
On Communication Complexity of Some Hard Problems in
ECPe Systems with Priority

Sherlyne L. Francia Denise Alyssa A. Francisco
slfrancia@up.edu.ph dafrancisco@up.edu.ph

Richelle Ann B. Juayong Henry N. Adorna
rbjuayong@up.edu.ph hnadorna@dcs.upd.edu.ph

Algorithms and Complexity Laboratory
University of the Philippines Diliman

Quezon City, Philippines

ABSTRACT
In this paper, the Vertex Cover Problem and 3-Satisfiability
Problem are non-confluently decided using Evolution-Com-
munication P systems with Energy (ECPe) that impose pri-
ority on either evolution or communication. Additionally,
the communication resources, i.e. number of communica-
tion steps, communication rules and energy objects, used in
each system is analyzed. It is then shown through compar-
ison that the ECPe systems that put priority on evolution
utilize the greatest amount of resources. Those that put
priority on communication, however, not only use the least
amount of resources but also employ the least amount of
membranes.

Keywords: Membrane computing, Recognizer P systems,
Evolution-Communication P systems with energy and prior-
ity, Communication complexity, Computational complexity

1. INTRODUCTION
Nearly two decades has passed since Georghe Păun [10] de-
vised the P system computational model inspired by the
biological membrane structure of cells. Since then, a con-
siderable number of researches and studies have been and
are being done. There are studies, such as in [9], [11], [15],
exploring different variants of P systems and their character-
istics. There are also diverse papers on solving NP-complete
problems using various types of P systems (as in [13], [7],
[14]).
Despite the numerous investigations on P systems, the issue
of communication complexity of P systems is rarely consid-
ered. Thus, the authors in [1] focused their attention on it
and introduced dynamical communication complexity mea-
sures and the Evolution Communication P system with en-
ergy (ECPe) which utilizes energy objects as a measure of
communication cost. One study, as presented in [5], uses

these ECPe systems in solving some NP-Complete prob-
lems, namely the Vertex Cover Problem(VCP), Independent
Set Problem(ISP), and 3-Satisfiability Problem(3SAT). The
proponents in [5] then compute for the communication com-
plexity in solving the said problems with the use of the dy-
namical communication complexity measures suggested in
[1].
There are three modes of ECP systems with energy (ECPe
systems) considered in [1]: one has priority on communica-
tion, another has priority on evolution, and the other does
not impose priority on either communication or evolution.
The authors in [5] only explored one, which is the ECPe
system without priority and this inspired this study. Af-
ter reading [5], we became interested in finding out if using
a different mode for a specific ECPe system will affect the
utilization of communication resources of the system. As it
turns out, the ECPe systems constructed in [5] can not be
used directly if the priority is in evolution and can be further
optimized if the priority is in communication. Modifying the
ECPe system to suit the constraints led to the result show-
ing that when the priority is in communication, the least
amount of communication resources is used and when the
priority is on evolution, the most amount is utilized.
The solutions presented in this paper and in [5], use the con-
cept of non-confluent recognizer P systems. A P system is
said to be confluent if all of its computations produce the
same result, either acceptance(yes) or rejection(no), given
an input. If this is not the case, then the P system is said to
be non-confluent and the result is acceptance if and only if
there exists an accepting computation of the P system. The
notion of confluent and non-confluent P systems is further
discussed in Section 3.2.
As an outline, in Section 2, we give the definition of a graph,
VCP, conjunctive normal form(CNF) and 3SAT. On the
third section, we discuss what ECPe systems are and the dy-
namic communication measures that we will use in analyz-
ing the hardness of a solution. We will also give some other
definitions that we will use in solving problems in ECPe sys-
tems. On the fourth and fifth sections of this paper, we will
discuss the solutions to VCP and 3SAT, respectively, using
ECPEe systems in CPE and EPC modes. On the conclu-
sion section, we will compare the communication resources
as well as the number of membranes utilized by each solu-
tion. Additionally, we will suggest some related future works

14

that can be done.

2. DEFINITION OF SOME NP-COMPLETE
PROBLEMS

We define a graph as an ordered pair (V,E) where V is the
set of vertices and and the set of edges E ⊆ V × V .
As in [5], in this study, we deal only with simple graphs
without loops and parallel edges. Figure 1 is a graph where
V = {1, 2, 3, 4} and E = {(1, 2), (2, 3), (3, 4)}.

Figure 1. An Example of a Graph

A vertex cover V Ck where 1 ≤ k ≤ |V | is a set of vertices
with size k where for all edges (i, j) ∈ E, i ∈ V C or j ∈ V C.

Definition 1. Vertex Cover Problem (VCP) Given a
graph G = (V,E) and a positive integer k where 1 ≤ k ≤ |V |,
is there a vertex cover V Ck?

A boolean formula φX where X is a set of variables x1, x2 . . .
xp in conjunctive normal form (CNF) is a conjunction, de-
noted by C1 ∧ C2 ∧ . . . ∧ Cm where m ∈ N, of proposi-
tional clauses Ci which are a disjunction of literals yij de-
fined as Ci = (yi1 ∨ yi2 ∨ . . . ∨ yin) where n ∈ N and
yij ∈ X ∪ {x|x ∈ X}, 1 ≤ j ≤ n. The notation x im-
plies a negation.
In a k-CNF boolean formula, each clause is a disjunction
of exactly k variables. A boolean formula is said to be sat-
isfiable if there exists a truth value (1 as true, 0 as false)
assignment for all variables in which the formula evaluates
to true.

Definition 2. 3-SAT Problem (3SAT) Given a 3-CNF
boolean formula φ over a set of variables X, is φ satisfiable?

An example of a satisfiable 3-CNF boolean formula is φ =
(x1 ∨ x2 ∨ x3)∧ (x1 ∨ x4 ∨ x5) where the configuration x1 =
0, x2 = r, x3 = r, x4 = r, x5 = 1, r ∈ {0, 1} makes the for-
mula evaluate to true.

3. ECPE SYSTEMS
At this point, the readers are assumed to have core knowl-
edge of membrane computing [10].

An Evolution-Communication P system (ECP system) is a
type of P system introduced in [2] in which there is a sepa-
ration between multiset rewriting rules, or simply evolution
rules, and communication rules in the form of symport and
antiport rules. It is said to be more realistic than other P
systems for three reasons: evolution rules do not have tar-
get indications, simple symport/antiport rules are used for
communication, and objects available in the environment
are not needed in the beginning of the computation.
The authors in [1] used ECP system to analyze the commu-
nication complexity of P systems by introducing so-called

energy objects to the system, hence the name Evolution-
Communication P system with energy (ECPe system). These
energy objects are assigned to each region and are used to
enable communication such that every communication rule
requires a certain number of energy. We can treat energy
objects as catalysts: they can be produced by evolution rules
but they themselves cannot evolve. We note here that while
energy enables object transfer from one region to another,
energy objects cannot pass through membranes for they are
consumed during the communication.

