
Some Heuristics for the 2-Poset Cover Problem
Gabriel Alberto A. Sanchez

Ateneo de Manila University
Loyola Heights, Quezon City

Philippines 1108
+632 4266071

gabriel.sanchez@obf.ateneo.edu

Proceso L. Fernandez
Ateneo de Manila University
Loyola Heights, Quezon City

Philippines 1108
+632 4266071

pfernandez@ateneo.edu

John Paul C. Vergara
Ateneo de Manila University
Loyola Heights, Quezon City

Philippines 1108
+632 4266071

jpvergara@ateneo.edu

ABSTRACT
Posets are abstract models that may be considered as generating a
set of linear orders, which are permutations on some base set. The
problem of determining a minimum set of posets that can exactly
generate a specified input set of linear orders is referred to as the
Poset Cover Problem, and this problem is NP-Hard in the general
case. In this study, we investigate a constrained version of the
problem, the 2-Poset Cover Problem, where there are exactly 2
posets that can generate a given input. We develop some
heuristics for this and examine some properties related to the
problem. Our heuristics are able to provide the correct solutions
for a significant majority of the tested random instances. From the
instances where the heuristics have failed, some insights were
derived which may be helpful in determining the correct
complexity class to which the 2-Poset Cover Problem belongs.

Categories and Subject Descriptors
F.2.0 [Analysis of Algorithms and Problem Complexity]:
General

General Terms
Algorithms

Keywords
Poset Cover, Heuristics

1. INTRODUCTION
In data mining, numerous patterns can be discovered for analyzing
huge amounts of data by performing efficient algorithms.
Previous data mining research found patterns such as sequential
patterns given a collection of lists [1] (an example of this is
finding frequent episodes in a given sequence of events [18]), and
finding order constraints from a given collection of total orders.
The latter is a data mining task called poset mining. It focuses on
generating a partially ordered set (or sets) given a list of linear
orders.

Formally, a partially ordered set (poset) is defined as an ordered
pair P = (V, ≤P) where V is a finite set, and ≤P is a binary relation
over V, i.e., ≤Pc ⊆!V!V. Every poset has three main properties,
namely reflexivity, antisymmetry and transitivity. For any u,v ∈V,
we say that u ≤P v if (u,v) ∈ ≤P. Note that not all elements in the
set V need to be related [7,11,25].

A poset P with binary relation ≤P is said to be a strict poset,
written as P = (V, <P), if the binary relation is antisymmetric and
transitive but irreflexive [7,11,25]. From here on, all posets in this
paper refer to strict posets.

For a given poset P = (V, <P), we say that a pair of distinct
elements u,v ∈V are comparable in P, written u ⊥P v, if either

u <P v or v <P u. Otherwise, u and v are incomparable in P, written
u ||P v.

Poset mining is the complete reverse of the well-researched
problem that generates a complete list of linear orders, denoted as
L(P), based on a given poset P [6,13,19,21,22,24]. In graph theory
terms, this is the well-known problem of constructing a
topological sort of a given Directed Acyclic Graph (DAG)
G=(V,E). Poset mining basically attempts to construct a single
DAG or a set of DAGs given a list of topological sorts. Here, both
the poset P=(V,<P) and the DAG G=(V,E) use the same set of
elements V, and each binary relation (u,v) ∈!<P in P corresponds
to an edge (u,v) ∈ E in G [25]. The DAG G however is a transitive
reduction of poset P because the relations in P are transitive. This
can be then be drawn to a Hasse diagram H(P).

For example, let V={0,1,2,3,5,6,7,8,9}, and let

L(P)={(6,7,8,0,1,2,3,9,5),(6,7,8,0,2,1,3,9,5),(6,7,8,0,2,3,1,9,5),

 (7,8,6,0,2,1,3,9,5),(7,8,6,0,1,2,3,9,5),(7,8,6,0,2,3,1,9,5),

 (8,7,6,0,1,2,3,9,5),(8,7,6,0,2,3,1,9,5),(8,7,6,0,2,1,3,9,5)},

where the nine linear orders are given in permutation notation.
The resulting Hasse diagram H(P) of the poset P that generates
L(P) is shown in Figure 1. The set L(P) of linear orders is more
properly called the linear extensions of the poset P.

!

