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ABSTRACT
In this paper we study a three-stage inventory system to
come up with an optimal periodic inventory policy. We for-
mulate a general and specific model on a three-stage serial
inventory system for a single-item considering stochastic de-
mand. To solve the model, we come up with an algorithm
that can be easily implemented using C! as a programming
language. With this algorithm, we create a user-friendly
software so that even layman people can use it in their busi-
ness. We observe validity of the formulated model and the
effectiveness of the algorithm by generating and analyzing
numerical results.
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1. INTRODUCTION
The stocks or products being offered by a company to its
customers are called inventory. Management of inventory in
a given company is very important and usually too complex
to handle. Efficient and effective management of inventory
will lessen the operating cost and, as a result, making the
business more competitive in terms of finances. There are
two common inventory policies being adapted by companies:
the periodic inventory policy and the continuous inventory
policy. These policies answer the two main questions in
inventory: ”When to order?” and ”How much to order?” [3].

The main goal of finding an optimal inventory policy is to
minimize the total inventory cost. There are three main
cost parameters associated to the total inventory cost - the
holding cost or the cost of maintaining the inventory, the
ordering cost or the cost of placing an order and the shortage
cost or the penalty incurred to the company when it runs
out of stock [6] .

The holding cost and ordering cost are in conflict with each

other. For example, if we are to order too much, the hold-
ing cost will be too high (e.g. more space to be rented,
more airconditioning units needed for perishable products)
but the ordering cost is low since the number of placement
of orders will decrease (i.e. there will be a lesser chance of
being out of stock and thus lessens the number of ordering
new stocks). Whereas, when we order too small (i.e. we
rent smaller space, less airconditioning units needed for per-
ishable products) the holding cost is low but the ordering
cost will be too high (i.e. there is a bigger chance of run-
ning out of stock thus more placement of orders to replenish
the stocks). Note also that shortage cost is in conflict with
holding cost [9], [8]. To determine the amount to order and
when to place an order, we will formulate and minimize the
following total inventory cost (TC)

TC = (OrderingCost) + (HoldingCost) + (ShortageCost).

Different models for a single-stage [9] and for a two-stage
[5], [1] had been formulated. But there are existing inven-
tory systems that are naturally three-stage and thus, cannot
be fully explained by a single-stage or a two-stage model.
An example of a three-stage inventory system is a business
where products are being stored in a main warehouse (stage
3) then being distributed to main stores (stage 2) and then
to retailers (stage 1) Thus, in this paper we formulate a
model for a three-stage inventory system so as to minimize
the total inventory cost.

In the formulation of the total inventory cost function, one of
the main factors to be considered is the customer’s demand.
Demand can be deterministic or stochastic in nature [7]. In
the formulation of the general model, we consider a stochas-
tic demand. And in the formulation of the specific model,
we consider a normally distributed demand. We solve the
specific model using an algorithm to be coded in C! pro-
gramming language. C! is an object-oriented programming
language created by Microsoft. With the user-friendly inter-
face generated using C!, we create a software that will solve
the formulated model.

2. RESULTS AND DISCUSSION
We formulate the general and specific model with stochastic
demand. In the formulation, we will use the concept of eche-
lon stock [2] which is the total inventory in the current stage
and all its downstream stages. That is, Echelon 1 refers to
Stage 1, Echelon 2 refers to Stages 2 and 1, and Echelon 3
denotes Stages 3, 2 and 1. For example, on-hand inventory
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at Echelon 3 means the total on-hand inventory at Stages 3,
2 and 1.

