
System of Automata Recognizing Languages

Kelvin Cui Buño
Department of Computer Science

(Algorithms and Complexity)
Velasquez Ave., UP Diliman

Quezon City 1101
kcbuno@up.edu.ph

ABSTRACT
This paper looks into on the results of C̆ermák on the Mul-
tiaccepting Automata Systems[1, 2]. This automata system
was inspired and is an automata counterpart of the Multi-
generative Grammar Systems introduced by Meduna and Lukas
[6]. The results show that the Multiaccepting Automata Sys-
tem and Multigenerative Grammar System is equivalent. In
this paper, we show an alternate proof for showing equiva-
lence between the two formal systems from the one given in
[1].

1. INTRODUCTION
Grammar systems are a collection of formal grammars that
generate a language in a distributed manner, and may even
work in parallel. The individual grammar components are
often context-free, but by adding some form of communicat-
ing mechanism, the grammar system is able to generate non-
context-free languages. These grammar components can work
on a shared string, in which case the string is rewritten by one
grammar component and then passed on to another gram-
mar component described by some protocol, as in the case
of Cooperating Distributed Grammar Systems (CDGS) [5].
Grammar components can also work individually on their
own strings, but these individual strings can also be passed
on to other components for further processing, as in the case
of Parallel Communicating Grammar Systems (PCGS) [9].

The concept of Multigenerative Grammar Systems (MGS) was
introduced by Alexander Meduna and Roman Lukas [6]. For
a given integer n, an n-generative grammar uses n context-
free grammars of leftmost derivation. Thesen leftmost deriva-
tion are controlled by n-tuples of non-terminal symbols or
rules. These generates n strings on which set or string oper-
ations can be performed. The first operation considers only
the generated string of the grammar component indicated
as the first component, that is, all other components are just
accessories that aid in the restriction of the derivations. The
concatenation operation concatenates all the output string into
a single string, the order is determined by the index of the

grammar components. And finally, the union operation which
forms a set that includes the generated strings of all grammar
components.

An automata system, similar to grammar systems, is a col-
lection of automata components that accepts languages. Au-
tomata systems borrow computation and communication strate-
gies from grammar systems to be able to accept languages
that are difficult to be recognized by the individual automata
components. Some studies on automata system include Mul-
tilanguage and Multiaccepting Automata System and its equiv-
alence to Multigenerative Grammar System [1], Parallel Fi-
nite Automata System Communicating by Transitions [8], and
Parallel Communicating Pushdown Automata Systems [4].

In this paper, we look into the hierarchy ofn-languages shown
in [2]. Specifically we look into the equivalence of the n-
accepting move-restricted pushdown automata system and
the n-generating rule-synchronized context-free grammar sys-
tem. We present a construction of an equivalent pushdown
automata system given the context-free grammar system.

The rest of the paper is organized as follows: Section 2 dis-
cusses the basic notations and defintions used in the paper,
Section 3 discusses the Multigenerative Grammar System and
the Multiaccepting Automata System, Section 4 gives a proof
on the equivalence of the two formal systems, and finally
Section 5 gives some final remarks about research on formal
systems.

2. PRELIMINARIES
The reader is assumed to have background knowledge on
formal languages and automata[11][10].

Let Σ be a finite set of symbols called an alphabet. We denote
the Kleene closure of Σ, Σ∗, as the set of all finite words over
the alphabet Σ including the empty string, ε. |Σ| denotes the
cardinality of the set Σ. Let w be a finite word. Then |w|
is the length of w. The empty string, ε, has length 0. If Σ
is an alphabet and a ∈ Σ, and w ∈ Σ∗, then we denote the
number of occurrences of a in w as |w|a. If x, y are words and
if w = xy, then w is the concatenation of x and y.

A context-free grammar, CFG G, is a four-tuple (N,T, P, S).
N is the set of non-terminal symbols. T is the set of terminal
symbols and is disjoint with N . S is the start non-terminal
symbol and is an element of N . P is a finite set of production
rules of the form A → x, where A ∈ N , and x ∈ (N ∪T)∗. To

6

label a production rule with a label r, we write a production
rule as r : A → x. Let u, v ∈ (N ∪ T)∗. For every rule
A → x ∈ P , we write uAv ⇒ uxv. We denote the transitive-
reflexive closure of ⇒ as ⇒∗. The language of G, L(G), is
defined as {w ∈ T ∗ : S ⇒∗ w ∈ L(G)}.

