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ABSTRACT 
Posets are abstract models that may be considered as generating a 
set of linear orders, which are permutations on some base set. The 
problem of determining a minimum set of posets that can exactly 
generate a specified input set of linear orders is referred to as the 
Poset Cover Problem, and this problem is NP-Hard in the general 
case. In this study, we investigate a constrained version of the 
problem, the 2-Poset Cover Problem, where there are exactly 2 
posets that can generate a given input. We develop some 
heuristics for this and examine some properties related to the 
problem. Our heuristics are able to provide the correct solutions 
for a significant majority of the tested random instances. From the 
instances where the heuristics have failed, some insights were 
derived which may be helpful in determining the correct 
complexity class to which the 2-Poset Cover Problem belongs.  
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1. INTRODUCTION 
In data mining, numerous patterns can be discovered for analyzing 
huge amounts of data by performing efficient algorithms. 
Previous data mining research found patterns such as sequential 
patterns given a collection of lists [1] (an example of this is 
finding frequent episodes in a given sequence of events [18]), and 
finding order constraints from a given collection of total orders. 
The latter is a data mining task called poset mining. It focuses on 
generating a partially ordered set (or sets) given a list of linear 
orders.  

Formally, a partially ordered set (poset) is defined as an ordered 
pair P = (V, ≤P) where V is a finite set, and  ≤P is a binary relation 
over V, i.e.,  ≤Pc ⊆!V!V. Every poset has three main properties, 
namely reflexivity, antisymmetry and transitivity. For any u,v ∈V, 
we say that u ≤P v if (u,v) ∈ ≤P. Note that not all elements in the 
set V need to be related [7,11,25]. 

A poset P with binary relation ≤P is said to be a strict poset, 
written as P = (V, <P), if the binary relation is antisymmetric and 
transitive but irreflexive [7,11,25]. From here on, all posets in this 
paper refer to strict posets. 

For a given poset P = (V, <P), we say that a pair of distinct 
elements u,v ∈V are comparable in P, written u ⊥P  v, if either      

u <P v or v <P u. Otherwise, u and v are incomparable in P, written 
u ||P v. 

Poset mining is the complete reverse of the well-researched 
problem that generates a complete list of linear orders, denoted as 
L(P), based on a given poset P [6,13,19,21,22,24]. In graph theory 
terms, this is the well-known problem of constructing a 
topological sort of a given Directed Acyclic Graph (DAG) 
G=(V,E). Poset mining basically attempts to construct a single 
DAG or a set of DAGs given a list of topological sorts. Here, both 
the poset P=(V,<P) and the DAG G=(V,E) use the same set of 
elements V, and each binary relation (u,v) ∈!<P in P corresponds 
to an edge (u,v) ∈ E in G [25]. The DAG G however is a transitive 
reduction of poset P because the relations in P are transitive. This 
can be then be drawn to a Hasse diagram H(P). 

For example, let V={0,1,2,3,5,6,7,8,9}, and let 

L(P)={(6,7,8,0,1,2,3,9,5),(6,7,8,0,2,1,3,9,5),(6,7,8,0,2,3,1,9,5), 

   (7,8,6,0,2,1,3,9,5),(7,8,6,0,1,2,3,9,5),(7,8,6,0,2,3,1,9,5),  

   (8,7,6,0,1,2,3,9,5),(8,7,6,0,2,3,1,9,5),(8,7,6,0,2,1,3,9,5)},   

where the nine linear orders are given in permutation notation. 
The resulting Hasse diagram H(P) of the poset P that generates 
L(P) is shown in Figure 1. The set L(P) of linear orders is more 
properly called the linear extensions of the poset P. 

!