2.1 Notations
We use the following standard notations in the formulation
of the models [1].

Ii(t) − on-hand inventory or the amount of inventory in the
warehouse at echelon i at time t
Bi(t) − amount of unfulfilled demand at echelon i at time t
Oi(t) − on-order replenishment at echelon i at time t
ILi(t) − inventory level or net inventory at echelon i, at
time t, equivalent to Ii(t)−Bi(t)
IPi(t) − inventory position at time t at echelon i, equivalent
to ILi(t) +Oi(t)
TC(·) − expected total inventory cost per unit time
Li − replenishment leadtime at echelon i
d − expected demand per unit time
f(x|L) − probability density function of leadtime demand
x, given that the leadtime is L
ai − ordering cost per cycle (per order) at echelon i
hi − holding cost per item per unit time at echelon i
b − shortage cost per item at stage 1
Ti − review period at echelon i
Ri − order-up-to level at echelon i
n1 − number of times Stage 1 places an order to Stage 2,
for every review cycle of Stage 2
n2 − number of times Stage 2 places an order to Stage 3,
for every review cycle of Stage 3

2.2 Assumptions
The following general assumptions are considered in the
study of a two-stage serial system [1] and will also be con-
sidered in this formulation. A graphical representation of
these assumptions is shown in Figure 1.

A1. The cost parameters (holding cost, ordering cost and
shortage cost) are quantifiable and known in advance.

A2. During the last replenishment in a cycle, Stage 2 orders
the entire remaining on-hand inventory from Stage 3.
Similarly, Stage 1 orders the entire on-hand inventory
from Stage 2. These are equivalent to
IP2(L3 + (n2 − 1)T2) = IL3(L3 + (n2 − 1)T2) and
IP1(L3+L2+(n1−1)T1) = IL2(L3+L2+(n1−1)T1)
given that Stage 3 orders at time t = 0.

A3. Echelon 3 has sufficient inventory to raise the Stage 2
inventory position to R2 for all normal replenishment
cycles. Similarly, Echelon 2 has sufficient inventory to
raise the Stage 1 inventory position toR1 for all normal
replenishment cycles. That is, IL3 (L3 + (n2 − 2)T2) >
R2 and IL2 (L3 + L2 + (n1 − 2)T1) > R1.

A4. The inventory position in Echelon 2, shortly before
the shipment from Stage 3 arrives, is less than R2.
Otherwise, Stage 3 does not need to send any shipment
to Stage 2. Similarly, we will assume that the inventory
position in Echelon 1, shortly before the shipment from
Stage 2 arrives, is less than R1.

A5. Each stage implements a periodic inventory policy and
the ordering policies are nested. That is, Stage 2 (Stage

1) places a replenishment when Stage 3 (Stage 2) re-
ceives its replenishment. To coordinate the replenish-
ment of both stages, the constraints T3 = n2T2 and
T2 = n1T1 are imposed, where n1 and n2 are positive
integers.

Figure 1: A three-stage inventory level and position
example (n2 = 3, n1 = 4)

2.3 Derivation of the general and specific model
To formulate the cost function TC we will derive the three
main cost parameters separately. Note that the ordering
cost per unit time at echelon i is ai/Ti . Thus, the expected
total ordering cost per unit time is

a3

T3
+

a2

T2
+

a1

T1
. (1)

To derive the total holding cost, we will consider Echelons
3, 2 and 1 separately. The average inventory at Echelon 3 is
R3 − d

(
L3 +

T3
2

)
. Thus, the expected holding cost per unit

time at Echelon 3 is

h3

[
R3 − d

(
L3 +

T3

2

)]
. (2)

In the case of Echelon 2, we will derive the holding cost
for the n2 − 1 normal replenishment cycles and for the last
(exhausted) replenishment cycle [1] (this is because of as-
sumption A2). Note that the average inventory in Echelon
2 for every normal replenishment cycle is R2 − d

(
L2 +

T2
2

)
.

The average inventory for the last replenishment cycle can
be computed as the average of the starting and ending in-
ventory at the last cycle. That is, the average inventory is

[R3−d(L3+L2+(n2−1)T2)]+(R3−d(L3+L2+T3))
2

= R3 − d
(
L3 + L2 + T3 − T2

2

)
.