A pushdown automaton, PDA M , is a seven-tuple (Q, Σ, ∆,
δ, q0, Z0, F) where Q is a finite set of states, Σ is the input
alphabet, ∆ is the stack alphabet, δ is the transition function
that maps Q× (Σ∪ {ε})×∆ into finite subsets of Q×∆∗, q0
is the initial state, Z0 is the initial stack symbol, and F ⊆ Q
is the set of final states. The transition function δ, given the
current state, reads the input string and the symbol at the
top of the stack. It then moves to the next state and writes
the symbols into the top of the stack. We usually use the
‘$’ symbol as the initial stack symbol. Since there are only
a finite number of input to the transition function, we use
a label r for each input to output mapping of the transition
function δ. We can write it as r : (q1, a, b) → (q2, c), where
q1, q2 ∈ Q, a ∈ Σ, b, c ∈ ∆. The PDA would accept the input
string only if it reaches the final state with no symbol in the
stack other than ‘$’. The language recognized by a PDA M is
denoted by L(M).

The procedure for constructing a pushdown automaton from
a given context-free grammar, or constructing a grammar
from a given pushdown automaton can be found at [11], [10]
and [?]. We give the following theorems to show the equiva-
lence of PDA and CFG.

THEOREM 1. [10][11] A language L is in the set of Context-
Free Languages (CFL) if and only if there exists a CFG G such that
L(G) = L.

THEOREM 2. [10][11] A language L is in CFL if and only if
there exists a PDA M such that L(M) = L.

We say that a recognizer (i.e automata) and a generator (i.e.
grammars) are equivalent if and only if they accept the same
language.

3. GRAMMAR AND AUTOMATA SYSTEMS
3.1 Multigenerative Grammar System
Multigenerative grammars are classified into two but equiv-
alent grammar systems. They differ upon the production
rule control tuple. The two controls are either non-terminal,
which synchronizes all derivations of the grammars through
their leftmost non-terminal, or by rule, which synchronizes
all derivations of the grammars through the labeled produc-
tion rules.

DEFINITION 1. [6] An n-generative non-terminal-synchronized
grammar system (n−MGN) is an n+ 1 tuple,

Γ = (G1, ..., Gn, Q),

where Gi = (Ni, Ti, Pi, Si) is a context-free grammar for each i =
1, ..., n and Q is a finite set of n-tuples of the form (A1, ..., An), Ai ∈
Ni, i = 1, ..., n.

Let Γ = (G1, ..., Gn, Q) be an n-MGN. Then, a sentential n-
form of n-MGN is an n-tuple of the form χ = (x1, ..., xn)
where xi ∈ (N ∪ T)∗ for all i = 1, ..., n. Let χ = (u1A1v1,
..., unAnvn) and χ̄ = (u1x1v1, ..., unxnvn) be two sentential
n-form, where Ai ∈ Ni, ui ∈ T ∗

i , and vi, xi ∈ (N ∪ T)∗ for
all i = 1, ..., n. Let Ai → xi ∈ Pi for all i = 1, ..., n and
(A1, ..., An) ∈ Q. Then χ ⇒ χ̄. ⇒∗ represents the reflexive-
transitive closure of ⇒.

Let w = (w1, ..., wn) be an n-tuple, and each wi, i = 1, ..., n
is a terminal string. We say that Γ generates w if and only if
w is reachable from the initial sentential n-form of Γ through
⇒∗.