Figure 1: A Hasse diagram of the example poset 
 

In this study, we investigate the poset mining task where exactly 
two posets are needed to generate a given input set of linear 
orders. This problem, called the 2-Poset Cover Problem, is 
formally defined as follows:  

2-POSET COVER PROBLEM 
INPUT: A set Υ  = {𝑙), 𝑙+, . . . , 𝑙-} of linear orders  
               over the set 𝑉 = {1, 2, 3, . . . , 𝑛}. 
OUTPUT: A pair of distinct posets 𝑃) = (𝑉,≤7)) and  
                   𝑃+ = (𝑉,≤7+) such that  𝐿(𝑃)) ∪ 𝐿(𝑃+) = Υ and 
                   𝐿(𝑃)) ∩ 𝐿(𝑃+) ≠ 𝐿(𝑃)) or 𝐿(𝑃+), if such a pair exists 
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2. RELATED LITERATURE 
There are existing works pertaining to the mining of partial orders 
and posets. Manilla and Meek [17] proposed a solution in 
discovering partial orders by viewing partial orders as generative 
models and used a mix of those models to describe a set of 
sequences. However, they restricted themselves to a particular 
class of partial orders known as series-parallel partial orders. They 
did this in order to efficiently compute the total number of 
extensions of a partial order without experiencing too much 
difficulty.  

Fernandez et al. [9,10,11] and Ukkonen [26] presented 
polynomial-time algorithms for generating a single poset, if such a 
poset exists, that generates a set of linear extensions that are 
exactly the same as the input. Their algorithms run in O(mn2) 
time. Fernandez [8] extended the work and arrived at a better 
algorithm that runs in O(mn+n3) time. Tan [25] later optimized the 
solution and presented an algorithm that runs in O(mn+n2) time. 

If there is no such poset that can be generated based on the input, 
then the problem of generating a set of posets that covers the input 
is explored. This problem, known as the Poset Cover Problem, has 
been proven by Heath and Nema [12] to be NP-complete. 
Therefore, Dispo-Ordanel [7], Tan [25], Fernandez [8], and 
Fernandez et al. [9,10,11] investigated polynomial-time solvable 
variants of the Poset Cover Problem by restricting their attention 
to specific classes of posets. By formalizing these problems, they 
have opened the door to greater research which may lead into 
more sufficient solutions and/or approximations for these 
problems and their variants. However, the complexity class for 
constrained version 2-Poset Cover Problem is still undetermined. 

 

3. METHODOLOGY 
3.1 Development of Experiment Tools 
To automate the experimentation process, some basic tools were 
first created. The first of these is the solution verifier, a Java 
program framework for implementing a heuristic and for 
processing input test cases from an input file to generate the 
corresponding solutions to an output file. This program is the 
main tool being used to verify the correctness of the heuristics. 
The general strategy used in this study for coming up with the 
heuristics is to begin with simple, smaller cases and then slowly 
work with more complex ones. Before testing a proposed heuristic 
against highly complex input data, it is better to guarantee first 
that the heuristic satisfies all basic and small test cases. To 
perform this, input files containing linear extensions of generated 
posets containing entities and relations of small sizes were 
generated. These input files either contained a set of arbitrary 
cases, or an exhaustive set of cases given a chosen, practical 
bound.  
Two different methods were used to generate the input files. The 
first method was a random approach through a random poset 
generator. This program generates an arbitrary number of pairs of 
posets, each through randomly generating two distinct DAGs. 
This program takes in two variables, namely n (number of entities 
of the poset) and e (number of relations of the poset). The 
program then randomly generates two distinct DAGs, each 
containing the specified properties by maintaining a lower-
triangular adjacency matrix and using a union-find disjoint set 
data structure.  

The second method was an exhaustive approach. This was done 
by generating all possible pairs of posets that involve only a 
certain value of n and an optional value for e. Instead of randomly 
generating DAGs, the second approach generated all possible 
non-empty DAGs satisfying the specified n and e values. The 
input file generated by this approach was then based on the 
collection of the set of linear orders generated by each all possible 
distinct pairings. 
Four different input files, corresponding to the four different sets 
of test cases, were used during the course of the study. Table 1 
describes the properties of these input files, including the number 
of entities and relations of the posets involved, the generation 
method, and the total number of generated test cases. With the 
exception of the second input file, the generation method also 
restricted the number of relations of the expected posets to a 
certain value of e.  
To speed up the process of the analysis, four log files were also 
generated. These log files contain each input instance's case 
number and the String representation of the two expected posets 
involved. 