Figure 1: A Hasse diagram of the example poset

In this study, we investigate the poset mining task where exactly
two posets are needed to generate a given input set of linear
orders. This problem, called the 2-Poset Cover Problem, is
formally defined as follows:

2-POSET COVER PROBLEM
INPUT: A set Υ = {𝑙), 𝑙+, . . . , 𝑙-} of linear orders
 over the set 𝑉 = {1, 2, 3, . . . , 𝑛}.
OUTPUT: A pair of distinct posets 𝑃) = (𝑉,≤7)) and
 𝑃+ = (𝑉,≤7+) such that 𝐿(𝑃)) ∪ 𝐿(𝑃+) = Υ and
 𝐿(𝑃)) ∩ 𝐿(𝑃+) ≠ 𝐿(𝑃)) or 𝐿(𝑃+), if such a pair exists

26

2. RELATED LITERATURE
There are existing works pertaining to the mining of partial orders
and posets. Manilla and Meek [17] proposed a solution in
discovering partial orders by viewing partial orders as generative
models and used a mix of those models to describe a set of
sequences. However, they restricted themselves to a particular
class of partial orders known as series-parallel partial orders. They
did this in order to efficiently compute the total number of
extensions of a partial order without experiencing too much
difficulty.

Fernandez et al. [9,10,11] and Ukkonen [26] presented
polynomial-time algorithms for generating a single poset, if such a
poset exists, that generates a set of linear extensions that are
exactly the same as the input. Their algorithms run in O(mn2)
time. Fernandez [8] extended the work and arrived at a better
algorithm that runs in O(mn+n3) time. Tan [25] later optimized the
solution and presented an algorithm that runs in O(mn+n2) time.

If there is no such poset that can be generated based on the input,
then the problem of generating a set of posets that covers the input
is explored. This problem, known as the Poset Cover Problem, has
been proven by Heath and Nema [12] to be NP-complete.
Therefore, Dispo-Ordanel [7], Tan [25], Fernandez [8], and
Fernandez et al. [9,10,11] investigated polynomial-time solvable
variants of the Poset Cover Problem by restricting their attention
to specific classes of posets. By formalizing these problems, they
have opened the door to greater research which may lead into
more sufficient solutions and/or approximations for these
problems and their variants. However, the complexity class for
constrained version 2-Poset Cover Problem is still undetermined.

3. METHODOLOGY
3.1 Development of Experiment Tools
To automate the experimentation process, some basic tools were
first created. The first of these is the solution verifier, a Java
program framework for implementing a heuristic and for
processing input test cases from an input file to generate the
corresponding solutions to an output file. This program is the
main tool being used to verify the correctness of the heuristics.
The general strategy used in this study for coming up with the
heuristics is to begin with simple, smaller cases and then slowly
work with more complex ones. Before testing a proposed heuristic
against highly complex input data, it is better to guarantee first
that the heuristic satisfies all basic and small test cases. To
perform this, input files containing linear extensions of generated
posets containing entities and relations of small sizes were
generated. These input files either contained a set of arbitrary
cases, or an exhaustive set of cases given a chosen, practical
bound.
Two different methods were used to generate the input files. The
first method was a random approach through a random poset
generator. This program generates an arbitrary number of pairs of
posets, each through randomly generating two distinct DAGs.
This program takes in two variables, namely n (number of entities
of the poset) and e (number of relations of the poset). The
program then randomly generates two distinct DAGs, each
containing the specified properties by maintaining a lower-
triangular adjacency matrix and using a union-find disjoint set
data structure.

The second method was an exhaustive approach. This was done
by generating all possible pairs of posets that involve only a
certain value of n and an optional value for e. Instead of randomly
generating DAGs, the second approach generated all possible
non-empty DAGs satisfying the specified n and e values. The
input file generated by this approach was then based on the
collection of the set of linear orders generated by each all possible
distinct pairings.
Four different input files, corresponding to the four different sets
of test cases, were used during the course of the study. Table 1
describes the properties of these input files, including the number
of entities and relations of the posets involved, the generation
method, and the total number of generated test cases. With the
exception of the second input file, the generation method also
restricted the number of relations of the expected posets to a
certain value of e.
To speed up the process of the analysis, four log files were also
generated. These log files contain each input instance's case
number and the String representation of the two expected posets
involved.

Table 1. The four input files used in the study
 Number of

Entities (n)
Number of

Relations (e)
Generation

Method
Number of
Test Cases

File 1 4 2 Random 100

File 2 4 0 to 4 Exhaustive 146,611

File 3 5 3 Exhaustive 441,330

File 4 6 4 Random 100,000

All output files generated by the solution verifier program contain
the answers of the heuristic being verified. For each input test case
being processed, the program outputs either the String
representation of the posets that were generated by the heuristic,
or "null" if the solution failed to generate a solution. A separate
program was then created to simply count the number of test cases
which contained "null" and extract the test case numbers of those
cases from the output file. These represent the specific problem
instances where a given heuristic fails. This data is then used to
extract the counter-cases, if they exist, from the log file.