The n-Language of Γ, n-L(Γ), is defined as

n-L(Γ) = {(w1, ..., wn) : (S1, ..., Sn) ⇒∗ (w1, ..., wn), wi ∈
T ∗
i , i = 1, ..., n}

The language generated by Γ in the union mode, Lunion(Γ),
is defined as

Lunion(Γ) = {w : (w1, ..., wn) ∈ n-L(Γ),
w ∈ {wi : i = 1, ..., n}}

The language generated by Γ in the concatenation mode,
Lconc(Γ), is defined as

Lconc(Γ) = {w1w2...wn : (w1, ..., wn) ∈ n-L(Γ)}

The language generated by Γ in the first mode, Lfirst(Γ), is
defined as

Lfirst(Γ) = {w1 : (w1, ..., wn) ∈ n-L(Γ)}

DEFINITION 2. [6] An n-generative rule-synchronized gram-
mar system (n−MGR) is an n+ 1 tuple,

Γ = (G1, ..., Gn, Q),

where Gi = (Ni, Ti, Pi, Si) is a context-free grammar for each i =
1, ..., n and Q is a finite set of n-tuples of the form (p1, ..., pn), pi ∈
Pi, ∀i = 1, ..., n.

A sentential n-form for n-MGR is defined similarly as the
sentential n-form in n-MGN. Let Γ = (G1, ..., Gn, Q) be a n-
MGR. Let χ = (u1A1v1, ..., unAnvn), χ̄ = (u1x1v1, ..., unxnvn)
be two sentential n-forms, where Ai ∈ Ni, ui ∈ T ∗

i , vi, xi ∈
(N∪T)∗, ∀i = 1, ..., n. Let pi : Ai → xi ∈ Pi and (p1, ..., pn) ∈
Q. Then χ ⇒ χ̄ denotes the transition from configuration χ
to χ̄. ⇒∗ represents the reflexive-transitive closure of ⇒.

Let w = (w1, ..., wn) be an n-tuple, and each wi, i = 1, ..., n
is a terminal string. We say that Γ generates w if and only if
w is reachable from the initial sentential n-form of Γ through
⇒∗.

The n-Language of Γ, n-L(Γ), is defined as

n-L(Γ) = {(w1, ..., wn) : (S1, ..., Sn) ⇒∗ (w1, ..., wn), wi ∈
T ∗
i , i = 1, ..., n}

7

The language generated by Γ in the union mode, Lunion(Γ),
is defined as

Lunion(Γ) = {w : (w1, ..., wn) ∈ n-L(Γ),
w ∈ {wi : i = 1, ..., n}}

The language generated by Γ in the concatenation mode,
Lconc(Γ), is defined as

Lconc(Γ) = {w1w2...wn : (w1, ..., wn) ∈ n-L(Γ)}

The language generated by Γ in the first mode, Lfirst(Γ), is
defined as

Lfirst(Γ) = {w1 : (w1, ..., wn) ∈ n-L(Γ)}

The following is an example of a 2 component Multigener-
ative Grammar System that uses rule synchronization, a 2-
MGR.

EXAMPLE 1. We construct a 2-MGR, Γ = (G1, G2, Q).

G1 = ({S1}, {a, b}, {r11 : S1 ⇒ aS1b, r12 : S1 ⇒ ε}, S1)

G2 = ({S2}, {c, d}, {r21 : S2 ⇒ cS2d, r22 : S2 ⇒ ε}, S2)

Q = {(r11, r21), (r12, r22)}

The initial sentential n-form for Γ is (S1, S2) as G1 starts its
computation with S1 and G2 starts its computation with S2.

The rule-synchronization control tuple Q has two elements in
it: (r11, r21) and (r12, r22). This means that when Γ performs
a derivation, then G1 and G2 has to perform the production
rules r11 and r21, respectively, at the same time or r12 and
r22 at the same time. It cannot be so that G1 uses r11 but
G2 uses r22 since it was not defined in Q. For instance, Γ
uses (r11, r21) twice, then the resulting sentential n-form is
(S1, S2) ⇒ (aS1b, cS2d) ⇒ (a2S1b

2, c2S2d
2).

To say the Γ generates an n-tuple, it is required that the each
element of the n-tuple is only composed of terminal strings
and is reachable from the initial sentential n-form. For in-
stance, Γ finally applies the control (r12, r22) to have (S1, S2)
⇒∗ (a2b2, c2d2).

2-L(Γ) = {(anbn, cndn): n ≥ 0},

Lfirst(Γ) = {anbn: n ≥ 0},

Lunion(Γ) = {anbn: n ≥ 0} ∪ {cndn: n ≥ 0},

Lconc(Γ) = {anbncndn: n ≥ 0}.