Thus, the expected holding cost per unit time at Echelon 2
is
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h2

[
n2 − 1
n2

(
R2 − d

(
L2 +

T2

2

))]
+

h2

[
1

n2

(
R3 − d

(
L3 + L2 + T3 −

T2

2

))]
. (3)

Now, the expected holding cost for Echelon 1 will be ana-
lyzed like what we did in Echelon 2. Note that the aver-
age inventory for every normal replenishment cycle is R1 −
d
(
L1 +

T1
2

)
whereas, the average inventory in the exhaus-

tive cycle is R2 − d
(
L1 + L2 + T2 − T1

2

)
. Thus, the holding

cost per unit time at Echelon 1 is

h1

[
n1 − 1
n1

(
R1 − d

(
L1 +

T1

2

))]
+

h1

[
1

n1

(
R2 − d

(
L1 + L2 + T2 −

T1

2

))]
. (4)

Lastly, to compute the shortage cost in Echelon 1 we will
also consider the expected shortage for normal and exhaus-
tive cycle. Note that the expected number of shortages for
every normal replenishment cycle at Echelon 1 is

∫∞
R1 (x−R1) f (x |T1 + L1 ) dx while the expected number of
shortages for the exhaustive cycle is∫∞
R2

(x−R2) f (x |T2 + L1 + L2 ) dx (see [1] and [3]). There-
fore, the expected shortage cost per unit time at echelon 1
is

b
T1

[
n1 − 1
n1

∫ ∞

R1

(x−R1) f (x |T1 + L1 ) dx

]
+

b

T1

[
1

n1

∫ ∞

R2

(x−R2) f (x |T2 + L1 + L2 ) dx

]
. (5)

Adding equations (1), (2) ,(3), (4) and (5) gives us the gen-
eral expected total inventory cost function TC. Thus, our
general model is to minimize TC. Note that by assumption
A5, the expected total inventory cost function can be sim-
plified in terms of four continuous variables T1, R1, R2 and
R3; and two discrete variables n1 and n2.

To formulate a specific model, we consider a specific distri-
bution of demand. Let us consider a demand that is nor-
mally distributed with probability density function g defined

as g (x) = 1
σ
√
2π

e−
(x−µ)2

2σ2 , where µ and σ are the mean and
standard deviation of the demand, respectively.

By Tempelmeier [10], the demand during deterministic lead-
time L is also normally distributed with probability density
function f (x |L) defined as,

f (x |L) = 1
σY

√
2π
e
− (x−µY )2

2σ2
Y , where µY = µL and

σY = σ
√
L.

Evaluating the integral terms in equation (5), with density
function f (x |L ) as described above, will give a specific total
inventory cost function where the expected shortage cost per
unit time at stage 1 is given by

b
T1

[
n1 − 1

n1
F +

1
n1

G

]
(6)

where

F =
σ1e

− (R1−µ1)2

2σ2
1

√
2π

+
µ1 −R1

2
+

(
R1 − µ1

2

)
erf

(
R1 − µ1

σ1

√
2

)
,

G =
σ2e

− (R2−µ2)2

2σ2
2

√
2π

+
µ2 −R2

2
+

(
R2 − µ2

2

)
erf

(
R2 − µ2

σ2

√
2

)
,

µ1 = µ (T1 + L1) , σ1 = σ
√
T1 + L1,

µ2 = µ (L1 + L2 + T2) , σ2 = σ
√
L1 + L2 + T2,

T3 = n2T2, T2 = n1T1, erf = error function.

3. ALGORITHM TO SOLVE THE SPECIFIC
MODEL

Note that the formulated specific model is an example of
a mixed integer non-linear programming (MINLP) model.
MINLP models are too complex to be solved. There are
expensive softwares, such as GAMS, that are available in
the market that can solve MINLP models. The interface
of GAMS is not so user-friendly especially for a layman.
Thus, we create a more user-friendly and a less expensive
software by first constructing an algorithm that can be easily
implemented using C# codes.

In equation (6), the error function is defined as erf (x) =
2√
π

∫ x

0
e−t2dt which cannot be easily evaluated using C# codes

but can be approximated in different ways. In the algo-
rithm, we use the approximation formulated by Hastings [4]
in which
erf (x) ≈ 1−

(
a1t+ a2t

2 + a3t
3
)
e−x2

where t = 1
(1+a4x)

,
a1 = 0.348022, a2 = −0.0958798, a3 = 0.7478556 and a4 =
0.47047 .