3.2 Development of Heuristics for the 2-Poset
Cover Problem
In this study, we attempted to develop a polynomial-time
algorithm to solve the 2-Poset Cover Problem. In the course of
searching for such a solution, three heuristics were developed.
The design of the proposed heuristics was done iteratively, with
each succeeding heuristic addressing some discovered weaknesses
from a previous heuristic.
Initially, the first heuristic was developed based on the concept of
an anchor pair (to be discussed in Section 4). After this heuristic
was tested on some random problem instances and found to fail
on some instances, a second heuristic was developed to address
the unsolved instances.
To challenge the correctness of the second heuristic, the test cases
were expanded. This revealed a few instances where the second
heuristic failed. Similar to the previous iteration, the second
heuristic was then modified to address this, thus producing a third
heuristic.

27

The third heuristic was shown to solve all instances used to test
the first two heuristics. However, after the test cases were
expanded further, it was observed that the third heuristic still does
not solve the problem completely. Only an extreme minority (less
than 0.1%) of the random test cases remain unsolved. We
investigate these instances and explain why the third heuristic still
fails for these. Hopefully, we can use the insights gained from this
iterative development of heuristics in order to come up with better
heuristics or even a polynomial-time exact solution to the 2-Poset
Cover Problem.

3.3 Examining the Performance of the
Heuristics
To examine the performance of the heuristics, each heuristic was
implemented on the solution verifier program. To determine the
accuracy of the heuristics, both the total count of the solved cases
and the total count of the unsolved cases were recorded based on
the results in the solution verifier's output file. As soon as one
unsolved case was found, both its set of linear orders and its
String representation of the two expected posets were extracted
from the respective input/output files and then placed into a new
data file. This data was then used to derive new insights and
possible fixes for the next heuristic. If the output did not contain
any unsolved cases in any of the provided input files, then the
solution verifier processed input files containing complex test
cases until an unsolved case was detected.
The average runtime (in milliseconds) of each heuristic was also
recorded to determine the efficiency of each of them over the four
input files used in the study. The average running time was based
on the list of recorded execution times of the solution verifier
program on a Supermicro SS1027R-WRF Server machine. Table
2 lists down all the relevant specifications.

Table 2. Supermicro SS1027R-WRF Server Specifications

Processor 2 x 2.1GHz 6-Core Intel Xeon E5-2620V2

Chipset/FSB Intel C602

Memory 2 x 8GB DDR3

Operating System Windows Server 2008 R2

Compiler Java 7 Update 71

4. RESULTS AND ANALYSIS
The three heuristics developed in this study are all based on the
observation that for any pair of distinct posets P1 and P2 over the
same base set, there exists a pair of elements (a, b) such that the
relationship between the two elements is different in one poset as
compared to in the other poset. For example, it is possible that a is
incomparable to b in one poset but comparable in the other.
Another scenario is that a<b in one poset but b<a in the other.
We refer to such pair of elements as an anchor pair. The term is
coined as such because we conjecture that one such pair can be
used as an anchor in the partitioning of the input into two sets of
linear orders. The goal of this partitioning is to use each set as a
generator of a candidate (cover) poset. The generation of such a
candidate poset uses the exact algorithm for solving the 1-Poset
Cover (see Figure 2). This algorithm involves obtaining a
candidate poset by computing the intersection of relations from
the linear orders [9,10,11,26].

ALGORITHM: GEN_POSET
INPUT: A set Υ = {𝑙&, 𝑙(, . . . , 𝑙*} of linear orders
 over the set 𝑉 = {1, 2, 3, . . . , 𝑛}.
OUTPUT: A poset 𝑃 = (𝑉,≤4) such that 𝐿(𝑃&) = Υ,
 if one exists
1 <4 ← ∩:∈< <:
2 if Υ = 𝐿(𝑃) then
3 return 𝑃
4 else return 𝑛𝑢𝑙𝑙

Figure 2: Polynomial-time algorithm to solve 1-Poset Cover

[9,10,11,26]