Definition 3. An ECPe system is formally defined as a
construct of the form:

Π = (O, e, µ, w1, . . . , wm, R1, R
′
1, . . . , Rm, R′

m,

iout)

i. m refers to the total number of membranes.

ii. O is the alphabet of the system.

iii. e is the energy object. e /∈ O, should not be in the
initial configuration, can not evolve and can not be
transported from one region to another.

iv. µ represents the membrane structure and for this pa-
per, we will be using square brackets with labels to
denote a membrane. Membrane i is the the parent
membrane of j, denoted by parent(j), if j is located
inside the square brackets that represents membrane i.
Furthermore, if parent(j) is i then j ∈ children(i), i.e.
j is a child membrane of i. For example, [i[j]j [k]k]i is
a membrane structure where membranes j, k are chil-
dren of membrane i. For illustration purposes, we also
used the representation of a membrane structure given
in Figure 2.

i j k

Figure 2. An example membrane structure where membranes j, k are
children of membrane i

v. w1, . . . , wm ∈ O∗ and each wi(1 ≤ i ≤ m) denotes the
multiset of objects found in region i, i.e. the region
bounded by membrane i.

vi. Each Ri, 1 ≤ i ≤ m, is a set of evolution rules associ-
ated with region i. An evolution rule takes the form
a → v where a ∈ O and v ∈ (O ∪ e)∗.

vii. Each R′
i, 1 ≤ i ≤ m, is a set of communication rules

associated with membrane i. A communication rule
can either be a symport or an antiport rule.

• A symport rule is or the form (aej , out) or (aej , in)
where a ∈ O and j ≥ 1. If a symport rule is used,
j copies of object e will be consumed, i.e. the j
copies will not be transported, in order to trans-
port a inside(denoted by in) or outside(denoted
by out) of membrane i.

15

• An antiport rule is of the form (aej , in; bek, out)
where a, b ∈ O and j, k ≥ 1. If an antiport rule
is used, objects a and b will be switched and k
amount of energy objects will be consumed by
membrane i and j amount by parent(i).

viii. iout, 1 ≤ i ≤ m is the output membrane. iout = 0
means that the output is in the environment.

In ECP systems, rules are applied in a nondeterministic,
maximally parallel manner. This means that at any step,
when more than one rule can be applied to an object, the
system will nondeterministically choose which rule to ap-
ply and all the rules that can be applied will be applied.
According to [1], in selecting which rule to be used, three
modes are considered: (i) communication has priority over
evolution (CPE) in which if communication rules can be
applied by the system, then only communication rules are
performed at that step and no evolution rule is used ; (ii)
evolution has priority over communication (EPC) wherein
if evolution rules are applicable, then only evolution rules
are used at that step; (iii) the application of evolution and
communication rules are mixed together (CEM)
The state of the system specifies the configuration of the sys-
tem at any time i and is denoted by Ci. Ci ⇒ Ci+1 denotes
a transition step from Ci to Ci+1. In this paper, we refer
to a transition step from Ci to Ci+1 simply as Step i + 1.
Ci ⇒∗ Cj , i < j, denotes a computation- a series of transi-
tions. A halting configuration is a configuration wherein no
more rules can be applied. A computation succeeds if the
system reaches a halting configuration. A system’s output
can be defined as the objects sent to the environment, that
is, outside the outermost membrane, or objects sent to a
specified output membrane.

3.1 Dynamical Communication Complexity
Measures

From [1], the dynamical communication complexity mea-
sures that can be used in analyzing ECPe systems are:

ComN(wi ⇒ wi+1) =

1, if a communication rule

is used in this transition

0, otherwise

ComR(wi ⇒ wi+1) = the number of communication

rules used in this transition,

ComW (wi ⇒ wi+1) = the total energy of the com-

munication rules used in this

transition.

Another definition from [1] is:

Definition 4. We let Nmode(Π) be the set of numbers com-
puted by the system where mode ∈ {CPE,CEM,EPC}.
For ComX ∈ {ComN,ComR,ComW}, the following are

defined:

ComX(δ) =
h−1∑

i=0

ComX(Ci ⇒ Ci+1),

for δ : C0 ⇒ C1 ⇒ . . . ⇒ Ch

is a halting computation,

3.2 Solving Problems in ECPe Systems
In [5], the authors used the notion of recognizer P systems
to P systems from [3] and the definition of recognizer ECPe
systems from [4] as follows:

Definition 5. Let Π be an ECPe system whose alphabet
contains two distinct objects yes and no, such that every
computation of Π is halting and during each computation,
exactly one of the objects yes, no is sent out from the skin
to signal acceptance or rejection. If all the computations of
Π agree on the result, then Π is said to be confluent; if this
is not necessarily the case, then it is said to be non-confluent
and the global result is acceptance if and only if there exists
an accepting computation.

[3] also states that a decision problem can be represented
as a pair Y = (IY , θY) where IY is a language over a finite
alphabet and θY is a total boolean function over IY . (cod, s),
where cod is an encoding of the initial configuration and
s ∈ N , denotes a representation of an instance of a decision
problem in P systems.
From [5], the concept of the P systems that will be used in
solving a problem is based on both [3] and [4]. A family
Π(n), n ∈ N, of P systems is a set of P systems that takes a
parameter n to construct each system.

Definition 6. A family Π(n), n ∈ N, of ECPe systems,
solves a problem (IY , θY) if there exists a pair (cod, s) over
IY such that for each instance u ∈ IY :

(i) n = s(u) ∈ N and cod(u) is an input multiset of the
system Π(n)

(ii) there exists an accepting computation of Π(n) with in-
put cod(u) if and only if θY (u) = 1.

Definition 7. Let Y = (IY , θY) be a decision problem,
Π(n), n ∈ N, be a family of recognizer ECPe systems solving
Y with a pair (cod, s) over IY . For each instance u ∈ IY ,

ComX(u,Π(n)) = min{ComX(δ) | δ : C0 ⇒ C1 ⇒ . . .