3.2 Multiaccepting Automata System
We know from classic literature that a context-free grammar,
G, has an equivalent pushdown automaton, M . We say that
they are equivalent because they have the same expressive
power and both can recognize the set of Context-free lan-
guages.

Multiaccepting Automata System using PDA
DEFINITION 3. [1, 2] A n-accepting move-restricted automata

system (n-MAS) is an n+ 1 tuple:

Λ = (M1, ...,Mn, P)

where each Mi = (Qi,Σi,∆i, δi, q0i, Z0i, Fi) is a pushdown au-
tomaton and P is a finite set of n-tuples of the form (r1, ..., rn),
each ri defined by δi, ∀i = 1, ..., n.

The input to Λ is a n-tuple of the form (x1, ..., xn), xi ∈ Σ∗
i . The

input to PDA Mi in Λ is xi.

Each PDA Mi can be defined by its current state, qi, the re-
maining unread string, ai ∈ Σ∗

i , and the stack content, bi ∈
∆∗

i , where the first symbol of bi is the top of the stack. We
define the n-configuration of n-MAS as a n-tuple of the form
χ = ((q1, a1, b1), ..., (qn, an, bn)), where, for i = 1, ..., n, qi ∈
Qi, ai ∈ Σ∗

i , and bi ∈ ∆∗
i . We refer to each (qi, ai, bi) as a

configuration of Mi. If Mi has no more symbol to read, then
ai = ε.

Given an input tuple w = (w1, ..., wn), for i = 1, ..., n, the
initial configuration of Mi would be (q0i, wi, ε), where q0i is
the start state, and wi ∈ Σ∗

i . Then the initial n-configuration
of Λ is ((q01, w1, ε), ..., (q0n, wn, ε)).

The accepting configuration of Mi would be (qf i, ε, ε), where
qf i ∈ Fi. An accepting n-configuration of Λ is ((qf 1, ε, ε), ...,
(qfn, ε, ε)).

Let χ = ((x1, a1, b1), ..., (xn, an, bn)) and χ̄ = ((y1, c1, d1), ...,
(yn, cn, dn)) be two n-configuration of Λ, where xi, yi ∈ Qi,
ai, ci ∈ Σ∗

i , and bi, di ∈ ∆∗
i . ai = αci, where α ∈ (Σi ∪ {ε}).

bi = eβ and di = fβ, where e, f ∈ (∆i ∪ {ε}), β ∈ ∆∗
i . Let

si : (xi,α, e) & (yi, f) be a transition in δi and (s1, ..., sn) ∈
P . Then χ directly transits to χ̄, denoted as χ & χ̄. We de-
note the reflexive-transitive closure of & as &∗. We call the
sequence of n-configuration of Λ obtained through the se-
quence of transitions as the computation of Λ.

Given an n-MAS Λ, and input n-tuple w = (w1, ..., wn), we
say that w is accepted by Λ if from the initial n-configuration
of Λ, Λ reaches an accepting n-configuration of Λ. This would
imply that each PDA component Mi of Λ reaches an accept-
ing state and each PDA component has read all symbols of
their respective input string from the input n-tuple.

There are two conditions for Λ to reject w. The first is, if after
a halting computation of Λ, Λ does not reach an accepting
n-configuration, then Λ rejects w. The second condition is, if
at some point during the computation, no transition defined
by the transition control P can be applied to obtain the next
n-configuration of Λ and if the current n-configuration is not
an accepting n-configuration of Λ, then Λ rejects w.

The n-language of Λ, n-L(Λ), is defined as:

n-L(Λ) = {(w1, ..., wn) : ((q01, w1, ε), ..., (q0n, wn, ε)) &∗

((qf 1, ε, ε), ..., (qfn, ε, ε))}

8

The language recognized by Λ in the union mode, Lunion(Λ)
is defined as

Lunion(Λ) = {w : (w1, ..., wn) ∈ n-L(Λ),
w ∈ {wi : i = 1, ..., n}}

The language recognized by Λ in the concatenation mode,
Lconc(Λ) is defined as

Lconc(Λ) = {w1w2...wn : (w1, ..., wn) ∈ n-L(Λ)}

The language recognized by Λ in the first mode, Lfirst(Λ) is
defined as

Lfirst(Λ) = {w1 : (w1, ..., wn) ∈ n-L(Λ)}

The following is an example of MAS.