4.1 First Heuristic

ALGORITHM: First Formulated Heuristic to the Two Poset
 Cover Problem
INPUT: A set Υ = {𝑙&, 𝑙(, . . . , 𝑙*} of linear orders
 over the set 𝑉 = {1, 2, 3, . . . , 𝑛}.
OUTPUT: A pair of distinct posets 𝑃& = (𝑉,≤4&) and
 𝑃(= (𝑉,≤4() such that 𝐿(𝑃&) ∪ 𝐿(𝑃() = Υ and
 𝐿(𝑃&) ∩ 𝐿(𝑃() ≠ 𝐿(𝑃&) or 𝐿(𝑃(), if such a pair exists
1 for 𝑎 ← 1 to 𝑛 − 1
2 for 𝑏 ← 𝑎 + 1 to 𝑛
3 𝑆 ← { 𝑙 ∈ Υ | 𝑎 <I 𝑏}
4 𝑆′ ← { 𝑙 ∈ Υ | 𝑏 <I 𝑎}
5 𝑃& ← 𝐺𝐸𝑁_𝑃𝑂𝑆𝐸𝑇(𝑆)
6 𝑃(← 𝐺𝐸𝑁_𝑃𝑂𝑆𝐸𝑇(𝑆′)
7 if 𝑃& ≠ 𝑛𝑢𝑙𝑙 and 𝑃(≠ 𝑛𝑢𝑙𝑙 then
8 return {𝑃& , 𝑃(}
9 else if 𝑃& ≠ 𝑛𝑢𝑙𝑙 then
10 𝑃(∗ ← 𝑀𝑂𝐷_𝐺𝐸𝑁_𝑃𝑂𝑆𝐸𝑇(𝑆Z, 𝑎, 𝑏)
11 if 𝑃(∗ ≠ 𝑛𝑢𝑙𝑙 then
12 return {𝑃& , 𝑃(∗ }
13 else if 𝑃(≠ 𝑛𝑢𝑙𝑙 then
14 𝑃&∗ ← 𝑀𝑂𝐷_𝐺𝐸𝑁_𝑃𝑂𝑆𝐸𝑇(𝑆, 𝑎, 𝑏)
15 if 𝑃&∗ ≠ 𝑛𝑢𝑙𝑙 then
16 return {𝑃&∗, 𝑃(}
17 return 𝑛𝑢𝑙𝑙

Figure 3: First Formulated Heuristic for the 2-Poset Cover

Problem
The first heuristic formulated by this study is stated in Figure 3.
To start off, the heuristic loops through every possible pair (a, b).
For every pair, the heuristic generates the two sets S and S'. The
GEN_POSET function is then used to check if each of the two sets
has a generating poset. If the heuristic succeeds in generating two
valid posets P1 and P2, then this implies that S = L(P1) and
S' = L(P2), and we have found the desired pair of posets that cover
the input linear orders. If at least one of these posets is invalid,
then further processing is performed.
Suppose that exactly one of the candidate posets is valid. Let the
poset returned by GEN_POSET(S) be the valid poset. This implies
that a ||P2 b. Since all linear orders in S' contain the relation
b <l a, that relation must be ignored when generating P2* through
the function MOD_GENPOSET(S', a, b), a modification of
GEN_POSET that discards b <l a. If poset P2* is valid, then the
heuristic succeeded in generating both posets.

28

If the heuristic fails to return two valid posets using the two
possible cases of the anchor pair, then the distinct entity (a, b) is
not the desired anchor pair. The heuristic exhausts all other
distinct entities until it finds a suitable anchor pair that generates
the two valid posets. If the heuristic fails to find any such pair of
posets, then the heuristic returns null.
The heuristic was successful in 96/100 cases of the first input file.
This indicated that there were 4 counter-examples encountered.
The Hasse diagrams of the two expected posets in one such
counter-example are shown in Figure 4.
Upon further analysis, it was observed that the heuristic only
succeeded if the input set consists of linear orders from two posets
that have no overlapping linear extensions. In all cases where
there is an overlap, the heuristic incorrectly returned null. This is
because stray linear orders (i.e., linear orders that are supposed to
be also part of the other set) are contained in the set that generated
the first valid poset.
To illustrate this, suppose S={(3, 1, 2, 4), (3, 1, 4, 2), (3, 4, 1, 2),
(4, 3, 1, 2), (4, 1, 3, 2), (1, 4, 3, 2), (1, 3, 4, 2), (4, 1, 2, 3),
(1, 4, 2, 3)} and that (1, 2) is the current pair being processed. The
linear order (3, 1, 2, 4) in S is a stray linear order because only
(3, 1, 2, 4) is not part of the same expected poset, which is P2 in
Fig. 4, as the other linear orders in S.