⇒ Ch in Π(n) with n = s(u) and

cod(u) is an input multiset in Π(n)},

where X ∈ {N,R,W}. To analyze the communication re-
sources used by Π(n) in solving problem Y,ComX(Y, Π(n))
is defined as:

ComX(Y,Π(n)) = max{ComX(u,Π(n)) | u ∈ IY }.

Definition 8. Let FmodeComX where X ∈ {N,R,W} and
mode ∈ {CPE,CEM,EPC}. A decision problem Y =
(IY , θY) ∈ FComX(k) if and only if:

16

(i) There exists a family Π(n), n ∈ N, of confluent recog-
nizer ECPe systems that decides Y

(ii) ComX(Y,Π(n)) = k.

The analogous complexity classes for non-confluent recog-
nizer ECPe systems are NFmodeComN,NFmodeComR
NFmodeComW .
We say that Y ∈ FmodeComNRW (p, q, r) if and only if Y ∈
FmodeComN(p), Y ∈ FComR(q) and Y ∈ FComW (r). We
use NFmodeComNRW for non-confluent recognizer ECPe
systems.

This definition differs from that in [5] since we take into con-
sideration the modes of the ECPe systems.
The authors in [5] used ECPe system under CEM and pre-
sented the following theorems:

Theorem 1. V CP ∈ NFCEMComNRW (6, |VG|+3k + 6,
3|EG|+|VG|+k + 5) where EG is the edge set and VG is the
vertex set of the input graph G.

Theorem 2. 3SAT ∈ NFCEMComNRW (5, 2n+3, 4n+3)
where n is the number of clauses for the input 3-CNF boolean
formula φX .

In the following sections, we shall prove that VCP and 3SAT
are both solvable using ECPe systems over CPE and EPC
by constructing recognizer ECPe systems that satisfy Def-
initions 6 and 8. For this, we use the same representation
and encoding of the said problems as in [5].

4. SOLUTIONS TO VERTEX COVER
PROBLEM(VCP)

Definition 9. Let the Vertex Cover Problem (VCP) be pre-
sented by a pair V CP = (IV CP , θV CP) where IV CP = {w(G,k)

|w(G,k) is a string representing a graph G and a positive in-
teger k}. If the graph G contains a vertex cover of size at
most k, θV CP (w(G,k)) = 1; otherwise, θV CP (w(G,k)) = 0.

As example, we use the graph G presented in Section 2 with
V C2 ∈ {{2, 3}, {1, 3}, {2, 4}}.

4.1 Solution in CPE mode
Theorem 3. V CP ∈ NFCPEComNRW (5, |VG|+3k + 3,
2|EG|+ |VG|+k+4) where EG is the edge set and VG is the
vertex set of the input graph G.

Proof. We define a family of ECPe systems over CPE as
ΠV CP (n) where n = s(w(G,k)) = |VG|:

ΠV CP (n) = (O, e, [0[1]1]0, w0, ∅, ∅, R0, R
′
0, R1, R

′
1)

where:

• O = {Aij , Bij , vi, v̂i, i, î, i, i | 1 ≤ i < j ≤ n} ∪
{c, c′, d, d′, d′′} ∪ {α0,α1,α2, γ,#0,#1,#2,#3,
#4,no,yes}

• w0 = v1v2 . . . vncod(w(G,k))

• R0 = {Aij → Bij , Bij → i, Bij → j | 1 ≤ i < j
≤ n} ∪ {vi → v̂ie, i → i | 1 ≤ i ≤ n} ∪ {c → c′e2

d → d′α0e, d
′ → d′′, d′′ → e} ∪ {α2 → noe,

#0 → #1,#1 → #2,#2 → #3,#3 → #4,
#4 → yese}

• R′
0 = {(noe, out), (yese, out)}

• R1 = {v̂i → î, î → γ, i → in−2en−2 | 1 ≤ i ≤ n}
∪ {c′ → e,α0 → α1,α1 → α2}

• R′
1 = {(v̂ie, in), (ie, in; îe, out), (ie, in; ie, out) | 1 ≤

i ≤ n} ∪ {(c′e, in), (α0e, in), (#4e, in;α2e, out)}

As in [5], (cod, s) over IV CP is defined as such that for a
given instance w(G,k) ∈ IV CP we have n = s(w(G,k)) = |VG|
and the encoding cod(w(G,k)) is a multiset containing Aij

for every (i, j) ∈ EG, k copies of object c and |EG|−k copies
of object d. To satisfy the condition (i) of Definition 6, this
encoding is placed in region 0 ensuring that s(u)is a natural
number and cod(u) is an input multiset for ΠV CP (n).
To show that we can satisfy the condition (ii) of Definition 8,
we shall also break down the solution into phases (namely
the setup, finding the candidate solution, validation, and
output phases) patterned by the process presented in [5].

v1v2v3v4A12A23A34cd
2

0

1

Figure 3. C0: Initial configuration given G and k = 1

Setup phase. This is the phase where we represent each ver-
tex of the input graph in region 1, and delegate a vertex for
each edge present in region 0.

Step 1: All objects vi, Aij , c, d, and #0 evolve to v̂i, Bij , c
′,

d′, and #1 respectively. The evolution rules vi → v̂ie,
c → c′e2, and d → d′α0e produce energy objects and
α0.

Step 2: This step involves communicating the objects v̂i, c
′,

and α0 through membrane 1 using the energy pro-
duced in the first step; leaving k energy in region 0
(produced by the rule c → c′e2) where k = the maxi-
mum size of the vertex cover.

Step 3: Representative vertices for the edges are non-determin-
istically chosen when objects Bij evolve to either i or j
by rules Bij → i or Bij → j. Simultaneously, in region
1, v̂i evolves to î (through v̂i → î), and objects c′ and
α0 transform to e and α1, respectively. At the same
time, #1 evolves to #2.

17

Finding a candidate solution. In this phase, a candidate ver-
tex cover is chosen, and vertices composing the candidate are
transferred from region 1 to region 0.

Step 4: At this point, a representation of all the vertices in
the form of the objects î is present in region 1. Rules
î → γ and (ie, in; îe, out) are both available for the
objects. However, since communication has priority
over evolution, only the latter rule is used. The same
principle applies to objects i in region 0 on which the
evolution rule i → i cannot be applied yet. These
antiport rules let the system to non-deterministically
choose a possible solution of size k and transfer them
from region 1 to region 0. Hence, the communicated
objects î in region 0 is the candidate solution.

2̂23d′′2#2

1̂23̂4̂α1

0

1

Figure 4. C4: Candidate solution {2̂} is chosen

Validating the solution. In region 1, the candidate solution
is represented by the objects i. These are used to validate
that the selected vertex cover includes all edges.