Table 1. The four input files used in the study 
 Number of 

Entities (n) 
Number of 

Relations (e) 
Generation 

Method 
Number of 
Test Cases 

File 1 4 2 Random 100 

File 2 4 0 to 4 Exhaustive 146,611 

File 3 5 3 Exhaustive 441,330 

File 4 6 4 Random 100,000 

 
All output files generated by the solution verifier program contain 
the answers of the heuristic being verified. For each input test case 
being processed, the program outputs either the String 
representation of the posets that were generated by the heuristic, 
or "null" if the solution failed to generate a solution. A separate 
program was then created to simply count the number of test cases 
which contained "null" and extract the test case numbers of those 
cases from the output file. These represent the specific problem 
instances where a given heuristic fails. This data is then used to 
extract the counter-cases, if they exist, from the log file. 
 

3.2 Development of Heuristics for the 2-Poset 
Cover Problem 
In this study, we attempted to develop a polynomial-time 
algorithm to solve the 2-Poset Cover Problem. In the course of 
searching for such a solution, three heuristics were developed. 
The design of the proposed heuristics was done iteratively, with 
each succeeding heuristic addressing some discovered weaknesses 
from a previous heuristic. 
Initially, the first heuristic was developed based on the concept of 
an anchor pair (to be discussed in Section 4). After this heuristic 
was tested on some random problem instances and found to fail 
on some instances, a second heuristic was developed to address 
the unsolved instances. 
To challenge the correctness of the second heuristic, the test cases 
were expanded. This revealed a few instances where the second 
heuristic failed. Similar to the previous iteration, the second 
heuristic was then modified to address this, thus producing a third 
heuristic. 
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The third heuristic was shown to solve all instances used to test 
the first two heuristics. However, after the test cases were 
expanded further, it was observed that the third heuristic still does 
not solve the problem completely. Only an extreme minority (less 
than 0.1%) of the random test cases remain unsolved. We 
investigate these instances and explain why the third heuristic still 
fails for these. Hopefully, we can use the insights gained from this 
iterative development of heuristics in order to come up with better 
heuristics or even a polynomial-time exact solution to the 2-Poset 
Cover Problem.    
 

3.3 Examining the Performance of the 
Heuristics 
To examine the performance of the heuristics, each heuristic was 
implemented on the solution verifier program. To determine the 
accuracy of the heuristics, both the total count of the solved cases 
and the total count of the unsolved cases were recorded based on 
the results in the solution verifier's output file. As soon as one 
unsolved case was found, both its set of linear orders and its 
String representation of the two expected posets were extracted 
from the respective input/output files and then placed into a new 
data file. This data was then used to derive new insights and 
possible fixes for the next heuristic. If the output did not contain 
any unsolved cases in any of the provided input files, then the 
solution verifier processed input files containing complex test 
cases until an unsolved case was detected. 
The average runtime (in milliseconds) of each heuristic was also 
recorded to determine the efficiency of each of them over the four 
input files used in the study. The average running time was based 
on the list of recorded execution times of the solution verifier 
program on a Supermicro SS1027R-WRF Server machine. Table 
2 lists down all the relevant specifications. 