Figure 4: Hasse diagrams of the expected posets P1 and P2 in

Case #26 of the first input file

4.2 Second Heuristic
As shown in Fig. 5, the second heuristic aimed to fix the mistake
of the first heuristic with regards to solving the overlapping cases.
Instead of applying the MOD_GEN_POSET function in the set
that generated an invalid poset, it is instead used in the set that
generated the valid poset. Suppose S is the set that generated the
valid poset, and P1* is the newly generated poset using
MOD_GEN_POSET(S, a, b). If the set of linear orders of P1* is a
subset of Υ, then Snew is generated using the difference of Υ and
L(P1*). This is done in order to transfer the stray linear order to the
proper set. P2* is then generated using GEN_POSET(Snew). If P2*
is not null, and the union of the two regenerated posets P1* and P2*
exactly matches Υ, then the heuristic successfully generated the
two valid posets.
The heuristic was successful in 98/100 cases of the input file. This
indicated that there were 2 counter-examples encountered. Both
pairs of Hasse diagrams of the expected posets of the two counter-
examples are shown in Figures 6 and 7.
Upon further analysis, it was seen that the MOD_GEN_POSET
function does not necessarily remove all relevant relations. Only
the immediate pair (a, b) was removed, leaving the other pairs that
involve the ancestors of a and the descendants of b intact. The
edited function, referred to as REDUCED_MOD_GEN_POSET,
achieves this by making the generated poset undergo transitive
reduction.

ALGORITHM: Second Formulated Heuristic to the Two Poset
 Cover Problem
INPUT: A set Υ = {𝑙&, 𝑙(, . . . , 𝑙*} of linear orders
 over the set 𝑉 = {1, 2, 3, . . . , 𝑛}.
OUTPUT: A pair of distinct posets 𝑃& = (𝑉,≤4&) and
 𝑃(= (𝑉,≤4() such that 𝐿(𝑃&) ∪ 𝐿(𝑃() = Υ and
 𝐿(𝑃&) ∩ 𝐿(𝑃() ≠ 𝐿(𝑃&) or 𝐿(𝑃(), if such a pair exists

1 for 𝑎 ← 1 to 𝑛 − 1
2 for 𝑏 ← 𝑎 + 1 to 𝑛
3 𝑆 ← { 𝑙 ∈ Υ | 𝑎 <E 𝑏}
4 𝑆′ ← { 𝑙 ∈ Υ | 𝑏 <E 𝑎}
5 𝑃& ← 𝐺𝐸𝑁_𝑃𝑂𝑆𝐸𝑇(𝑆)
6 𝑃(← 𝐺𝐸𝑁_𝑃𝑂𝑆𝐸𝑇(𝑆′)
7 if 𝑃& ≠ 𝑛𝑢𝑙𝑙 and 𝑃(≠ 𝑛𝑢𝑙𝑙 then
8 return {𝑃& , 𝑃(}
9 else if 𝑃& ≠ 𝑛𝑢𝑙𝑙 then
10 𝑃&∗ ← 𝑀𝑂𝐷_𝐺𝐸𝑁_𝑃𝑂𝑆𝐸𝑇(𝑆, 𝑎, 𝑏)
11 if 𝐿(𝑃&∗) ⊆ Υ then
12 𝑆YZ[\ ← 𝑆\ − 𝐿(𝑃&∗)
13 𝑃(∗ ← 𝐺𝐸𝑁_𝑃𝑂𝑆𝐸𝑇(𝑆YZ[\)
14 if 𝑃(∗ ≠ 𝑛𝑢𝑙𝑙 and 𝐿(𝑃&∗) ∪ 𝐿(𝑃(∗) = Υ then
15 return {𝑃&∗ , 𝑃(∗ }
16 else if 𝑃(≠ 𝑛𝑢𝑙𝑙 then
17 𝑃(∗ ← 𝑀𝑂𝐷_𝐺𝐸𝑁_𝑃𝑂𝑆𝐸𝑇(𝑆\, 𝑎, 𝑏)
18 if 𝐿(𝑃(∗) ⊆ Υ then
19 𝑆YZ[← 𝑆 − 𝐿(𝑃(∗)
20 𝑃&∗ ← 𝐺𝐸𝑁_𝑃𝑂𝑆𝐸𝑇(𝑆YZ[)
21 if 𝑃&∗ ≠ 𝑛𝑢𝑙𝑙 and 𝐿(𝑃&∗) ∪ 𝐿(𝑃(∗) = Υ then
22 return {𝑃&∗ , 𝑃(∗ }
23 return 𝑛𝑢𝑙𝑙

Figure 5: Second Formulated Heuristic for the 2-Poset Cover

Problem

Figure 6: Hasse diagrams of the expected posets P1 and P2 in

Case #39 of the first input file

Figure 7: Hasse diagrams of the expected posets P1 and P2 in

Case #54 of the first input file

29

4.3 Third Heuristic
The formal description of the third heuristic is provided in Fig. 8.
This heuristic involves the REDUCED_MOD_GEN_POSET
function in order to fix the mistakes of the second heuristic.
However, the original poset was still generated in case the
transitive reduced poset contained linear orders that are not part of
Υ.