Combining assumptions A3 and A4, we add in the algorithm
the following constraints:
C1 : d (L3 + (n2 − 2)T2) ≤ R3 −R2 ≤ d (L3 + T3) and
C2 : d (L3 + L2 + (n1 − 2)T1) ≤ R2−R1 ≤ d (L3 + L2 + T2).

Since we do not want a negative holding cost per review
period at every stage, we need to add also the following
constraints
C3 : R3 − d

(
L3 + L2 + n2T2 − T2

2

)
≥ 0

C4 : R3 − d
(
L3 +

T3
2

)
≥ 0

C5 : R2 − d
(
L2 +

T2
2

)
≥ 0

C6 : R2 − d
(
L1 + L2 + T2 − T1

2

)
≥ 0

Observe that ∂TC
∂R3

= h3 + h2
n2

> 0, which means that TC
increases as R3 increases. Thus, in our algorithm, we choose
the minimum R3 that satisfies constraints C1, C3 and C4.
The derived specific cost function TC can be easily shown
to be convex with respect to R1 and R2 for fixed values of
n1 > 1, n2, R3 and T1. That is, since

∂2TC
∂R2

1

=

√
2b (n1 − 1) e

− (R1−µ(T1+L1))2

2σ2(T1+L1)

2T1n1
√
πσ

√
T1 + L1

> 0

when n1 > 1;

∂2TC

∂R2
2

=

√
2be

− (R1−µ(n1T1+L1+L2))2

2σ2(n1T1+L1+L2)

2T1n1
√
πσ

√
n1T1 + L1 + L2

> 0;
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and

∂2TC
∂R2∂R1

=
∂2TC

∂R1∂R2
= 0.

Now, we use the following algorithm to solve the specific
model:

ALGORITHM
——————————————————————————
Inputs: h1, h2, h3, a1, a2, a3, L1, L2, L3, b, µ, σ

2

Initialize n, m, p, OptimalTC, n1, n2, T1, R1, R2 and R3

(n = m = 100, p = 365, OptimalTC=”infinity or relatively
large value”, n1 = n2 = T1 = R1 = R2 = R3 = 0 will do)
For i=1,. . . ,n

For j=1,. . . ,m
For k=1,. . . ,p

Set newN1=i, newN2=j, newT1=k
Compute newR3= ”the minimum R3 that
satisfies constraints C1, C3 and C4”
Compute newR1=R1 and newR2=R2 where
(R1,R2) is a solution to the equations

∂TC
∂R1

= 0 and ∂TC
∂R2

= 0

Compute newTC = TC(newN1, newN2,
newT1, newR1, newR2, newR3)

If newTC <= OptimalTC then
Set n1= newN1; n2 = newN2; T1= newT1;
R1= newR1; R2= newR2; R3= newR3;
OptimalTC= newTC

End
End

End
Compute T2 = n1T1 and T3 = n1n2T1

Outputs: optimal values n1, n2, T1, T2, T3, R1, R2 ,R3,
OptimalTC
——————————————————————————

The formula used in solving newR1 and newR2 are obtained
using MAPLE 7 (a math solver software). The algorithm
was coded to create a software using C" as the programming
language. The screen shots of the software’s user interface
are shown in Figure 2 and Figure 3.

Figure 2: User interface of the software when asking
for inputs

4. VALIDATION OF THE MODEL AND THE
ALGORITHM

Some numerical results are obtained using the created soft-
ware in C". Different inputs are shown in Table 1 and the
corresponding optimal solutions are shown in Table 2. All
examples use L1 = 3 days, L2 = 5 days and L3 = 7 days.

Figure 3: User interface of the software when dis-
playing output and inputs

Ti′s are measured in days and the total cost is in pesos per
year.