Table 2. Supermicro SS1027R-WRF Server Specifications 

Processor 2 x 2.1GHz 6-Core Intel Xeon E5-2620V2 

Chipset/FSB Intel C602 

Memory 2 x 8GB DDR3 

Operating System Windows Server 2008 R2 

Compiler Java 7 Update 71 

 

4. RESULTS AND ANALYSIS 
The three heuristics developed in this study are all based on the 
observation that for any pair of distinct posets P1 and P2 over the 
same base set, there exists a pair of elements (a, b) such that the 
relationship between the two elements is different in one poset as 
compared to in the other poset. For example, it is possible that a is 
incomparable to b in one poset but comparable in the other. 
Another scenario is that a<b in one poset but b<a in the other.  
We refer to such pair of elements as an anchor pair. The term is 
coined as such because we conjecture that one such pair can be 
used as an anchor in the partitioning of the input into two sets of 
linear orders. The goal of this partitioning is to use each set as a 
generator of a candidate (cover) poset. The generation of such a 
candidate poset uses the exact algorithm for solving the 1-Poset 
Cover (see Figure 2). This algorithm involves obtaining a 
candidate poset by computing the intersection of relations from 
the linear orders [9,10,11,26]. 

 
 
ALGORITHM: GEN_POSET 
INPUT: A set Υ  = {𝑙&, 𝑙(, . . . , 𝑙*} of linear orders  
               over the set 𝑉 = {1, 2, 3, . . . , 𝑛}. 
OUTPUT: A poset 𝑃 = (𝑉,≤4) such that  𝐿(𝑃&) = Υ, 
                   if one exists 
1 <4 ← ∩:∈< <: 
2 if Υ = 𝐿(𝑃) then 
3  return 𝑃 
4 else return 𝑛𝑢𝑙𝑙 
 

 
Figure 2: Polynomial-time algorithm to solve 1-Poset Cover 

[9,10,11,26] 

4.1 First Heuristic 
 
 
ALGORITHM: First Formulated Heuristic to the Two Poset  
                          Cover Problem 
INPUT: A set Υ  = {𝑙&, 𝑙(, . . . , 𝑙*} of linear orders  
               over the set 𝑉 = {1, 2, 3, . . . , 𝑛}. 
OUTPUT: A pair of distinct posets 𝑃& = (𝑉,≤4&) and  
                   𝑃( = (𝑉,≤4() such that  𝐿(𝑃&) ∪ 𝐿(𝑃() = Υ and 
                   𝐿(𝑃&) ∩ 𝐿(𝑃() ≠ 𝐿(𝑃&) or 𝐿(𝑃(), if such a pair exists 
1 for 𝑎  ← 1 to 𝑛 − 1 
2  for 𝑏  ← 𝑎 + 1 to 𝑛 
3   𝑆  ← { 𝑙 ∈ Υ | 𝑎 <I 𝑏}  
4   𝑆′  ← { 𝑙 ∈ Υ | 𝑏 <I 𝑎}  
5   𝑃& ← 𝐺𝐸𝑁_𝑃𝑂𝑆𝐸𝑇(𝑆)  
6   𝑃( ← 𝐺𝐸𝑁_𝑃𝑂𝑆𝐸𝑇(𝑆′)  
7   if 𝑃& ≠ 𝑛𝑢𝑙𝑙 and 𝑃( ≠ 𝑛𝑢𝑙𝑙 then 
8    return {𝑃& , 𝑃( } 
9   else if 𝑃& ≠ 𝑛𝑢𝑙𝑙 then 
10    𝑃(∗  ← 𝑀𝑂𝐷_𝐺𝐸𝑁_𝑃𝑂𝑆𝐸𝑇(𝑆Z, 𝑎, 𝑏)  
11    if 𝑃(∗ ≠ 𝑛𝑢𝑙𝑙 then 
12     return {𝑃& , 𝑃(∗ } 
13   else if 𝑃( ≠ 𝑛𝑢𝑙𝑙 then 
14    𝑃&∗  ← 𝑀𝑂𝐷_𝐺𝐸𝑁_𝑃𝑂𝑆𝐸𝑇(𝑆, 𝑎, 𝑏)  
15    if 𝑃&∗ ≠ 𝑛𝑢𝑙𝑙 then 
16     return {𝑃&∗, 𝑃( } 
17 return 𝑛𝑢𝑙𝑙 
 