ALGORITHM: Third Formulated Heuristic to the Two Poset
 Cover Problem
INPUT: A set Υ = {𝑙&, 𝑙(, . . . , 𝑙*} of linear orders
 over the set 𝑉 = {1, 2, 3, . . . , 𝑛}.
OUTPUT: A pair of distinct posets 𝑃& = (𝑉,≤4&) and
 𝑃(= (𝑉,≤4() such that 𝐿(𝑃&) ∪ 𝐿(𝑃() = Υ and
 𝐿(𝑃&) ∩ 𝐿(𝑃() ≠ 𝐿(𝑃&) or 𝐿(𝑃(), if such a pair exists

1 for 𝑎 ← 1 to 𝑛 − 1
2 for 𝑏 ← 𝑎 + 1 to 𝑛
3 𝑆 ← { 𝑙 ∈ Υ | 𝑎 <E 𝑏}
4 𝑆′ ← { 𝑙 ∈ Υ | 𝑏 <E 𝑎}
5 𝑃& ← 𝐺𝐸𝑁_𝑃𝑂𝑆𝐸𝑇(𝑆)
6 𝑃(← 𝐺𝐸𝑁_𝑃𝑂𝑆𝐸𝑇(𝑆′)
7 if 𝑃& ≠ 𝑛𝑢𝑙𝑙 and 𝑃(≠ 𝑛𝑢𝑙𝑙 then
8 return {𝑃& , 𝑃(}
9 else if 𝑃& ≠ 𝑛𝑢𝑙𝑙 then
10 𝑃&∗ ← 𝑀𝑂𝐷_𝐺𝐸𝑁_𝑃𝑂𝑆𝐸𝑇(𝑆, 𝑎, 𝑏)
11 𝑃&∗X ← 𝑅𝐸𝐷𝑈𝐶𝐸𝐷_𝑀𝑂𝐷_𝐺𝐸𝑁_𝑃𝑂𝑆𝐸𝑇(𝑆, 𝑎, 𝑏)
12 if 𝐿(𝑃&∗X) ⊆ Υ then
13 𝑃&∗ ← 𝑃&∗X
14 if 𝐿(𝑃&∗) ⊆ Υ then
15 𝑆]^_` ← 𝑆` − 𝐿(𝑃&∗)
16 𝑃(∗ ← 𝐺𝐸𝑁_𝑃𝑂𝑆𝐸𝑇(𝑆]^_`)
17 if 𝑃(∗ ≠ 𝑛𝑢𝑙𝑙 and 𝐿(𝑃&∗) ∪ 𝐿(𝑃(∗) = Υ then
18 return {𝑃&∗ , 𝑃(∗ }
19 else if 𝑃(≠ 𝑛𝑢𝑙𝑙 then
20 𝑃(∗ ← 𝑀𝑂𝐷_𝐺𝐸𝑁_𝑃𝑂𝑆𝐸𝑇(𝑆`, 𝑎, 𝑏)
21 𝑃(∗X ← 𝑅𝐸𝐷𝑈𝐶𝐸𝐷_𝑀𝑂𝐷_𝐺𝐸𝑁_𝑃𝑂𝑆𝐸𝑇(𝑆′, 𝑎, 𝑏)
22 if 𝐿(𝑃&∗X) ⊆ Υ then
23 𝑃(∗ ← 𝑃(∗X
24 if 𝐿(𝑃(∗) ⊆ Υ then
25 𝑆]^_ ← 𝑆 − 𝐿(𝑃(∗)
26 𝑃&∗ ← 𝐺𝐸𝑁_𝑃𝑂𝑆𝐸𝑇(𝑆]^_)
27 if 𝑃&∗ ≠ 𝑛𝑢𝑙𝑙 and 𝐿(𝑃&∗) ∪ 𝐿(𝑃(∗) = Υ then
28 return {𝑃&∗ , 𝑃(∗ }
29 return 𝑛𝑢𝑙𝑙

Figure 8: Third Formulated Heuristic for the 2-Poset Cover

Problem
The algorithm was successful in 100/100 cases of the first input
file. This indicated that all counter-cases presented in the earlier
sections were solved. The heuristic was also successful in all
146,611 cases of the second input file. This meant that the
algorithm gave a solution to all possible distinct pairs of posets
when n = 4.
The set of test cases was further expanded. The algorithm was
then able to solve all of the 441,330 cases from the third input file,
and 99948/100000 cases from the fourth input file. Figure 9
shows the Hasse Diagrams of the two expected posets of Case

#1463, one of the 52 counter-examples found from the fourth
input file.