Table 1: Different Input Parameters for Model 1A
Ex INPUT PARAMETERS

µ σ2 b h1 h2 h3 a1 a2 a3

1 10,000 160,000 10 90 60 30 600 700 800
2 10,000 160,000 40 90 60 30 600 700 800
3 10,000 160,000 90 90 60 30 600 700 800
4 10,000 160,000 10 90 60 30 800 700 600
5 10,000 160,000 10 50 30 20 600 700 800
6 5,000 90,000 10 90 60 30 600 700 800
7 5,000 90,000 40 90 60 30 600 700 800
8 5,000 90,000 90 90 60 30 600 700 800
9 5,000 90,000 10 90 60 30 800 700 600
10 5,000 90,000 10 50 30 20 600 700 800
11 10,000 160,000 90 90 60 30 50 100 300

Ex2 to Ex5 are variations of Ex1 with some changes in the
inputs. With these changes, let us compare the optimal so-
lutions in Ex2 to Ex5 to the optimal solution in Ex1. In
Ex2 and Ex3, we increased the shortage cost to Php40 and
Php90. The resulting optimal R1 increased while T1 de-
creased. This is what we expect to happen since we do not
want too much shortage when shortage cost is too high.

In Ex4, we change the ordering cost at stage 1 and stage 3 to
800Php and 600Php, respectively. These changes increase
the review period T1 (from 13 days to 14 days) since we
want to lessen the number of order cycles per year at stage
1 due to the increase in ordering cost. In Ex5, we decrease
the holding cost parameters in all stages and the resulting
optimal policy tends to have an increase in review period and
order-up-to-level in all stages which is, again, an expected
outcome.

In Ex6 to Ex10, a different mean and variance of the demand
distribution are considered but with same cost parameters
as with Ex1 to Ex5, respectively. Changes in the optimal
policy occur but, similar to Ex1 to Ex5, the outcomes are
what we expect to happen. Ex11 shows that n1 and n2 can
take a value other than 2 depending on the values of the cost
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Table 2: Corresponding optimal policy of examples
in Table 1

Ex Optimal Policy

n1 n2 T1 T2 T3 R1 R2 R3 Total Cost

1 2 2 13 26 52 478 922 1,397 87,280.93

2 2 2 12 24 48 527 1,013 1,315 97,688.85

3 2 2 11 22 44 530 1,008 1,233 102,171.48

4 2 2 14 28 56 501 964 1,479 91,305.66

5 2 2 16 32 64 591 1,147 1,644 65,182.57

6 2 2 23 46 92 343 582 1,110 58,167.12

7 2 2 17 34 68 361 670 863 69,161.85

8 2 2 16 32 64 376 691 822 73,239.97

9 2 2 23 46 92 343 582 1,110 60,547.56

10 2 2 24 48 96 406 761 1,151 45,002.88

11 5 2 4 20 40 319 975 1,167 60,843.36

parameters and the mean and variance. From these results,
we can conclude (at some degree) that our formulated model
is valid.

Regarding the effectiveness of the algorithm in solving the
model, Table 3 shows the corresponding optimal solution of
Ex1 to Ex5 using GAMS. Obviously, the values in Table 2
and Table 3 are the same. Thus, the proposed algorithm is
effective in solving the specific model.

Table 3: Corresponding optimal policy of Ex1 to
Ex5 in Table 1 using GAMS

Ex Optimal Policy

n1 n2 T1 T2 T3 R1 R2 R3 Total Cost

1 2 2 13 26 52 478 922 1,397 87,280.9

2 2 2 12 24 48 527 1,013 1,315 97,688.9

3 2 2 11 22 44 530 1,008 1,233 102,171.5

4 2 2 14 28 56 501 964 1,479 91,305.7

5 2 2 16 32 64 591 1,147 1,644 65,182.6

5. CONCLUSION
In this paper, we had formulated a general and specific
model for a periodic three-stage inventory system with stochas-
tic demand. We created a user-friendly software following
the proposed algorithm. From the generated numerical re-
sults using the software, we observed that the model is valid
and the algorithm is effective in solving the model. For fu-
ture research, other distributions of demand can also be con-
sidered and explored in the formulation of a specific model.
Other scenarios, such as products that decay over time, mul-
tiple items in the storage and limited space to store multiple
items, can be integrated in the formulation of the general
model. A general case (i.e. n-stage inventory policy) can
also be considered for future researches.
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