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ABSTRACT
A tree T on n+1 vertices is said to be graceful if its vertices
can be labeled using all of the integers 0, 1, . . . , n such that
the edge weights will run from 1 through n, and where the
weight of an edge equals the absolute value of the difference
of the numbers assigned to its vertices. In this paper, we
develop an algorithm that uses the adjacency matrices of
known graceful trees to propagate new graceful trees through
duplication of arbitrary graceful trees and joining them by
additional edges. The algorithm developed facilitates faster
generation of families of graceful trees, the study of which
is one of the current directions in establishing the graceful
tree conjecture.
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1. PRELIMINARIES AND DEFINITIONS
Let T be a tree on n+ 1 vertices with vertex set V (T ) and
edge set E(T ). A graceful valuation g of T is an injection

g : V (T ) → {0, 1, . . . , n}

such that if

w(u, v) = |g(u)− g(v)| ∀(u, v) ∈ E(T ),

then

w : E(T ) → {1, 2, . . . , n}

is an injection. A tree which admits a graceful valuation is
said to be graceful.

A simple graph that is connected with n+ 1 vertices and n
edges is a tree [2].

A graph G is said to be bipartite if V (G) can be partitioned
into sets AG = {x1, x2, . . . , xp} and BG = {y1, y2, . . . , yq}

such that (xi, xj) /∈ E(G) for all 1 ≤ i, j ≤ p and (yi, yj) /∈
E(G) for all 1 ≤ i, j ≤ q.

The distance d(u, v) = d(v, u) between any two vertices u
and v in a connected graph G is the length of the shortest
path between u and v.

The parity set P (v) of a vertex v in a tree T is the set of all
vertices including v which are of even distance from v in T .
The base of T under its graceful valuation g is that vertex b
in T such that g(b) = 0.

A graceful valuation g is interlaced if g induces, by restric-
tion, a bijection between (P (b) and Ns−1 = {0, 1, 2, ..., s−1}
where s, the size of T , is the number of vertices of T in P (v).

To illustrate the above-mentioned definitions, consider the
tree T shown in Figure 1.1 with its graceful valuation g in
Figure 1.2.

Figure 1.1

Figure 1.2

In Figure 1.2, it follows that the base of T under its graceful
valuation g is v2 and from Figure 1.1,

P (v2) = {v0, v1, v2, v3, v5, v7, v8}.
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Clearly, P (v2) has s = 7 elements so that

Ns−1 = N6 = {0, 1, 2, 3, 4, 5, 6}.

Now, g is interlaced since it induces a bijection between
P (v2) and N6 as illustrated in Figure 1.3.

Figure 1.3

The adjacency matrix AT of a tree T with vertex set V (T ) =
{v0, v1, . . . , vn} is the (n+ 1)× (n+ 1) matrix (aij) defined
by

aij =

{
1 if (vi, vj) ∈ E(T )
0 otherwise

.

In general, if the vertices of a graceful tree are identified with
their labels in the graceful valuation of the tree, then the
adjacency matrix can be written in such a way that the sum
of the diagonal elements except for the main diagonal is 1.
This is because each element of a diagonal of the said matrix
corresponds to a representative class of edges of the same
weight. Since an edge weight in a graceful tree is unique,
there can only be one such edge. Thus, the adjacency matrix
of any graceful tree can be written in such form which is
called generalized adjacency matrix of a tree induced by its
graceful valuation.

2. BACKGROUND OF THE STUDY
In 1963, Kotzig and Ringel conjectured that all trees are
graceful [1]. Since then, various efforts have been made to
settle the validity of this conjecture but to date, it has re-
mained unresolved. A recent survey of graceful trees can
be found in Gallian [3] which includes paths, stars, caterpil-
lars, olive trees, banana trees, and symmetrical trees, among
others.

Hugo [4] used the adjacency matrix of a graceful graph to
develop two algorithms to generate all possible extensions
of the graph to yield graceful graphs. His first algorithm
requires the addition of a vertex or an edge by augmenting
two diagonals with exactly one “1” entry. The propagation
of graceful graphs is done recursively. His second algorithm
requires the addition of any number of vertices or edges by
augmenting any number of rows or columns such that there
is exactly one “1” entry in each diagonal.

In this paper, we give an algorithm for propagating graceful
trees using the adjacency matrices of graceful trees. The al-
gorithm developed may be used to generate graceful trees in

order to identify properties possessed by graceful trees. At-
tempts to directly prove the Graceful Tree Conjecture have
all failed. Proving the conjecture indirectly will start by
assuming that there is a tree which is not graceful so it is
not isomorphic to any member of a known family of grace-
ful trees. A contradiction must occur somewhere to prove
the conjecture and this is where properties of a family of
graceful trees could come in.