Figure 9: Hasse diagrams of the expected posets 𝑷𝟏 and 𝑷𝟐 in

Case #1463 of the fourth randomly generated input file
Upon analysis of the counter-cases, it was discovered that the
counter-examples can be solved if the candidate poset has
undergone partial transitive reduction. This indicates that the
solution might need to exhaust all possible variants which,
unfortunately will need an exponential running-time complexity.
Overall, the three heuristics performed relatively well. A summary
of the empirical results in terms of the accuracy and average
running time (over 30 runs) is provided in Table 3 and Table 4.

Table 3. Summary of the total number of solved cases per
input file of each heuristic

 First
(100)

Second
(146,611)

Third
(441,330)

Fourth
(100,000)

Heuristic 1 96.00% 99.93% 81.01% 48.68%

Heuristic 2 98.00% 99.96% 97.68% 95.13%

Heuristic 3 100.00% 100.00% 100.00% 99.95%

Table 4. Summary of average running time of each heuristic

on each input file (in milliseconds)

 First Second Third Fourth

Heuristic 1 4.63 3,003.80 161,156.60 394,471.47

Heuristic 2 3.70 2,212.97 76,895.43 126,670.40

Heuristic 3 2.07 2,520.23 48,445.60 63,074.47

Figure 10: Hasse diagrams and the respective set of linear

orders of the sample posets 𝑷𝟏 and 𝑷𝟐 of a counter-example of
the anchor pair concept

30

In the course of the experiments, a counter-example was also
discovered that disproves our conjecture about the existence, for
all cases, of an anchor pair for effective partitioning of the input
linear orders. As can be seen from Fig. 10, L(P1) ∩ L(P2) = ∅ and
!"#$there is no pair (a, b) that can properly partition the input so as
to generate the two posets P1 and P2. Exhausting all possible
pairs of elements from the base set will easily validate this claim.
This shows, definitively, that the strategy of searching for a single
anchor pair is not sufficient to solve the 2-Poset Cover Problem. It
even seems to provide hints of a possible NP-Completeness for
this problem, although much further investigation is needed to
determine its correct complexity class. Nonetheless, a specific
class of posets can possibly be classified, such that the presented
anchor-pair strategy can be solved in polynomial time. This is
subject to future studies.

5. CONCLUSION
In this study, we explore the 2-Poset Cover Problem and develop
three heuristics for this. The heuristics are all based on the idea of
searching for an appropriate anchor pair of elements that can be
used to partition the input set of linear orders into 2 sets, and then
generating a candidate poset cover for each of the sets. While the
three polynomial-time heuristics do not solve the 2-Poset Cover
Problem for all instances, it has been shown that these heuristics
are able to return a correct 2-Poset Cover for a significant
majority of the instances. More importantly, the instances on
which the heuristics have failed have enabled us to have a better
understanding of the problem space. The insights gained here can,
hopefully, eventually lead to a polynomial-time solution to the
problem, if it is indeed in the class P, or a proof that it is a NP-
Complete.

6. ACKNOWLEDGMENTS
We would like to express our special thanks to the following
people for providing their direct and indirect support in making
this study a success: John Boaz Lee, Carlo Fransisco Adajar,
Jessica Sugay, Walfrido David Diy, Jenina Isabel Sanchez, Nicko
Reginio Caluya, and Ma. Mercedes Rodrigo.

7. REFERENCES
[1] Agrawal, R., and Srikant, R. 1995. Mining Sequential

Patterns. In Proceedings of the Eleventh International
Conference on Data Engineering, (1995), 3-14.

[2] Arkin, A., Shen, P., and Ross, J. 1997. A test case of
correlation metric construction of a reaction pathway from
measurements. Science 277, 5330 (1997), 1275-1279.

[3] Baker, B.S., and Coffman, E.G. 1996. Mutual Exclusion
Scheduling. Theoretical Computer Science 162, 2 (1996),
225-243.

[4] Brightwell, G., Promel, H.J., and Steger, A. 1996. The
average number of linear extensions of a partial order.
Journal of Combinatorial Theory Series A 73. 2 (1996), 193-
206.

[5] Brightwell, G., and Winkler, P. Counting linear extensions.
Order 8. 3 (1991), 225-242.

[6] Canfield, E.R., and Wiliamson, S.G. 1995. A loop-free
algorithm for generating the linear extensions of a poset.
Order 12, 1 (1995), 57-75.

[7] Dispo-Ordanel, I. 2011. On two restricted cases of the poset
cover problem. Master's thesis, Ateneo de Manila University.

[8] Fernandez, P. 2008. On the complexities of the block sorting
and poset cover problems. PhD thesis, Ateneo de Manila
University.