 
Figure 3: First Formulated Heuristic for the 2-Poset Cover 

Problem 
The first heuristic formulated by this study is stated in Figure 3. 
To start off, the heuristic loops through every possible pair (a, b). 
For every pair, the heuristic generates the two sets S and S'. The 
GEN_POSET function is then used to check if each of the two sets 
has a generating poset. If the heuristic succeeds in generating two 
valid posets P1 and P2, then this implies that S = L(P1) and           
S' = L(P2), and we have found the desired pair of posets that cover 
the input linear orders.  If at least one of these posets is invalid, 
then further processing is performed.  
Suppose that exactly one of the candidate posets is valid. Let the 
poset returned by GEN_POSET(S) be the valid poset. This implies 
that a ||P2 b. Since all linear orders in S' contain the relation          
b <l a, that relation must be ignored when generating P2* through 
the function MOD_GENPOSET(S', a, b), a modification of 
GEN_POSET that discards b <l a. If poset P2* is valid, then the 
heuristic succeeded in generating both posets. 
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If the heuristic fails to return two valid posets using the two 
possible cases of the anchor pair, then the distinct entity (a, b) is 
not the desired anchor pair. The heuristic exhausts all other 
distinct entities until it finds a suitable anchor pair that generates 
the two valid posets. If the heuristic fails to find any such pair of 
posets, then the heuristic returns null. 
The heuristic was successful in 96/100 cases of the first input file. 
This indicated that there were 4 counter-examples encountered. 
The Hasse diagrams of the two expected posets in one such 
counter-example are shown in Figure 4. 
Upon further analysis, it was observed that the heuristic only 
succeeded if the input set consists of linear orders from two posets 
that have no overlapping linear extensions. In all cases where 
there is an overlap, the heuristic incorrectly returned null. This is 
because stray linear orders (i.e., linear orders that are supposed to 
be also part of the other set) are contained in the set that generated 
the first valid poset. 
To illustrate this, suppose S={(3, 1, 2, 4), (3, 1, 4, 2), (3, 4, 1, 2), 
(4, 3, 1, 2), (4, 1, 3, 2), (1, 4, 3, 2), (1, 3, 4, 2), (4, 1, 2, 3),            
(1, 4, 2, 3)} and that (1, 2) is the current pair being processed. The 
linear order (3, 1, 2, 4) in S is a stray linear order because only    
(3, 1, 2, 4) is not part of the same expected poset, which is P2 in 
Fig. 4, as the other linear orders in S. 

 
Figure 4: Hasse diagrams of the expected posets P1 and P2 in 

Case #26 of the first input file 
 

4.2 Second Heuristic 
As shown in Fig. 5, the second heuristic aimed to fix the mistake 
of the first heuristic with regards to solving the overlapping cases. 
Instead of applying the MOD_GEN_POSET function in the set 
that generated an invalid poset, it is instead used in the set that 
generated the valid poset. Suppose S is the set that generated the 
valid poset, and P1* is the newly generated poset using 
MOD_GEN_POSET(S, a, b). If the set of linear orders of P1* is a 
subset of Υ, then Snew is generated using the difference of Υ and 
L(P1*). This is done in order to transfer the stray linear order to the 
proper set. P2* is then generated using GEN_POSET(Snew). If P2* 
is not null, and the union of the two regenerated posets P1* and P2* 
exactly matches Υ, then the heuristic successfully generated the 
two valid posets. 
The heuristic was successful in 98/100 cases of the input file. This 
indicated that there were 2 counter-examples encountered. Both 
pairs of Hasse diagrams of the expected posets of the two counter-
examples are shown in Figures 6 and 7. 
Upon further analysis, it was seen that the MOD_GEN_POSET 
function does not necessarily remove all relevant relations. Only 
the immediate pair (a, b) was removed, leaving the other pairs that 
involve the ancestors of a and the descendants of b intact. The 
edited function, referred to as REDUCED_MOD_GEN_POSET, 
achieves this by making the generated poset undergo transitive 
reduction. 