3. THE ALGORITHM
The following theorem will be needed in our construction in
the Algorithm.

Theorem 3.1. Let Ti for i = 1, . . . ,m be m disjoint grace-
ful trees on ni+1 vertices with adjacency matrix ATi = [aij ].
Then the matrix

A =





0 0 0 0 0 . . . 0 AT1

0 0 0 0 · · · 0 AT2 0

0 0
. . . . . . . . . 0

...
0 0 ATm . . . 0
0 . . . ATm 0 0
... . . . . . .

. . . 0 0
0 AT2 0 . . . 0 0 0 0

AT1 0 . . . 0 0 0 0 0





with dimension

2(n1 + n2 + · · ·+ nm +m)× 2(n1 + n2 + · · ·+ nm +m)

and with 2 submatrices of ATi , i = 1, 2, . . . ,m where the rest
of the entries of A are zero, is an adjacency matrix for the
disjoint union of 2 copies of Ti, i = 1, 2, . . . ,m.

Proof. By construction, A is a (0, 1)-matrix and since ATi ’s
are symmetric, so is A. Also, the main diagonal of A has all
zero entries since the main diagonal does not contain entries
from any submatrix ATi . So, A is an adjacency matrix.

Consider V (Ti) to be the vertex set of Ti, i = 1, 2, . . . ,m
such that |V (Ti)| = ni +1. Let xi ∈ V (Ti) be the base of Ti

under the graceful valuation fi. Since Ti is a bipartite, we
can fix a bipartition Vi1 and Vi2 of the vertices of Ti such
that xi ∈ Vi1. Moreover,

Vi1 = {v ∈ V (Ti)|d(xi, v) is even}

and

Vi2 = {v ∈ V (Ti)|d(xi, v) is odd}.

In the generalized adjacency matrix ATi of Ti, akj = 1 im-
plies that vk ∈ Vi1 and vj ∈ Vi2. Let Ci and Di be the sets
of labels on the vertices of Vi1 and Vi2, respectively.

Now consider the 2m copies of adjacency matrices as assem-
bled in A. Call the copy of adjacency matrix as the jth copy
if it is the jth counting from the bottom left corner of A. For
a set of integers S, let a+ S = {a+ s|s ∈ S} for any a ∈ Z.
The 1st copy of ATi in A defines edges between vertices with
labels C1 ∪ (n̂+D1) where

n̂ = 2
m∑

i=1

(ni + 1)− (n1 + 1).
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There is an edge vsvn̂+q for some s ∈ Cj and q ∈ Dj precisely
when vs ∈ Vi1 and vq ∈ Vi2 and vsvq ∈ E(Ti). Thus, the 1st

copy of adjacency matrix in A that represents T1 induces an
isomorphic copy of T1 on the corresponding vertex set.

For j ∈ {2, . . . , 2m}, the jth copy of adjacency matrix in A
defines edges between vertices with labels (n+Cj)∪(n̂+Dj)
where

n =
j−1∑

i=1

(ni + 1)

and

n̂ = 2
m∑

i=1

(ni + 1)−
j∑

i=1

(ni + 1).

There is an edge vn+svn̂+q for some s ∈ Cj and q ∈ Dj

precisely when vs ∈ Vi1 and vq ∈ Vi2 and vsvq ∈ E(Ti).
Thus, the jth copy of adjacency matrix in A that represents
Ti induces an isomorphic copy of Ti on the corresponding
vertex set.

In general, since matrix A is symmetric, the jth copy and
the [2m − j + 1]th copy are equal and that they represent
the graceful tree Tj , j = 1, 2, . . . ,m. Hence, the jth and the
[2m − j + 1]th adjacency matrices both induce isomorphic
copies of Tj on their corresponding vertex sets. Thus we
have, 2 copies of Tj .

Further, by construction of matrix A, the 2 copies of Ti,
i = 1, . . . ,m are pairwise disjoint. !

Theorem 3.2. Let Ti for i = 1, . . . ,m be m disjoint grace-
ful trees on ni+1 vertices with adjacency matrix ATi = [aij ].
Then the matrix

ATi =





0 0 0 0 . . . 0 AT1

0 0 0 . . . · · · 0

0 0
. . . ATm−1 . . .

...