Step 5: The next thing to do is to evolve objects i to i (through
rule i → i)in region 0, and objects î to γ (through rule
î → γ) in region 1. This step is necessary to prevent
the communication rule (ie, in; îe, out) from repeating
when energy objects are produced for validation. Si-
multaneously, the evolution rule i → in−2en−2 is ap-
plied to each objects i in region 1 producing n − 2,
which is the maximum number of edges a vertex can
have minus one edge already verified when the candi-
date solution was selected, i energy objects. At the
same instant #2 evolves to #3 and α1 to α2.

Step 6: Communication is prioritized and so the antiport rule
(ie, in;
ie, out) is used to confirm that the candidate solution
covers all the edges. If no object i remains in region
1, it means that the chosen vertex cover is verified.

Step 7: #3 evolves to #4.

Output phase. In the output phase, the object yes is re-
leased to the environment if the chosen vertex cover is valid;
otherwise, no is released.

Step 8: If all the edges where verified, there will be no remain-
ing energy present in region 0, hence no communica-
tion can take place. The evolution rule #4 → yese is
applied. If, however, not all the edges were covered,
α2 is sent to region 0 and #4 to region 1 by the rule
(#4e, in;α2e, out).

2̂23e#3

1̂22e3̂4̂α2

0

1

Figure 5. C6: Since V C1 for G does not exist, not all edges were
verified leaving 2 in region 1, and an energy object in regions 0 and 1

Step 9: If the chosen candidate solution is valid, yes will be
sent to the environment and the computation will halt.
Otherwise, α2 evolves to noe.

Step 10: no is sent to the environment and the computation
halts.

2̂23

1̂223̂4̂#4

0

1

no

Figure 6. C10 : no is sent to the environment and computation halts

We then compute for the communication complexity at each
phase of the computation to show that Definition 8 is satis-
fied:

a. In the setup phase,

• number of communication step is one (involving
symport rules for objects vi, c

′, and α0)

• number of communication rules used is |VG|+k+1

• number of energy objects used is |VG|+k + 1

b. In finding a candidate solution,

• number of communication step is one (involving
antiport rules for of objects v̂i and i)

• number of communication rules used is k

• number of energy objects used is 2k

c. In validating the candidate solution,

• number of communication step is one (involving
antiport rules for objects i and i to validate re-
maining edges)

• number of communication rules used is k

• number of energy objects used is 2(|EG|−k)

d. In the output phase,

• maximum number of communication step is 2
when no is released to the environment (through
rules (#4e, in; α2e, out) and (noe, out))

18

• maximum number of communication rules used is
2

• maximum number of energy objects used is 3

Summing all the resources we computed above, we have
proven that V CP ∈ NFCPEComNRW (5, |VG|+3k + 3,
2|EG|+|VG|+k + 4).

4.2 Solution in EPC mode
Theorem 4. V CP ∈ NFEPCComNRW (9, |VG|+3k + 16,
3|EG| +|VG|+k+15) where EG and VG are the set of edges
and vertices, respectively.

Proof. A family of ECPe systems over EPC that solves VCP
is defined as ΠV CP (n):

ΠV CP (n) =(O, e, [0[1]1[2]2[3]3]0, w0, ∅, ∅, R0, R
′
0, R1, R

′
1,

R2, R
′
2, R3, R

′
3)

where

• O = {Aij , vi, v̂i, i, î, i|1 ≤ i < j ≤ n} ∪ {c, c′, d, d′} ∪
{α0, α1,α2,α3,α4,α5} ∪{β0,β1,β2,β3,β4,β5,β6,β7,
β8,Ω}

• w0 = v1v2 . . . vncod(w(G,k))α0β0

• R0 = {Aij → ie, Aij → je|1 ≤ i < j ≤ n} ∪ {vi →
v̂ie|1 ≤ i ≤ n}∪{c → c′e2, d → d′e}∪{β0 → β1e,β2 →
β3e,β4 → β5Ωe

2,β6 → β7e,β8 → yese,α0 → α1e,
α2 → α3e,α4 → α5e}

• R′
0 = {(noe, out), (yese, out)}

• R1 = {v̂i → î|1 ≤ i ≤ n} ∪ {c′ → e}

• R′
1 = {(v̂ie, in), (ie, in; îe, out)|1 ≤ i ≤ n} ∪ {(c′, in)}

• R2 = {d′ → e} ∪ {̂i → in−2|1 ≤ i < j ≤ n} ∪ {α1 →
α2e,α3 → α4e,α5 → no}

• R′
2 = {(̂ie, in), (ie, in; ie, out)|1 ≤ i ≤ n} ∪ {(d′e, in),

(α1e, in), (α3e, in), (α5e, in)}∪{(α2e, out), (α4e, out)}
∪{(Ωe, in;
noe, out)}

• R3 = {β1 → β2e,β3 → β4e,β5 → β6e,β7 → β8e}

• R′
3 = {(β1e, in), (β3e, in), (β5e, in), (β7e, in), } ∪

{(β2e, out), (β4e, out), (β6e, out)}∪{(Ωe, in;β8e, out)}

As with the ECPe system in CPE mode, this ECPe sys-
tem uses the same encoding and follows the same pattern of
solution as that in [5].

Setup phase. Similar to the setup phase in CPE mode, in
this phase, a vertex is nondeterministically chosen to cover
each edge. Also, a representation of each vertex communi-
cated to region 1.

Step 1: In the first step, each vi, Aij , c, d, α0 and β0 will
evolve into v̂ie, ie or je, c′e2, d′e, α1e and β1e, respec-
tively. The value of i and j represents which vertex
will represent the edge Aij .

v1v2v3v4A12A23A34c
2dα0β0

0

1

2 3

Figure 7. C0: Initial configuration given G and k = 2

Step 2: All the objects v̂i and c′ are transported to region 1 us-
ing the rules (v̂ie, in) and (c′, in), respectively. At the
same step, all the d′ together with α1 are transported
to region 2 and β1 to region 3.

Step 3: All the communicated objects will evolve using the
rules v̂i → î, c′ → e, d′ → e, α1 → α2e and β1 → β2e.

133e5

1̂2̂3̂4̂e2

α2e
2 β2e

0

1

2 3

Figure 8. C3: Representative vertices 1, 3, 3 were chosen in C1 for
edges (1, 2), (2, 3), (3, 4) respectively and other objects were set up to
their respective regions and evolved

Finding a candidate solution. From the representation of
vertices in region 1, a candidate vertex cover is chosen and
is communicated to region 0.

