" and/or 3’ end of gene j is lesser than the
current values of min_dist_mkr_5 and/or min_dist_mkr_3
(lines 10 and 15), then (k + 1)th marker is thus closer
to the 5 and/or 3’ end of gene j, and the value/s of the
minimum distance/s are updated (lines 11 and 16) and the
index of the (k + 1)th marker is stores (lines 12 and 17).
If the distance between the (k + 1)th marker and the 5’
and/or 3’ end of gene j is greater than the current values
of min_dist_mkr_5 and/or min_dist_mkr_3, then the status
quo with respect to the pertinent variables is retained. Ei-
ther way, the loop invariant condition is preserved, and thus
proves the correctness of the for-loop.

The succeeding statements get the recombination rate of the
closest marker to the 5’ and itself based on their distance
from each other (line 21), and getting the probability that
their states would be different (line 22). The same process of
the getting the recombination rate and probability is applied
to the 3’ end of gene j and the closest marker to it (lines 23-
24). Lines 25-34 assigns the interpolated state of the 5" and
3’ ends based on the probabilities computed in lines 22 and
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24. The idea is if the probability that the 5’ end’s state and
that of the closest marker to it is at most 50% (line 25), then
we just set the interpolated state of the 5’ end to be the same
as that of its closest marker (line 26). Otherwise, we set the
state of the 5’ end to be the “alternative” state different from
the closest markers (lines 27-28). The same test and process
for the 3’ end and its closest marker is performed in lines
30-33.

Finally, the interpolated state for gene j will be assigned.
The condition is if the interpolated state of the 5’ end and
the 3’ end are equal (line 35), then the state of the whole
gene j can be putatively assigned the state of both ends (or
in the case of the pseudocode, the state of the 5’ end as per
line 36. If they are not equal, then the interpolated state of
gene j can be interpreted as “heterozygous”, i.e. “halfway”
between the two alternative states. In this scenario, gene
j for individual i can be “discarded” from the succeeding
regression analysis, and as such is assigned a value of zero
(line 38).

Aggregating the analysis of the statements in the second
for-loop, each iteration does give the interpolated state of
a particular gene for a particular individual based on the
closest markers to its 5’ and 3’ ends. The second for-loop
should therefore give the interpolated states of all genes in an
individual. Going further, the first for-loop would thus give
the interpolated states of all genes for all individuals, and
hence would prove the correctness of the gene interpolation
phase.

As to the correctness of the candidate gene selection phase,
the reader is referred to [13] and |14]. To summarize the
pertinent parts, the forward selection algorithm will select
the (sub)set of variables that will lessen the error of a mul-
tiple linear regression model. In the context of the prob-
lem the algorithm is trying to solve, the method will select
the (sub)set of genes that will best “predict” the value of
some trait. This is tantamount, albeit simplistically, that
the (sub)set of genes chosen in the candidate gene selection
phase are indeed causal towards the expression of a trait,
and thus proves the correctness of the phase, and that of
the whole data integration method.

6. TIME AND SPACE COMPLEXITY

As with proving correctness, we obtain the time and space
complexity of the whole method by getting the correspond-
ing complexities of each phase and then aggregating them.
First, we acquire the time and space complexities of the
gene state interpolation phase. For time complexity, the
algorithm only contains nested for-loops with simple state-
ments, each loop running in linear time with respect to the
variable being iterated. As mentioned prior the recombn_fn
and alt_state auxiliary functions are just implementations of
simple functions that run in constant time. Hence, the exe-
cution of the for-loops dominate the computational running
time of the algorithm. The time complexity is thus O(ngm),
where n is the number of individuals (iterated through in the
for loop in line 1), g is the number of genes (iterated through
in the for loop in line 2), and m is the number of markers
(iterated through in the for loop in line 7).



Next, we obtain the space complexity of the gene state inter-
polation phase. For the input, which subsequently are the
structures used and manipulated in the course of the inter-
polation phase, the marker states per individual (mstate)
has space complexity O(nm), the marker map has O(2m),
and for the gene map, O(3g). The output which is a struc-
ture containing the interpolated gene states per individual
has space complexity O(ng). The space complexity for the
gene state interpolation phase is thus O((n+2)m+ (n+3)g)
or simply O(n(m + g)).