 
 
ALGORITHM: Second Formulated Heuristic to the Two Poset    
                          Cover Problem 
INPUT: A set Υ  = {𝑙&, 𝑙(, . . . , 𝑙*} of linear orders  
               over the set 𝑉 = {1, 2, 3, . . . , 𝑛}. 
OUTPUT: A pair of distinct posets 𝑃& = (𝑉,≤4&) and  
                   𝑃( = (𝑉,≤4() such that  𝐿(𝑃&) ∪ 𝐿(𝑃() = Υ and 
                   𝐿(𝑃&) ∩ 𝐿(𝑃() ≠ 𝐿(𝑃&) or 𝐿(𝑃(), if such a pair exists 
 
1 for 𝑎  ← 1 to 𝑛 − 1 
2  for 𝑏  ← 𝑎 + 1 to 𝑛 
3   𝑆  ← { 𝑙 ∈ Υ | 𝑎 <E 𝑏}  
4   𝑆′  ← { 𝑙 ∈ Υ | 𝑏 <E 𝑎}  
5   𝑃& ← 𝐺𝐸𝑁_𝑃𝑂𝑆𝐸𝑇(𝑆)  
6   𝑃( ← 𝐺𝐸𝑁_𝑃𝑂𝑆𝐸𝑇(𝑆′)  
7   if 𝑃& ≠ 𝑛𝑢𝑙𝑙 and 𝑃( ≠ 𝑛𝑢𝑙𝑙 then 
8    return {𝑃& , 𝑃( } 
9   else if 𝑃& ≠ 𝑛𝑢𝑙𝑙 then 
10    𝑃&∗  ← 𝑀𝑂𝐷_𝐺𝐸𝑁_𝑃𝑂𝑆𝐸𝑇(𝑆, 𝑎, 𝑏)  
11    if 𝐿(𝑃&∗)  ⊆  Υ then 
12     𝑆YZ[\  ← 𝑆\ − 𝐿(𝑃&∗) 
13     𝑃(∗  ← 𝐺𝐸𝑁_𝑃𝑂𝑆𝐸𝑇(𝑆YZ[\ ) 
14     if 𝑃(∗ ≠ 𝑛𝑢𝑙𝑙 and 𝐿(𝑃&∗) ∪ 𝐿(𝑃(∗) = Υ then 
15      return {𝑃&∗ , 𝑃(∗ } 
16   else if 𝑃( ≠ 𝑛𝑢𝑙𝑙 then 
17    𝑃(∗  ← 𝑀𝑂𝐷_𝐺𝐸𝑁_𝑃𝑂𝑆𝐸𝑇(𝑆\, 𝑎, 𝑏)  
18    if 𝐿(𝑃(∗)  ⊆  Υ then 
19     𝑆YZ[ ← 𝑆 − 𝐿(𝑃(∗) 
20     𝑃&∗  ← 𝐺𝐸𝑁_𝑃𝑂𝑆𝐸𝑇(𝑆YZ[) 
21     if 𝑃&∗ ≠ 𝑛𝑢𝑙𝑙 and 𝐿(𝑃&∗) ∪ 𝐿(𝑃(∗) = Υ then 
22      return {𝑃&∗ , 𝑃(∗ } 
23 return 𝑛𝑢𝑙𝑙 
 

 
Figure 5: Second Formulated Heuristic for the 2-Poset Cover 

Problem 
 

 
Figure 6: Hasse diagrams of the expected posets P1 and P2 in 

Case #39 of the first input file 
 

 
Figure 7: Hasse diagrams of the expected posets P1 and P2 in 

Case #54 of the first input file 
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4.3 Third Heuristic 
The formal description of the third heuristic is provided in Fig. 8. 
This heuristic involves the REDUCED_MOD_GEN_POSET 
function in order to fix the mistakes of the second heuristic. 
However, the original poset was still generated in case the 
transitive reduced poset contained linear orders that are not part of 
Υ. 