Step 4: This step involves swapping k number of objects î in
region 1 with their counterparts in region 0 using the
antiport rule (ie, in; îe, out). Also done in this step, α2

and β2 are transported to region 0.

Step 5: α2 and β2 evolves into α3 and β3, respectively.

Validating the solution. A representation of the candidate
vertex cover is transported to region 2 from region 1 and this
is used to validate if all the edges are covered by the selected
vertex cover. A vertex cover is valid if no representation of
the edges remain in region 0.

19

1̂3̂3e3α2β2e

132̂4̂

e

0

1

2 3

Figure 9. C4: Candidate solution {1̂, 3̂} were chosen

Step 6: The representative vertex cover as well as α3 will be
communicated to region 2 and β3 will be transported
to region 3.

Step 7: Evolution rules î → in−2, α3 → α4e and β3 → β4e
will be used. The objects i will be used to verify the
remaining edges in region 0.

Step 8: The antiport rule (ie, in; ie, out) will be applied to ver-
ify if the chosen vertex cover covers all the edges. If
no object i remains in region 0, then the vertex cover
is valid. In this same step, α4 and β4 are transported
to region 0.

3α4β4

132̂4̂

3123

0

1

2 3

Figure 10. C8: Remaining edge represented by 3 was validated

Step 9: α4 evolves to α5 and β4 will evolve to β5Ωe
2.

Output phase. In the output phase, the object yes is re-
leased to the environment if the chosen vertex cover is valid
and no is released otherwise.

Step 10: α5 is communicated to region 2 and β5 to region 3.

Step 11: α5 evolves to no and β5 to β6e.

Step 12: β6 is transported to region 0 (through rule (β6e, out))
and no may also be switched with Ω (though rule
(Ωe, in;β8e,
out)) in region 0. Note that no will only be communi-
cated to region 0 if there is at least one energy object

left in region 2 and this will only happen if not all the
edges were verified, meaning, the vertex cover is not
valid.

Step 13: β6 evolves to β7e.

Step 14: β7 is communicated to region 3 and nomay be released
to the environment depending on whether the vertex
cover is valid or not.

Step 15: If no was released to the the environment in the previ-
ous step, β7 evolves to β8e and the computation halts.
In the case that the vertex cover is valid, however, β7

still evolves but the computation will not yet halt.

Step 16: The antiport rule (Ωe, in;β8e, out) is applied.

Step 17: β8 evolves to yese.

Step 18: Lastly, yes is released to the environment using the
communication rule (yese, out).

3

132̂4̂

3123no Ω

0

1

2 3

yes

Figure 11. C18: yes was sent to the environment and the computa-
tion halts

As a conclusion to our proof, we show that Definition 8 is
satisfied by analyzing the communication resources at each
phase of the computation.

a. The setup phase involves one communication step. In
this communication step, the objects vi(1 ≤ i ≤ |VG|),
c′, d′,α1 and β1 will be communicated and for each of
these objects, one energy object is consumed.

• number of communication step is one

• number of communication rules used is |VG|+4

• number of energy objects consumed is |EG|+|VG|
+2

b. Finding a candidate solution also involves one com-
munication step. In this phase 2k(this size of the ver-
tex cover) number of objects are swapped in order to
choose a candidate vertex cover. Also done in this
phase is the communication of α2 and β2 to region 0.

• number of communication step is one

• the number of communication rules applied is k+
2

• the number of energy objects consumed is 2k+ 2

20

c. For the validation and output phase:

• The first communication step is used to transport
the candidate vertex cover to region 2. Another
communication step may be used in checking if
the vertex cover covers all the remaining edges.
This step is optional because it may not happen
depending on the chosen vertex cover. Note, how-
ever, that if this step does not happen, then the
vertex cover is not valid and if it does occur, it
does not necessarily mean that the vertex cover
is valid. Another communication step is used in
transporting α5 and β5. Another four communi-
cation steps will occur if the answer is yes and
this is the maximum. The total number of com-
munication steps in this phase is 7.

• Since the size of the vertex cover is k, in the
first communication step, k rules will be used to
communicate the candidate vertex cover to region
2 and 2 additional rules will be used to com-
municated α3 and β3. In the second communi-
cation step, a maximum of k rules of the form
(ie, in; ie, out) will be used to verify the remain-
ing edges and 2 rules will be used to transport
α4 and β4. In the next communication step, 2
rules will be used to transport α5 and β5. Since
we are computing for the maximum amount of
communication rules used, from this point, we
will only consider the case if the vertex cover se-
lected is valid since it uses the most communi-
cation rules. In the proceeding communication
step, β6 will be communicated to region 0 and
this uses one communication rule. Another com-
munication step will be used to transport β7. In
the next communication step, an antiport rule of
the form (Ωe, in;β8e, out) will be used in prepa-
ration for the release of yes in the environment.
Lastly, yes will be released into the environment.
The total number of communication rules in the
validation and output phases is 10 + 2k.

• Following the explanation above, the number of
consumed energy objects is 11 + 2|EG|−k.

From the analysis above, we can observe that the maximum
communication cost will be incurred if the chosen vertex
cover is valid. As a summary, for this ECPe system used in
solving the VCP, ComNRW (9, |VG|+3k+16, 3|EG|+|VG|+k
+15).

5. SOLUTIONS TO 3-SATISFIABLE PROB-
LEM (3SAT)

We now move on to solutions to 3SAT using ECPe systems
in CPE and EPC modes.
Again, we used the representation of 3SAT as described in
[5].

Definition 10. Let the 3-SAT problem be represented by a
pair (I3SAT , θ3SAT) where I3SAT = {w(φX)|w(φX) is a string
representing a 3-CNF boolean formula φX}. Boolean func-
tion θ3SAT (
wφX)) evaluates to 1 if φ is satisfiable, otherwise, θ3SAT (wφX)
= 0.

As an example, we use the boolean formula φX = (x1∨x2∨
x3) ∧ (x1 ∨ x4 ∨ x5) where n = 2.

5.1 Solution in CPE mode
Theorem 5. 3SAT ∈ NFCPEComNRW = (4, 2n+1, 3n+
1) where n is the number of clauses for the input 3-CNF
boolean formula.

