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ABSTRACT
A graph G is an autograph if its vertices can be labeled bi-
jectively by a multiset S of numbers called signature such
that two vertices are adjacent if and only if the absolute
difference of the corresponding labels is also in S. Given a
signature S and its corresponding autograph G(S), the au-
tograph with signature whose elements resulted from adding
a fixed real number to every element of S is called a trans-
lation of G(S). In this study, properties of translations of
autographs were determined. These include the number of
edges a translation consists and some necessary conditions
for two translations to be isomorphic. The exact number of
nonempty translations of an autograph with signature con-
sisting of integers was also found. This result is a refinement
of the previous one which only gives bounds on the number
of nonempty translations an autograph could have.
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1. INTRODUCTION
The concept of autograph was introduced by Bloom et al. [1]
in 1979. A graph G is an autograph if its vertices can be la-
beled bijectively by a multiset S of real numbers such that
two vertices are adjacent if and only if the absolute differ-
ence of the corresponding labels is in S. The multiset S of
numbers is commonly known as a signature of the auto-
graph G(S) and each of its elements is called a signature
value. In 1982, Gervacio [4] adapted this labeling principle
to directed graphs, calling the resulting graphs as difference
digraphs. In 2009, Hegde and Vasudeva [7] introduced mod
difference digraphs using modulo difference as the criterion
for the adjacency and were able to show in [8] that some
structural properties of directed graphs can be studied in
the context of mod difference digraphs. Since the introduc-
tion of autographs, most works done focused on identifying
which graphs are autographs [1, 5, 9, 12, 3], difference di-

graphs [2, 10, 11] or mod difference digraphs [6, 7, 8]. The
works of Panopio in [9] and Hegde and Vasudeva in [8], how-
ever, suggest that the study of this labeling method can be
done through a different approach, that is, to investigate
the properties of the labeled graph through observation of
its signature.

2. PRELIMINARIES AND DEFINITIONS
Let v1, v2, . . . , vn be n distinct vertices of a graph G and
S = {s1, s2, . . . , sn} be a multiset of real numbers. For
each i, assign the value si to the vertex vi. The assigned
value si to vi will now be called as the signature value of
vi. Two vertices vi and vj , i != j, are adjacent if and only
if |si − sj | ∈ S. Then the set V = {v1, v2, . . . , vn} together
with the determined edges is an autograph. Now observe
that if S′ = {s′

1, s
′
2, . . . , s

′
n} is another multiset of numbers

that bijectively corresponds to set V, then G(S′) is also an
autograph with vertex set V but with different edge set.
This has been the motivation of the following definition.

Definition 2.1. (R. G. Panopio, [9]). If S = {s1, s2, . . . ,
sn} is a multiset of real numbers and x ∈ R, the translation
of S by x is the multiset S + x = {s1 + x, s2 + x, . . . , sn + x}.

The autograph having S +x as a signature is called a trans-
lation of the autograph G(S) denoted by G(S + x). See
Figure 1 for illustration.

Panopio in [9] has given a necessary and sufficient condition
for a translation of an autograph to be nonempty. With
this, he was able to show that the number of values of x for
which G(S + x) is nonempty is finite.

Theorem 2.1. (R. G. Panopio, [9]). Let S = {s1, s2, . . . ,
sn} be a multiset of real numbers and x ∈ R. Then the au-
tograph G(S + x) has at least one edge if and only if there
exist i, j, k, where i != j, such that |si − sj | = sk + x.

In the same paper, Panopio also obtained bounds for the
number of values that can be taken by x such that G(S + x)
is nonempty.
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Theorem 2.2. (R. G. Panopio, [9]). Let S = {s1, s2, . . . ,
sn} be a multiset of real numbers and define

x′ = max
i"=j

|si − sj |−min
k

sk and

x′′ = min
i"=j

|si − sj |−max
k

sk.

Then G(S + x) is the empty graph if x > x′ or x < x′′.