0
... ATm 0

... . . . ATm−1

. . . 0 0
0 . . . . . . 0 0 0

AT1 0 . . . 0 0 0 0





with dimension [2(n1 + · · ·+ nm−1 +m − 1) + (nm + 1)] ×
[2(n1+· · ·+nm−1+m−1)+(nm+1)] and with 2 submatrices
of ATi , i = 1, 2, . . . ,m − 1 and a submatrix of ATm , where
the rest of the entries of A are zero, is an adjacency matrix
for the disjoint union of 2 copies of Ti, i = 1, 2, . . . ,m − 1
and a copy of Tm .

The proof of Theorem 3.2 is similar with the proof of The-
orem 3.1.

The Algorithm

1. Considerm disjoint graceful trees Ti, i = 1, . . . ,m with
ni + 1 vertices.

2. Use the graceful labeling of Ti to write its adjacency
matrix as

A =





0 a01 a02 · · · a0n

a10 0 a12 · · · a1n

a20 a21

. . . · · · a2n

...
...

...
. . .

...
an0 an1 an2 · · · 0





The sum of the cth diagonal elements of ATi is 1 for
each 1 ≤ c ≤ n.

3. Assemble 2 copies of each ATi for i = 1, . . . ,m as in
Theorem 3.1 to form the transition matrix

T (A) = [bij ] =





0 · · · · · · 0 AT1

...
. . . . . . 0

0 ATm

. . . ATm 0

0 . . .
. . .

...
AT1 0 · · · · · · 0





with dimension

2(n1 +n2 + · · ·+nm +m)× 2(n1 +n2 + · · ·+nm +m)

.

4. For the diagonals of T (A) which are also the main
diagonals of each ATi , replace exactly one “0” entry
in the main diagonal of ATi by “1”.

5. For each i = 1, 2, . . . ,m− 1 , let

ci = min{|V (Ti)|, |V (Ti+1)|}

and D be the diagonal of T (A) that passes through b0k
and bk0 where

k = 2
m∑
i=1

(ni + 1)− 1.

For the diagonal of T (A) between ATi and ATi+1 , con-

sider the cells within ci steps above and below D. Re-
place exactly one“0”entry in those cells by“1”. Denote
the new transition matrix as T ∗(A).

6. Generate the graph given by T ∗(A) on

2
m∑
i=1

(ni + 1)

vertices and

2
m∑
i=1

ni + (2m− 1)

edges.
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7. Repeat steps 4 to 6 to exhaust the possible cases in
replacing exactly one “0” entry by “1” in the cells con-
sidered in Steps 4 and 5. Note that we can generate
possibly

(n1 + 1)· (n2 + 1)· · · · · (nm + 1)· 2c1· 2c2· 2cm−1

gracefully labeled graphs.

Theorem 3.3. Each graph generated by the Algorithm is
a graceful tree.

Proof. Let Ti be graceful trees on ni + 1 vertices for i =
1, 2, . . . ,m. Let ATi be the corresponding adjacency matrix
of Ti , for i = 1, 2, . . . ,m. Now, the sum of the diagonal
elements of each ATi is 1 for each 1 ≤ c ≤ n.

Let T ∗ be a graph generated by the Algorithm when applied
to Ti, i = 1, 2, . . . ,m. We wish to show that T ∗ is a tree.
We now describe the construction of T ∗. Notice that the
transition matrix T (A) = [bij ] is constructed as in Theorem
3.1. Hence, it induces disjoint union of 2 copies of Ti, i =
1, 2, . . . ,m. Note that T (A) has dimension

2(n1 + n2 + · · ·+ nm +m)× 2(n1 + n2 + · · ·+ nm +m)

and it has

2(n1 + n2 + · · ·+ nm)

“1” entries.

Now if the diagonals of T (A) are also the main diagonals of
each ATi , then exactly one “0” entry in the main diagonal of
ATi is replaced by “1”. The “1” entry in the main diagonal
of AT1 indicates an edge joining the 2 copies of T1, denoted
by 2T1, making 2T1 a simple connected graph of 2(n1 + 1)
vertices and 2n1 + 1 edges. Hence, 2T1 is a tree. Generally,
the “1” entry in the main diagonal of ATi , i = 1, 2, . . . ,m
indicates an edge joining the 2 copies of Ti, denoted by 2Ti,
and thereby making 2Ti a simple connected graph of 2(ni+1)
vertices and 2ni + 1 edges. Hence, 2Ti, i = 1, 2, . . . ,m is a
tree. Consequently, there are additional m “1” entries in
T (A).

For each i = 1, 2, . . . ,m− 1, let

ci = min{|V (Ti)|, |V (Ti+1)|}

and D be the diagonal of T (A) that passes through b0k and
bk0 where

k = 2
m∑

i=1

(ni + 1)− 1.