Proof. We define a family of ECPe systems over CPE as:

Π3SAT (n) = (O, e, [0[1]1]0 . . . [n]n, w0, ∅, . . . , ∅, R0, R
′
0, R1,

R′
1, . . . , Rn, R

′
n)

where:

• O = {xd, d, d̂|1 ≤ d ≤ 3n}∪{0dq, 1dq, Ai1i2i3 ,q, Bi1i2i3,q

|1 ≤ d ≤ 3n, 1 ≤ q ≤ n and ir ∈
3n⋃
d=1

{d, d̂}, ∀r ∈

{1, 2, 3}} ∪ {c,β0,β1,#0,#1,#2, #3,no,yes}

• w0 = x1x2 . . . x3n#0cod(wφx)

• R0 = {xd → 0d1 . . . 0dn, xd → 1d1 . . . 1dn|1 ≤ d ≤
3n} ∪ {Ai1i2i3,q → Bi1i2i3,qce

2|1 ≤ q ≤ n and ir ∈
3n⋃
d=1

{d, d̂}, ∀r ∈ {1, 2, 3}} ∪ {#0 → #1,#1 → #2,

#2 → #3,#3 → yese,β1 → noe}

• R′
0 = {(yese, out), (noe, out)}

• For 1 ≤ q ≤ n :

– Rq = {Bi1i2i3,qe → i1i2i3β0e|ir ∈
3n⋃
d=1

{d, d̂}, ∀r ∈

{1, 2, 3}} ∪ {β0 → β1}

– R′
q = {(Bi1i2i3,qe, in)|ir ∈

3n⋃
d=1

{d, d̂}, ∀r ∈ {1, 2, 3}}

∪ {(0dqe, in; d̂e, out), (1dqe, in; de, out)|1 ≤ d ≤
3n} ∪ {(#3e, in;β1, out)}

Again, as in [5], the pair (cod, s) over IφX is defined as such
where for each instance wφX ∈ IφX , s(wφx) = n where n is
the number of clauses for the boolean formula φX . The en-
coding cod(wφX) is defined as a multiset containing Ai1i2i3 ,q

for 1 ≤ q ≤ n where if Cq = yi1,q ∨ yi2,q ∨ yi3,q, then

il =

{
d if yil,q = xd

d̂ if yil,q = xd

for l = {1, 2, 3}, where xd ∈ {x1, x2, . . . , xn}. Note that
s(wφx) is the number of clauses, hence a natural number,
and cod(wφX) showing that condition (i) of Definition 6
holds. We show condition (ii) is satisfied through the sys-
tems computation.

Setup and finding a candidate solution phase. In this phase,
each variable is assigned a truth value and each clause i
where 1 ≤ i ≤ n is represented in each region q, 1 ≤ q ≤ n.

Step 1: The first thing to do is to nondeterministically assign
a truth value to each variable xi by applying the rule

21

0

1 2

x1x2x3x4x5x6A1̂2̂3̂,1A14̂5,2#0

Figure 12. C0: Initial configuration given boolean formula φX

xd → 0d1 . . . 0dn or xd → 1d1 . . . 1dn. At the same in-
stant, objects Ai1i2i3,q evolve to Bi1i2i3,q and produce
2n energy necessary for the setting up the clauses and
validating them. Also, #0 becomes #1.

0

1 2

011012121122131132041042051052053
061062063B1̂2̂3̂,1e

2B14̂5,2e
2#1

Figure 13. C1: Each variable xi, 1 ≤ i ≤ 3n was assigned a value

Step 2: In this step, communication is prioritized and Bi1i2i3,q

objects are transferred to their corresponding region q.

Step 3: Evolution rule Bi1i2i3,q → i1i2i3β0 is used in each
region q producing a representation of each clause q
where 1 ≤ q ≤ n.

0

1 2

011012121122131132041042051052053
061062063ee#2

1̂2̂3̂β0e 14̂5β0e

Figure 14. C3: Each Bi1i2i3,q was transferred to corresponding q
membranes in Step 2 and evolved to i1i2i3, qβ0e in Step 3

Validating candidate solution and output phase. In this
phase, it is checked whether each clause evaluates to true.
If all of the clauses are verified, then the object yes is sent
to the environment and no otherwise.

Step 4: The clauses are verified by applying the antiport rules
(0dqe, in; d̂e, out) and (1dqe, in; de, out).

Step 5: Objects #2 and β0 evolve to #3 and β1 respectively.

Step 6: If all the clauses evaluates to true, there would be no
energy left in the system and communication cannot

0

1 2

1̂0121211221311320414̂051052053
061062063#3

0112̂3̂β1 04215β1

Figure 15. C5: Each clause were verified in Step 4 using rules (011e,
in; 1̂e, out) and (042e, in; 4̂e, out). #2 and β0 evolved to #3 and β1

respectively in Step 5

ensue and #3 proceeds to evolve to yese. If not all of
the clauses evaluates to true, there is enough energy
for a clause which evaluates to false to use the antiport
rule (#3e, in;β1e, out).

Step 7: If all clauses are satisfied, yes is communicated out to
the environment and the computation stops. Other-
wise, β1 in region 0 evolves to noe.

0

1 2

1̂0121211221311320414̂051052053
061062063

0112̂3̂β1 04215β1

yes

Figure 16. C7: All clauses were satisfied, hence yes is sent to the
environment and the computation halts

Step 8: Lastly, if not all clauses are satisfied, no is sent to the
environment and the computation halts.

We now compute the communication resources used at each
phase.

a. In the setup phase,

• The number of communication steps is one (in-
volving symport rules for each clause representa-
tion Ai1i2i3,q).

• The number of communication rules used is n.

• The number of energy consumed is n.

b. In the validation and output phase,

• The maximum number of communication steps is
3 which occurs when not all clauses are satisfied,
and no is sent to the environment. These 3 steps
involves antiport rules for the verified clauses, the
rule (#3e, in;β1e, out), and the symport rule for
communicating no to the environment.

• The maximum number of communication rules
n+1 for sending a no to the environment occurs
when only n−1 clauses are verified. This is equal
to the number of communication rules used when
the 3-CNF boolean formula is satisfiable.

22

• The maximum number of energy consumed is 2n+
1 which is equal for sending a no or a yes to the
environment.

From the calculations above, we have shown that 3SAT is
indeed in NFCPEComNRW (4, 2n+ 1, 3n+ 1).

5.2 Solution in EPC mode
Theorem 6. 3SAT ∈ NFEPCComNRW = (6, 4n+7, 7n+
7) where n is the number of clauses for the input 3-CNF
boolean formula.