It will be apparent in the succeeding discussion that x′ and
x′′ of Theorem 2.2 are the maximum and the minimum val-
ues of x, respectively, such that G(S + x) is nonempty.

Figure 1: Autograph G(S) with S = {−1, 0, 1, 2} and some
of its translations: G(S + x) where x = 1, 2, 3, 4, 5,−1,−2.

For brevity, in this paper, vertices and their corresponding
signature values are treated in a similar manner i.e., a signa-
ture value refers to the vertex it represents. For instance, for
si, sj ∈ S, when si is said to be adjacent to sj it means that
not only |si − sj | ∈ S but corresponding vertices vi and vj

are also adjacent. Moreover, an edge [vi, vj ] will also some-
times be referred to as edge [si, sj ]. The following definition,
adapted from a concept given in [8], will be vital in the later
discussion.

Definition 2.2. A vertex s in autograph G(S) is called a
working vertex if there exist si, sj ∈ S such that |si − sj | = s.
Further, the edge [si, sj ] is said to correspond to s.

3. NUMBER OF EDGES OF A TRANSLA-
TION

Let G be an autograph with signature S of order n and
R = {|si − sj ||si, sj ∈ S and i #= j}. Also, let R = {si|i = 1,
2, . . . , m for some m} be the set of all distinct elements from
R. Finally, for each i = 1, 2, . . . , m, let ki be the number
of occurrences of si in R. The following results give the
number of edges of a translation of an autograph based on
the occurences of the elements of its signature in R.

Theorem 3.3. Let S be a multiset and x ∈ R. Suppose
S + x contains elements from R say s1, s2, . . . , sr, r ≤ m.
Then G(S + x) has exactly k1 + k2 + · · · + kr number of
edges.

Proof. Suppose st ∈ R. Then there exist si, sj ∈ S such
that |si − sj | = st, implying that |(si + x)− (sj + x)| = st.
Suppose also that st is contained in S + x. Hence, there
are corresponding vertices vi, vj ∈ V (G(S + x)) which form
an edge in G(S + x). Since st occurs kt times in R, there
are other kt − 1 pairs of vertices that also form kt − 1 edges
in G(S + x). Now let s1, s2, . . . , sr be all the elements in R
that are contained in S + x. From the previous argument, it
follows that G(S + x) has at least k1 + k2 + · · · + kr edges.

Suppose that there is another edge say [vp, vq ] in G(S + x)
aside from the edges described above. Then there exist cor-
responding sp, sq ∈ S such that |(sp + x)− (sq + x)| ∈ S + x
and |(sp + x)− (sq + x)| = |sp − sq| ∈ R. This indicates that
[vp, vq] has been accounted already. It follows, therefore,
that G(S + x) has exactly k1 + k2 + · · · + kr edges. !

Corollary 3.1. Let x′ and x′′ be the numbers described
in Theorem 2.2. Also, let kmax and kmin be the number of
occurrences of max

i"=j
|si − sj | and min

i"=j
|si − sj | in R, respec-

tively. Then G(S+x′) and G(S + x′′) will have exactly kmax

and kmin number of edges, respectively.

Proof. (The following will show that G(S + x′) will have
exactly kmax number of edges, the proof to show the other
case can be done similarly.)

Clearly, S + x′ contains min
k

sk + x′ but x′ = max
i"=j

|si − sj |−

min
k

sk. Hence, S + x′ has max
i"=j

|si − sj | as an element. So

by Theorem 3.3, G(S + x′) have at least kmax number of
edges.

Let si ∈ S be such that it is not the minimum signature
value. Thus si + x′ = si + (max

i"=j
|si − sj |−min

k
sk) = (si −

min
k

sk) + max
i"=j

|si − sj | > max
i"=j

|si − sj |. This means that

si + x′ /∈ R. Thus G(S + x′) will not contain any other
edges except the kmax edges given above. The result fol-
lows. !