For the diagonal of T (A) between ATi and ATi+1 , we con-

sider the cells within ci steps above and below D and we
replace exactly one “0” entry in those cells by “1”. This
“1” entry indicates an edge that join 2ATi to 2ATi+1 for
i = 1, 2, . . . ,m−1. Consequently, there are additional m−1
“1” entries in T (A). We denote the new transition matrix
as T ∗(A). Observe that the graph T ∗ induced by T ∗(A) is
connected with

2(n1 + 1 + n2 + 1 + · · ·+ nm + 1) = 2
m∑

i=1

ni + 2m

vertices and

2(n1 + n2 + · · ·+ nm) +m+m− 1 = 2
m∑

i=1

ni + 2m− 1

edges. Hence, T ∗ is a tree.

If a diagonal of T (A) contains an element of ATi , then the
sum of its elements is 1 since the sum of its elements which
are in ATi is 1 and the remaining elements of the diagonal
are all 0. If the diagonal of T (A) is the main diagonal of
ATi then the sum of its elements is 1 since exactly one of
its 0 elements is replaced by 1. Similarly, if a diagonal of
T (A) does not contain an element of ATi then the sum of its
elements is 1 since exactly one of its 0 elements is replaced
by 1. Thus, T ∗ is a graceful tree. !

4. APPLICATION OF THE ALGORITHM
Step 1. Consider the graceful trees T1 and T2 with
n1 + 1 = 1 + 1 = 2 vertices and n2 + 1 = 2 + 1 = 3
vertices, respectively as shown in Figure 4.1

Figure 4.1

Step 2. Obtain the adjacency matrix of T1 and T2. See
Figures 4.2.

0 1
0 0 1
1 1 0

0 1 2
0 0 0 1
1 0 0 1
2 1 1 0

Figure 4.2

Step 3. Assemble AT1 and AT2 to form the transition
matrix T (A) = [bij ] shown in Figure 4.3

0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 1 0
2 0 0 0 0 0 0 0 1 0 0
3 0 0 0 0 0 0 0 1 0 0
4 0 0 0 0 0 1 1 0 0 0
5 0 0 0 0 1 0 0 0 0 0
6 0 0 0 0 1 0 0 0 0 0
7 0 0 1 1 0 0 0 0 0 0
8 0 1 0 0 0 0 0 0 0 0
9 1 0 0 0 0 0 0 0 0 0

Figure 4.3

The transition matrix T (A) in Figure 4.3 is of dimen-
sion 10× 10.

Step 4. For the diagonal of T (A) which is also the
main diagonal of AT1 , replace exactly one “0” entry by
“1”. For the diagonal of T (A) which is also the main
diagonal of AT2 , replace exactly one “0” entry by “1”.
See Figure 4.4.
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0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 1 1
2 0 0 0 0 0 0 0 1 0 0
3 0 0 0 0 0 0 0 1 0 0
4 0 0 0 0 0 1 1 1 0 0
5 0 0 0 0 1 0 0 0 0 0
6 0 0 0 0 1 0 0 0 0 0
7 0 0 1 1 1 0 0 0 0 0
8 0 1 0 0 0 0 0 0 0 0
9 1 1 0 0 0 0 0 0 0 0

Figure 4.4

Step 5. Let

c1 = min{|V (T1)|, |V (T2)|} = min{2, 3} = 2

and D be the diagonal of T (A) that passes through b0k
and bk0 where k = 2(2)+2(3)−1 = 9. For the diagonal
of T (A) between AT1 and AT2 that does not contain
an element of AT1 and AT2 , consider the cells within
c1 = 2 steps above and below D. Replace exactly one
“0” entry in those cells by “1” as shown in Figure 4.5.

0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 1 1
2 0 0 0 0 0 0 0 1 0 0
3 0 0 0 0 0 0 0 1 0 1
4 0 0 0 0 0 1 1 1 0 0
5 0 0 0 0 1 0 0 0 0 0
6 0 0 0 0 1 0 0 0 0 0
7 0 0 1 1 1 0 0 0 0 0
8 0 1 0 0 0 0 0 0 0 0
9 1 1 0 1 0 0 0 0 0 0

Figure 4.5

Step 6. Generate the tree from the given adjacency
matrix in Figure 4.5 as shown in Figure 4.6. Note that
if we exhaust all the possible cases by replacing exactly
one “0” entry by “1” in the cells considered in Steps 4
and 5, we can generate

(n1 + 1) · (n2 + 1) · 2c1 = 2 · 3 · 2 · 2 = 24

possible gracefully labeled trees on 10 vertices.

Figure 4.6
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