Proof. We define a family of ECPe systems that solve 3SAT
as a construct Π3SAT :

Π3SAT (n) = (O, e, [0[1]1 . . . [n]n[n+1]n + 1]0, w0, ∅, . . . , ∅,
R0, R

′
0, R1, R

′
1, . . . , Rn, R

′
n, Rn+1, R

′
n+1)

where

• O = {xd, d, d̂|1 ≤ d ≤ 3n}∪{0dq, 1dq, Ai1i2i3,q, Bi1i2i3,q

|1 ≤ d ≤ 3n, 1 ≤ q ≤ n and ir ∈
3n⋃
d=1

{d, d̂}}∪{c,α0,α1,

α2,α3,α4, Ω,β0,β1,β2,β3,no,yes}

• w0 = x1x2 . . . x3nα0cod(wφx)

• R0 = {xd → 0d1 . . . 0dn, xd → 1d1 . . . 1dn|1 ≤ d ≤
3n} ∪ {Ai1i2i3,q → Bi1i2i3,qce

2|1 ≤ q ≤ n and ir ∈
3n⋃
d=1

{d, d̂}, ∀r ∈ {1, 2, 3}} ∪ {α0 → α1Ωe
2,α2 → α3e,

α4 → yese2,β0 → β1e} ∪ {d → e, d̂ → e|1 ≤ d ≤ 3n}

• R′
0 = {(noe, out), (yesen+2, out)}

• For 1 ≤ q ≤ n :

– Rq = {Bi1i2i3,q → i1i2i3β0e
3|ir ∈

3n⋃
d=1

{d, d̂}, ∀r ∈

{1, 2, 3}} ∪ {β1 → β2}

– R′
q = {(Bi1i2i3,qe, in)|ir ∈

3n⋃
d=1

{d, d̂}, ∀r ∈ {1, 2, 3}

} ∪ {(β0e, out), (β1e, in), (ce, in;β2e, out)} ∪
{(0dqe, in; d̂e2, out), (1dqe, in; de

2, out)|1 ≤ d ≤
3n}

• Rn+1 = {α1 → α2e,α3 → α4e,Ω → noe}

• R′
n+1 = {(Ωe, in), (α1e, in), (α2e, out), (α3e, in),

(α4, out), (β2e, in;noe, out)}

This ECPe system will use the same encoding as [5].

Setup and finding a candidate solution phase. In this phase,
a truth value is assigned to each variable and each region
i(1 ≤ i ≤ n) is given a representation of the ith clause.

Step 1: In the first step, each xi from the initial configura-
tion is assigned a truth value using the rule xd →
0d1 . . . 0dn or xd → 1d1 . . . 1dn. Also, the evolution
rules Ai1i2i3,q → Bi1i2i3,qce

2 and α0 → α1Ωe
2 are

used. The objects 0dq and 1dq represent the candidate
assignment for each variable.

0

1 2

3

x1x2x3x4x5x6A1̂2̂3̂,1A14̂5,2α0

Figure 17. C0: Initial configuration given boolean formula φX

0

1 2

3

011012121122031032041042151152
161162B1̂2̂3̂,1ce

2B14̂5,2ce
2α1Ωe

2

Figure 18. C1: Each variable xi, 1 ≤ i ≤ 3n was assigned a value

Step 2: In the second step, each Bi1i2i3,q is communicated to
region q(1 ≤ q ≤ n) and α1 and Ω are transported to
region n+ 1.

Validating candidate solution and output phase. In this phase,
it is checked whether each clause evaluates to true. If yes,
then the object yes is sent to the environment and no oth-
erwise.

Step 3: α1 evolves into α2e, Ω evolves into noe and each
Bi1i2i3,q uses the evolution rule Bi1i2i3,q → i1i2i3β0e

3.

0

1 2

3

011012121122031032041042151152

161162c
2e2

B1̂2̂3̂,1 B14̂5,2

noeα2e

Figure 19. C3: Each Bi1i2i3,q was transferred to corresponding q

membranes in Step 2 and evolved to i1i2i3, qβ0e
3 in Step 3

Step 4: In this step, it is checked if each clause can be eval-
uated to true. This is done using the antiport rules
(0dqe, in; d̂e

2, out) and (1dqe, in; de
2, out). In the same

step, the objects β0 and α2 are transported to region
0. If each region q successfully performs the either of
the antiport rules, then the answer to 3SAT for the
given boolean formula is yes.

23

0

1 2

3

1̂0121211220310320410421515
161162c

2α2β
2
0

0112̂3̂ 14̂152

noe

Figure 20. C54: Each clause were verified using rules (011e,
in; 1̂e, out) and (042e, in; 4̂e, out)

Step 5: All the objects d and d̂ in region 0 evolve into energy
objects, α2 evolves into α3e and all objects β0 evolve
into β1e.

Step 6: All of the objects β1 are transported to their respective
regions and α3 is communicated to region n+ 1

Step 7: α4 is transported to region 0. In case the given boolean
formula is not satisfiable, the antiport rule (ce, in;
β2e, out) will be used by all membranes that have re-
maining energy objects in them, i.e. membranes that
have not found a truth value that can make their cor-
responding propositional clauses true.

Step 8: α4 evolves into yese2.

Step 9: If the given boolean formula is satisfiable, there will
be enough energy to send the object yes to the en-
vironment and the computation will halt. Otherwise,
the antiport rule (β2e, in;noe, out) will be used once.
Note that even if there are several copies of β2 in region
0, the previously mentioned antiport rule can only be
applied once because there is only one copy of object
no in region n+ 1.

0

1 2

3

012121122031032041042151161162c
2

0112̂3̂β2 14̂152β2

noe

yes

Figure 21. C9: All clauses were satisfied, hence yes is sent to the
environment and the computation halts

Step 10: Lastly, if the not all the clauses are satisfied, no will
be released to the environment and the computation
will halt.

We will now move on to analyzing the communication re-
sources used at each phase.

a. The setup phase uses one communication step. In this
communication step, each object B is communicated

to a region q(1 ≤ q ≤ n). Since the objects B repre-
sent the clauses, we know that there are n number of
objects B hence, n number of communication rules are
used and n number of energy objects are consumed.

b. For the validation and output phase:

• The maximum number of communication steps
(5) will occur if the boolean formula is not sat-
isfiable because releasing no to the environment
takes one more step than releasing yes. The rules
(β2e, in;noe, out) and (noe, out) will be used in
succeeding steps if the answer is no, in contrast
to (yesen+2, out), which will take just one step.

• The maximum number of communication rules
used is 4n + 7 and this happens if the answer is
no. Again this is because releasing no to the en-
vironment uses one more rule than releasing yes
to the environment.