Corollary 3.2. If the elements of S are distinct, G(S + x′)
will only have one edge.

Proof. If the elements of S are distinct, max
k

sk and min
k

sk

are also distinct. Thus max
i"=j

|si − sj | = max
k

sk −min
k

sk will

also be distinct and will occur just once in R. Consequently,
G(S + x′) will only have one edge. !

Observe that even if the elements of S are distinct, it does
not follow that G(S + x′′) will only have one edge, for min

i"=j
|si−

sj | could occur several times in R.
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4. ISOMORPHIC TRANSLATIONS
Note that Theorem 2.1 is equivalent to the statement that
G(S + x) is nonempty if and only if S + x contains at least
one element from R = {|si − sj || si, sj ∈ S and i #= j}. The
following are some consequences of this result showing ways
to determine isomorphisms among translations of an auto-
graph.

Theorem 4.4. Let S = {s1, s2, . . . , sn} be a multiset and
x1, x2 ∈ R. If S + x1 contains elements from R = {|si −
sj ||si, sj ∈ S and i #= j} which are also contained in S + x2,
then G(S + x1) and G(S + x2) are isomorphic.

Proof. If S + x1 and S + x2 both have no elements from R,
then by Theorem 2.1, G(S + x1) and G(S + x2) are both
empty which are consequently isomorphic since |S| = |S +
x1| = |S + x2|.

Now suppose S + x1 and S + x2 contain the same elements
from R. Note that S + x1 and S + x2 represent the vertex
sets of G(S + x1) and G(S + x2), respectively. Define the
mapping f : S + x1 → S + x2 such that f(s′) = s′ − (x1 −
x2). Since s′ = s + x1 for some s ∈ S, f(s′) = f(s + x1) =
s + x2. Thus s + x1 %→ s + x2 for all s ∈ S. Clearly, f is a
bijection from S + x1 to S + x2.

Let [s′
i, s

′
j ] be an edge in G(S + x1) such that s′

i = si + x1

and s′
j = sj + x1. This implies that |s′

i − s′
j | = |(si + x1)−

(sj +x1)| = |si− sj | ∈ S +x1 and |s′
i − s′

j | ∈ R. Notice that
|f(s′

i)−f(s′
j)| = |[s′

i−(x1−x2)]−[s′
j−(x1−x2)]| = |s′

i−s′
j | =

|si − sj |. By the assumption, |si − sj | ∈ S + x2. Hence
[f(s′

i)− f(s′
j)] must be an edge in G(S + x2). Therefore,

G(S + x1) and G(S + x2) are isomorphic. !

Theorem 4.5. Let S = {s1, s2, . . . , sn} be a multiset and
x1, x2 ∈ R and suppose that for each i = 1, 2, . . . , n, |si −
sj | #= |si − sk| for all j, k #= i. If each of S + x1 and S + x2

contains only one element from R such that these elements
are of the same number of occurrences in R, then G(S + x1)
and G(S + x2) are isomorphic.

Proof. Let si, sj ∈ R and suppose that S + x1 and S + x2

contain si and sj , respectively, such that these elements are
of the same number of occurrences in R. Also, suppose that
these elements are the only elements from R that S + x1

and S + x2 contain. Then from Theorem 3.3, G(S + x1)
and G(S + x2) have the same number of edges.