 
 
ALGORITHM: Third Formulated Heuristic to the Two Poset    
                          Cover Problem 
INPUT: A set Υ  = {𝑙&, 𝑙(, . . . , 𝑙*} of linear orders  
               over the set 𝑉 = {1, 2, 3, . . . , 𝑛}. 
OUTPUT: A pair of distinct posets 𝑃& = (𝑉,≤4&) and  
                   𝑃( = (𝑉,≤4() such that  𝐿(𝑃&) ∪ 𝐿(𝑃() = Υ and 
                   𝐿(𝑃&) ∩ 𝐿(𝑃() ≠ 𝐿(𝑃&) or 𝐿(𝑃(), if such a pair exists 
 
1 for 𝑎  ← 1 to 𝑛 − 1 
2  for 𝑏  ← 𝑎 + 1 to 𝑛 
3   𝑆  ← { 𝑙 ∈ Υ | 𝑎 <E 𝑏}  
4   𝑆′  ← { 𝑙 ∈ Υ | 𝑏 <E 𝑎}  
5   𝑃& ← 𝐺𝐸𝑁_𝑃𝑂𝑆𝐸𝑇(𝑆)  
6   𝑃( ← 𝐺𝐸𝑁_𝑃𝑂𝑆𝐸𝑇(𝑆′)  
7   if 𝑃& ≠ 𝑛𝑢𝑙𝑙 and 𝑃( ≠ 𝑛𝑢𝑙𝑙 then 
8    return {𝑃& , 𝑃( } 
9   else if 𝑃& ≠ 𝑛𝑢𝑙𝑙 then 
10    𝑃&∗  ← 𝑀𝑂𝐷_𝐺𝐸𝑁_𝑃𝑂𝑆𝐸𝑇(𝑆, 𝑎, 𝑏)  
11    𝑃&∗X  ← 𝑅𝐸𝐷𝑈𝐶𝐸𝐷_𝑀𝑂𝐷_𝐺𝐸𝑁_𝑃𝑂𝑆𝐸𝑇(𝑆, 𝑎, 𝑏)  
12    if 𝐿(𝑃&∗X)  ⊆  Υ then 
13     𝑃&∗  ← 𝑃&∗X 
14    if 𝐿(𝑃&∗)  ⊆  Υ then 
15     𝑆]^_`  ← 𝑆` − 𝐿(𝑃&∗) 
16     𝑃(∗  ← 𝐺𝐸𝑁_𝑃𝑂𝑆𝐸𝑇(𝑆]^_` ) 
17     if 𝑃(∗ ≠ 𝑛𝑢𝑙𝑙 and 𝐿(𝑃&∗) ∪ 𝐿(𝑃(∗) = Υ then 
18      return  {𝑃&∗ , 𝑃(∗ } 
19   else if 𝑃( ≠ 𝑛𝑢𝑙𝑙 then 
20    𝑃(∗  ← 𝑀𝑂𝐷_𝐺𝐸𝑁_𝑃𝑂𝑆𝐸𝑇(𝑆`, 𝑎, 𝑏)  
21    𝑃(∗X ← 𝑅𝐸𝐷𝑈𝐶𝐸𝐷_𝑀𝑂𝐷_𝐺𝐸𝑁_𝑃𝑂𝑆𝐸𝑇(𝑆′, 𝑎, 𝑏)  
22    if 𝐿(𝑃&∗X)  ⊆  Υ then 
23     𝑃(∗  ← 𝑃(∗X  
24    if 𝐿(𝑃(∗)  ⊆  Υ then 
25     𝑆]^_ ← 𝑆 − 𝐿(𝑃(∗) 
26     𝑃&∗  ← 𝐺𝐸𝑁_𝑃𝑂𝑆𝐸𝑇(𝑆]^_) 
27     if 𝑃&∗ ≠ 𝑛𝑢𝑙𝑙 and 𝐿(𝑃&∗) ∪ 𝐿(𝑃(∗) = Υ then 
28      return  {𝑃&∗ , 𝑃(∗ } 
29 return 𝑛𝑢𝑙𝑙 
 