[9] Fernandez, P., Heath, L., Ramakrishnan, N., and Vergara,
J.P. 2006. Reconstructing Partial Orders from Linear
Extensions. In Proceedings of the Fourth SIGKDD
Workshop on Temporal Data Mining: Network
Reconstruction from Dynamic Data, (2006).

[10] Fernandez, P., Heath, L., Ramakrishnan, N., and Vergara,
J.P. 2009. Mining Posets from Linear Orders. Technical
Report TR -09-16, Department of Computer Science,
Virginia Tech, (2009).

[11] Fernandez, P., Heath, L., Ramakrishnan, N., Tan, M. and
Vergara, 2013. Mining Posets from Linear Orders. Discrete
Mathematics, Algorithms and Applications 5, 4 (2013).

[12] Heath, L., and Nema, A. 2007. The Poset Cover Problem.
Open Journal of Discrete Mathematics 3, 3 (2013), 101-111.

[13] Korsh, J.F., and Lafollette, P. 2002. Loopless Generation of
Linear Extensions of a Poset. Order 19, 2 (2002), 115-126.

[14] Laxman, S., Sastry, P.S., and Unnikrishnan, K.P. 2005.
Discovering frequent episodes and learning hidden Markov
models: A formal connection. IEEE Transactions on
Knowledge and Data Engineering 17, 11 (2005), 1505-1517.

[15] Lee, A.K., and Wilson, M.A. 2004. A Combinatorial Method
For Analyzing Sequential Firing Patterns Involving An
Arbitrary Number Of Neurons Based On Relative Time
Order. Journal of Neurophysiology 92, 4 (2004), 2555–2573.

[16] Mannila, H. 2008. Finding Total and Partial Orders from
Data for Seriation. Lecture Notes in Computer Science 5254.
2008, 16-25.

[17] Mannila, H., and Meek, C. 2000. Global partial orders from
sequential data. In Proceedings of the 6th Int'l Conf. on
Knowledge Discovery and Data Mining, (2000), 161-168.

[18] Mannila, H., Toivonen, H., and Verkamo, A.I. 1997.
Discovery of Frequent Episodes in Event Sequences. Data
Mining and Knowledge Discovery 1, 3 (1997), 259-289.

[19] Ono, A., and Nakano, S. 2005. Constant time generation of
linear extensions. In Proceedings of the 15th International
Symposium on Fundamentals of Computation Theory 3623,
(2005), 445-453.

[20] Patnaik, D., Butler, P., Ramakrishnan, N., Parida, L., Keller,
B.J. and Hanauer, D.A. 2011. Experiences With Mining
Temporal Event Sequences From Electronic Medical
Records: Initial Successes And Some Challenges. In
Proceedings of the 17th ACM SIGKDD international
conference on Knowledge discovery and data mining,
(2011), 360-368.

[21] Pruesse, G., and Ruskey, F. 1991. Generating the linear
extensions of certain posets by transpositions. SIAM Journal
on Discrete Mathematics 4. 3 (1991), 413-422.

[22] Pruesse, G., and Ruskey, F. 1994. Generating Linear
Extensions Fast. SIAM Journal on Computing 23, 2 (1994),
373-386.

[23] Puolamaki, K., Fortelius, M., and Mannila, H. 2006.
Seriation in paleontological data: Using Markov Chain

31

Monte Carlo methods. PLoS Computational Biology 2, 2
(2006).

[24] Ruskey, F. 1992. Generating Linear Extensions of Posets by
Transpositions. Journal of Combinatorial Theory Series B
54, 1 (1992), 77-101.

[25] Tan, M. 2010. Polynomial-time solutions to three poset cover
problem variations. Master's thesis, Ateneo de Manila
University.

[26] Ukkonen, A. 2004. Data mining techniques for discovering
partial orders. Master’s thesis, Helsinki University of
Technology.

[27] Unnikrishnan, K.P., Ramakrishnan, N., Sastry, P.S., and
Uthurusamy, R. 2006. Network Reconstruction from
Dynamic Data. ACM SIGKDD Explorations Newsletter 8, 2
(2006), 90-91.

[28] West, D.B. 1993. Generating Linear Extensions by Adjacent
Transpositions. Journal of Combinatorial Theory Series B
58. 1 (1993), 58-64.

[29] Wiggins, C.H., and Nemenman, I. 2003. Process pathway
inference via time series analysis. Experimental Mechanics
43, 3 (2003), 361-370.Bowman, M., Debray, S. K., and
Peterson, L. L. 1993. Reasoning about naming systems. ACM
Trans. Program. Lang. Syst. 15, 5 (Nov. 1993), 795-825.
DOI= http://doi.acm.org/10.1145/161468.16147.

32