Assuming that for each i = 1, 2, . . . , n, |si − sj | #= |si − sk|
for all j, k #= i, then |(si +xr)−(sj +xr)| #= |(si +xr)−(sk +
xr)| for all xr ∈ R. This implies that each of [si + xr, sj + xr]
and [si + xr, sk + xr] corresponds to a distinct working ver-
tex in G(S + xr), that is, there is no two adjacent edges
in G(S + xr) that correspond to the same working vertex.
From this argument, it follows that the edges of G(S + x1)
are pairwise vertex disjoint. Similarly, the edges of G(S+x2)
are also pairwise vertex disjoint. So, each of G(S + x1) and
G(S + x2) can be portitioned into two subgraphs. The first
subgraph consists of isolated vertices while the second sub-
graph is a matching. Since |S| = |S + x1| = |S + x2| and

|E(G(S + x1))| = |E(G(S + x2))|, the matchings in G(S +
x1) and in G(S + x2) must be isomorphic. It is necessary
then that the subgraphs of isolated vertices of G(S + x1)
and G(S + x2) are also isomorphic. Therefore, G(S + x1) is
isomorphic to G(S + x2) !

5. NONEMPTY TRANSLATIONS
Theorem 2.1 provides a necessary and sufficient condition for
a translation of an autograph to be nonempty. Theorem 2.2,
on the other hand, gives bounds on the values that can be
taken by x so that G(S+x) is nonempty. The results below,
however, give the exact number of nonempty translations of
an autograph with signature consisting of integers.

Theorem 5.6. If a signature S is composed of distinct
integers, then there is no non-integer x such that G(S + x)
is nonempty.

Proof. If S is composed of distinct integers then R = {|si −
sj ||si, sj ∈ S and i #= j} will, clearly, be composed of non-
zero integers. On the other hand, in order for G(S + x) to be
nonempty, S + x must at least contain an element from R.
If x is non-integer, all elements of S + x will be non-integer.
Thus, S + x will not contain any element from R and so
G(S + x) will be empty if x is non-integer. !

Theorem 5.7. Let S be a signature of order n composed
of integers. Also, let R = {si|i = 1, 2, . . . , m for some m}
be the set of all distinct elements from {|si − sj ||si, sj ∈
S and i #= j}. Suppose s0 is the smallest element of S and
M = {si ∈ R|si > s0}. Then the number of positive integer
x such that G(S + x) is nonempty is given by |M |.

Proof. Let s0 be the smallest element of S. Also, let si ∈ R
be such that si > s0. Since si is a positive integer, there is
a positive integer xi such that s0 + xi = si. Consequently,
G(S + xi) will not be empty. Let M = {si ∈ R|si > s0}.
Since elements of M are distinct and are all positive, for
each si ∈ R there exists a unique positive integer xi such
that s0 + xi = si. Hence, there are |M | number of positive
x′s such that G(S + x) is nonempty. !

The following result can be proven similarly.

Theorem 5.8. Let S be a signature of order n composed
of integers. Also, let R = {si|i = 1, 2, . . . , m for some m}
be the set of all distinct elements from {|si − sj ||si, sj ∈
S and i #= j}. Suppose sl is the largest element of S and
N = {si ∈ R|si < sl}. Then the number of negative integer
x such that G(S + x) is nonempty is given by |N |.

Therefore, given an autograph G with signature S composed
of integers, the exact number of nonempty translations of
G(S) can now be determined. This observation is stated in
the following theorem.
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Theorem 5.9. Let S be a signature of order n composed
of integers. Also, let R = {si|i = 1, 2, . . . , m for some m}
be the set of all distinct elements from {|si − sj ||si, sj ∈
S and i #= j}. Suppose s0 and sl are the smallest and the
largest element of S, respectively. Set M = {si ∈ R|si > s0}
and N = {si ∈ R|si < sl}. Then the number of non-zero in-
teger x such that G(S + x) is nonempty is given by |M |+|N |.

Proof. See the combined proofs of Theorems 5.7 and 5.8 !

6. SUMMARY
In this study, the number of edges a translation of an auto-
graph consisted was determined. Some necessary conditions
telling when translations of an autograph are isomorphic
were also obtained. Finally, a way to determine the exact
number of values of x such that G(S + x) is nonempty or
the exact number of nonempty translations of G(S), where S
consists of integral elements, was found. It is recommended
that further studies be conducted on translations of auto-
graphs to determine other properties these graphs hold.
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