The time and space complexity for the candidate gene se-
lection phase is tantamount to getting the complexity of
forward stepwise regression. In [15], it was noted that the
time complexity of the aforementioned method is O(nv?),
where n is the number of individuals and v is the number of
variables for inclusion in the regression model. In the case
of the candidate gene selection, the variables to be included
in the model are the genes, hence v = g, and thus the time
complexity of the candidate gene selection is O(ng?).

As for space complexity, the structures significantly con-
tributing to it are the following: the structure containing the
interpolated gene states per individual with space require-
ment O(ng); the structure for the phenotypic data wherein
measurement of the trait for n individuals are stored, hence
O(n); and the structure for the QTL state where the state of
q QTLs per individual are stored amounting to O(ng) space.
The space complexity of the candidate gene selection phase
is thus O(n(g + q)).

Allin all, the time complexity of the whole method is O(ngm)-+

O(ng?) = O(ng(m + g)). The space complexity on the one
hand is O(n(m + g)) + O(n(g + q)) = O(n(m + g + q)).

7. DISCUSSION

7.1 Correctness of the algorithm and statisti-

cal “validity"
Through the analysis, the data integration method is algo-
rithmically correct in that the expected proper output is
obtained upon running the algorithm with the proper in-
put. It should be noted though that there are simplifying
assumptions, particularly on those segments where statisti-
cal methods are implemented. In lines 25-28, the condition
is discretized by using a simple cut-off/threshold (0.5) to
determine the interpolated state of the 5 and 3’ end of a
gene. Statistical theory would dictate that a (proper) test
of hypothesis be done to further strengthen the claim on
what state should be assigned. Additionally, in the candi-
date gene selection phase, a linear model is assumed and
more so, least squares regression is employed in stepwise re-
gression without regard on the distribution of the variables
in the data set, e.g. if normality assumption hold, samples
are truly identically, independently distributed. For certain
data sets though, the simplified assumptions do not hin-
der the utility of the method. In an accompanying paper
[16], the method was applied on rice salinity stress response
data, and still yielded meaningful results. Furthermore, the
method is designed to be more of a framework rather than
a rigid implementation. Hence, other statistical techniques
may be added to the data integration technique as needed.
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7.2 Number of genes and time and space com-
plexity

For time and space complexity, it can be seen that the run-
ning time and memory requirement both depend on the
number of individuals, the number of markers, and the num-
ber of genes included as input for the framework. In terms
of cardinality, genes typically greatly outnumber the number
of individuals and number of markers, even when combined.
While the number of individuals used in experiments are
typically in the range of hundreds and the number of mark-
ers from hundreds to a few thousands, the number of genes
are usually tens of thousands. Taking this into account, we
can simplify the time complexity of the method to O(g?),
while the space complexity is O(g). Hence, it can be simply
stated that the running time of the data integration method
to be quadratic, while the memory requirement is linear,
both with respect to the number of genes.

It is recommended though that a filtering step be done to
significantly cut down the number of genes to be included
in the analysis. An example of filtering would be to in-
clude only those genes that are significantly differentially
expressed when subjected to a particular condition. For
consistency, it should be made sure that the rest of the data
sets, particularly the QTL and phenotypic data, should also
have been obtained from samples that were subjected to
similar conditions as those samples from which significant
differential expression tests were done.

7.3 Comparing time and space complexity with

other inference methods

In Section 3 of this paper, some works were cited that detail
other causal gene inference methods [3} |6| |7]. The method
in [3] employs a Bayesian framework for causality model
building and analysis between genes and a trait. Using the
same notion and variables g, m, n, and q in the previous sec-
tion, the time and space complexity of the aforementioned
method as described in the Supplementary Information of
the literature is O(ngq) and O(n(m + g + q)) respectively.
The technique in [6] employs the construction and analysis
of gene coexpression (sub)networks and then mapping them
back to associated loci in the genome. Time complexity
of the aforementioned method is O(ng(g + ¢)) while space
complexity is O(n(g”® + ¢)). A Bayesian network was con-
structed and analyzed for candidate causal gene inference in
[7]. The method’s time complexity is O(ngq) and the space
complexity is O(n(g + q)).

While the space complexity of the proposed method is com-
parable relative to the aforementioned methods, it is rela-
tively “slower”. This is due to the need for an additional
preprocessing phase, i.e. the gene state interpolation phase,
in the analysis. It should be pointed out though that the
proposed method assumes that insufficient gene expression
data is available - something that is contrary to the assump-
tion of the three methods used for comparison. Hence, the
trade-off here is that candidate causal gene inference can still
performed without relying on gene expression at the cost of
additional steps to be done in carrying out the task.
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