 
Figure 8: Third Formulated Heuristic for the 2-Poset Cover 

Problem 
The algorithm was successful in 100/100 cases of the first input 
file. This indicated that all counter-cases presented in the earlier 
sections were solved. The heuristic was also successful in all 
146,611 cases of the second input file. This meant that the 
algorithm gave a solution to all possible distinct pairs of posets 
when n = 4.  
The set of test cases was further expanded. The algorithm was 
then able to solve all of the 441,330 cases from the third input file, 
and 99948/100000 cases from the fourth input file. Figure 9 
shows the Hasse Diagrams of the two expected posets of Case 

#1463, one of the 52 counter-examples found from the fourth 
input file. 

 
Figure 9: Hasse diagrams of the expected posets 𝑷𝟏 and 𝑷𝟐 in 

Case #1463 of the fourth randomly generated input file 
Upon analysis of the counter-cases, it was discovered that the 
counter-examples can be solved if the candidate poset has 
undergone partial transitive reduction. This indicates that the 
solution might need to exhaust all possible variants which, 
unfortunately will need an exponential running-time complexity. 
Overall, the three heuristics performed relatively well. A summary 
of the empirical results in terms of the accuracy and average 
running time (over 30 runs) is provided in Table 3 and Table 4. 

Table 3. Summary of the total number of solved cases per 
input file of each heuristic 

 First 
(100) 

Second 
(146,611) 

Third 
(441,330) 

Fourth 
(100,000) 

Heuristic 1 96.00% 99.93% 81.01% 48.68% 

Heuristic 2 98.00% 99.96% 97.68% 95.13% 

Heuristic 3 100.00% 100.00% 100.00% 99.95% 

 
Table 4. Summary of average running time of each heuristic 

on each input file (in milliseconds) 

 First  Second  Third  Fourth  

Heuristic 1 4.63 3,003.80 161,156.60 394,471.47 

Heuristic 2 3.70 2,212.97 76,895.43 126,670.40 

Heuristic 3 2.07 2,520.23 48,445.60 63,074.47 

 

 
Figure 10: Hasse diagrams and the respective set of linear 

orders of the sample posets 𝑷𝟏 and 𝑷𝟐 of a counter-example of 
the anchor pair concept 
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In the course of the experiments, a counter-example was also 
discovered that disproves our conjecture about the existence, for 
all cases, of an anchor pair for effective partitioning of the input 
linear orders. As can be seen from Fig. 10, L(P1) ∩ L(P2) = ∅ and 
!"#$there is no pair (a, b) that can properly partition the input so as 
to generate the two posets P1 and P2.  Exhausting all possible 
pairs of elements from the base set will easily validate this claim. 
This shows, definitively, that the strategy of searching for a single 
anchor pair is not sufficient to solve the 2-Poset Cover Problem. It 
even seems to provide hints of a possible NP-Completeness for 
this problem, although much further investigation is needed to 
determine its correct complexity class. Nonetheless, a specific 
class of posets can possibly be classified, such that the presented 
anchor-pair strategy can be solved in polynomial time. This is 
subject to future studies. 
 

5. CONCLUSION 
In this study, we explore the 2-Poset Cover Problem and develop 
three heuristics for this. The heuristics are all based on the idea of 
searching for an appropriate anchor pair of elements that can be 
used to partition the input set of linear orders into 2 sets, and then 
generating a candidate poset cover for each of the sets. While the 
three polynomial-time heuristics do not solve the 2-Poset Cover 
Problem for all instances, it has been shown that these heuristics 
are able to return a correct 2-Poset Cover for a significant 
majority of the instances.  More importantly, the instances on 
which the heuristics have failed have enabled us to have a better 
understanding of the problem space. The insights gained here can, 
hopefully, eventually lead to a polynomial-time solution to the 
problem, if it is indeed in the class P, or a proof that it is a NP-
Complete.  
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