• In contrast to the first two communication cost
measures, the amount of energy objects used is
maximum when the answer is yes. A total of
7n+7 energy objects are consumed throughout a
computation.

Summing up the computations, we have proven that 3SAT ∈
NFEPCComNRW = (6, 4n+ 7, 7n+ 7).

6. CONCLUSION
Based on the study we conducted, we present here the com-
parisons of the communication resources consumed in solv-
ing VCP and 3SAT using Evolution-Communications P sys-
tems with energy in CEM, CPE, and EPC mode.

CPE CEM EPC

ComN 5 6 9

ComR |VG|+3k + 3 |VG|+3k + 6 |VG|+3k + 16

ComW 2|EG|+|VG|+k + 4 3|EG|+|VG|+k + 5 3|EG|+|VG|+k + 15

membranes 2 4 4

Table 1. Comparison of 3 modes of ECPe on Solving VCP

CPE CEM EPC

ComN 4 5 6

ComR 2n+ 1 2n+ 3 4n+ 7

ComW 4n+ 3 3n+ 1 7n+ 7

membranes n + 1 n+2 n+2

Table 2. Comparison of 3 modes of ECPe on Solving 3SAT

In Table 1 and Table 2, we compared the ComN,ComR,ComW
and the number of membranes used in the three modes of
ECPe systems namely CPE, CEM, and EPC. We can see
that ECPe in CPE performs the least number of communi-
cation steps while ECPe in EPC performs the most. This
is more obviously seen when solving VCP which requires a
constant number of membranes than when solving 3SAT of

24

which the number of membranes required is dependent on
the number of clauses.
When talking about the number of communication rules,
CEM and CPE mode does not differ greatly when solving
both VCP and 3SAT, whereas we see a relatively greater
number of communication rules used in EPC mode. In the
matter of energy consumption, the ECPe systems in CPE
mode use linearly less energy than CEM and EPC mode in
both problems. ECPe systems with priority on evolution use
a constant number of energy less than CEM when solving
VCP, while uses linearly less energy when solving 3SAT.
Aside from the communication complexity, we also look into
the number of membranes needed to solve the Vertex Cover
and 3-Satisfiability problem. It can be seen that VCP and
3SAT can be solved using the same number of membranes
for CEM and EPC mode. However, ECPe with priority
on communication uses less membranes than the two other
modes.
We now ask: can we solve VCP and 3SAT using constructs of
ECPe systems under different modes requiring less amount
of communication steps, rules, and energy? Are there cer-
tain characteristics of an ECPe system that may improve
the utilization of the priority of evolution in ECP mode?
of communication in CPE? Can we create an ECPe that
utilizes a constant number of membranes that solves 3SAT,
perhaps with a different encoding? Under what conditions,
if such exist, will it be better to use an ECPe system in EPC
mode over the two other modes in terms of communication
complexity? in CPE? in CEM? Additionally, there has been
recent researches, such in [13], [12], and [6], which concurs
to the concept of time-free variants of P systems wherein
rules are not necessarily completed in a single step. Can we
construct time-free ECP systems with and without energy,
and how will those systems behave?
For future works, we are particularly interested in how the
communication complexity measures given in [1] can be ap-
plied to analyze confluent solutions of NP-Complete prob-
lems using active membranes (as for example, solutions pre-
sented in [7], [11] and [8]). Additionally, we are interested
in determining if we can define a deterministic confluent so-
lution to hard problems.

7. REFERENCES
[1] Henry Adorna, Gheorghe Păun, and Mario Jesus

de Pérez-Jiménez. On Communication Complexity in
Evolution-Communication P systems. Romanian
Journal of Information Science and Technology,
13(2):113–130, 2010.

[2] Matteo Cavaliere. Evolution-Communication P
systems. In Membrane Computing, pages 134–145.
Springer, 2003.

[3] Mario Jesus de Pérez-Jiménez. A Computational
Complexity Theory in Membrane Computing.
Workshop on Membrane Computing, pages 125–148,
2009.

[4] Antonio E.Porreca, Giancarlo Mauri, and Claudio
Zandron. Non-confluence in Divisionless P systems
with Active Membranes. Theoretical Computer
Science, 411(6):878–887, 2010.

[5] Nestine Hope S. Hernandez, Richelle Ann B. Juayong,
and Henry N. Adorna. On Communication

Complexity of Some Hard Problems in ECPe systems.
In Membrane Computing. Springer Berlin Heidelberg,
2014.

[6] Xiangrong Liu, Ziming Li, Juan Suo, Ying Ju, Juan
Liu, and Xiangxiang Zeng. Solving Multidimensional
0-1 Knapsack Problem with Time-free Tissue P
systems. Journal of Applied Mathematics, 2014, 2014.

[7] Chun Lu and Xingyi Zhang. Solving Vertex Cover
Problem by Means of Tissue P systems with Cell
Separation. International Journal of Computers
Communications & Control, 5(4):540–550, 2010.

[8] Linqiang Pan and Artiom Alhazov. Solving HPP and
SAT by P systems with Active Membranes and
Separation Rules. Acta Informatica, 43(2):131–145,
2006.

[9] Andrei Păun. On p systems with active membranes.
In Unconventional Models of Computation, UMC’2K,
pages 187–201. Springer London, 2001.

[10] Gheorghe Păun. Introduction to Membrane
Computing. In Applications of Membrane Computing,
pages 1–42. Springer, 2006.

[11] Gheorghe Păun, Mario Jesus de Pérez-Jiménez, and
Agustın Riscos-Núnez. Tissue P systems with Cell
Division. International Journal of Computers,
Communications & Control, 3(3):295–303, 2008.

[12] Tao Song, Luis F. Maćıas-Ramos, Linqiang Pan, and
Mario Jesus de Pérez-Jiménez. Time-free Solution to
SAT Problem using P systems with Active
Membranes. Theoretical Computer Science, 529:61–68,
2014.

[13] Tao Song, Xun Wang, and Hongjiang Zheng.
Time-free Solution to Hamilton Path Problems using
P systems with D-division. Journal of Applied
Mathematics, 2013, 2013.

[14] Tao Song, Hongjiang Zheng, and Juanjuan He.
Solving Vertex Cover Problem by Tissue P Systems
with Cell Division. Applied Mathematics and
Information Science, 8(1):333–337, 2014.

[15] Xinyi Zhang, Linqiang Pan, and Andrei Păun. On the
Universality of Axon P Systems. IEEE Transactions
on Neural Networks and Learning Systems, in press.

25