EXAMPLE 2. We construct a 2-MAS, Λ = (M1, M2, P) as
follows:

M1 = ({x0, x1, x2}, {a, b}, {S1, a, b, $}, δ1, x0, $, {x2}), δ1 is
defined as follows:

δ1 : 10 : (x0, ε, ε) " (x1, S1$), 11 : (x1, ε, S1) " (x1, aS1b), 12 :
(x1, ε, S1) " (x1, ε), 13 : (x1, a, a) " (x1, ε), 14 : (x1, b, b) "
(x1, ε), 15 : (x1, ε, $) " (x2, ε)

M2 = ({y0, y1, y2}, {c, d, }, {S2, c, d, $}, δ2, y0, $, {y2}), δ2 is
defined as follows:

δ2 : 20 : (y0, ε, ε) " (y1, S2$), 21 : (y1, ε, S2) " (y1, cS2d), 22 :
(y1, ε, S2) " (y1, ε), 23 : (y1, c, c) " (y1, ε), 24 : (y1, d, d) "
(y1, ε), 25 : (y1, ε, $) " (y2, ε)

P = {(10, 20), (11, 21), (12, 22), (13, 23), (14, 24), (15, 25)}

Let w = (akbk, ckdk) be an input 2-tuple for Λ, for k a non-
negative integer. M1 would have input string akbk and M2

would have ckdk

The initial 2-configuration of Λ is ((x0, akbk, ε), (y0, ckdk, ε)).
From this configuration, M1 and M2 can only use transitions
10 and 20. The next 2-configuration of Λ is ((x1, akbk, S1$),
(y1, ckdk, S2$)).

For the next 2k computation steps, Λ will alternate between
using (11, 21) and (13, 23). Every time M1 uses transition
11, the symbols aS1b appears at the top of the stack, with a
being the topmost symbol. There would always be only one
instance of S1 within the stack while b accumulates below S1.
The same goes for M2.

After 2k steps, Λ can use (12, 22) to remove S1 and S2 from
the top of the stack of M1 and M2 respectively. The 2-configu-
ration now is ((x1, b

k, bk$), (y1, d
k, dk$). Λ can then use (14,

24) to remove all terminal symbols from the stack and read
all symbols of the input string.

Finally, Λ can use (15, 25) to make M1 and M2 empty their
stacks and go to their accepting states.

n-L(Λ) = {(anbn, cndn) : n ≥ 0}

Lunion(Λ) = {anbn : n ≥ 0} ∪ {cndn : n ≥ 0},

Lconc(Λ) = {anbncndn : n ≥ 0}, and

Lfirst(Λ) = {anbn : n ≥ 0}.

Observe that Λ has the is able to accept non-context free lan-
guages.

4. EQUIVALENCE OF MGS AND MAS
We argue that since a Multigenerative Grammar System (MGS)
is composed of context-free grammar components. Then we
could construct a Multiaccepting Automata System (MAS)
composed of pushdown automata components. Since MGS
has a language generated depending on mode X ∈ {union,
conc, first}, we would also find an equivalent language for
MAS given the mode X .

An n-generative grammar is divided into two types, non-
terminal synchronized and rule synchronized. But since a
pushdown automata does not have any differentiation of a
non-terminal or terminal symbol, the control would synchro-
nize the transition function of each PDA in the n-accepting
automata system.

THEOREM 3. Let L ⊆ Σ∗. Then for every Γ, an n-MGR, there
exists a Λ, an n-MAS, such that L(Γ) = L(Λ).

Proof:
We construct an n-MAS, Λ, from a given n-MGR, Γ as fol-
lows:

1.) For each grammar component Gi = (Ni, Ti, Si, Pi) of
Γ, for i = 1, ..., n, construct its equivalent PDA and label it
Mi = (Qi,Σi,∆i, δi, qi0, Zi, Fi). The set of states of Mi, Qi,
would consist of the initial state qi0, the loop state qiloop, the
accept states Fi = {qif}, and additional states to simulate
each production rule in Gi. The input alphabet Σi = Ti, and
the stack alphabet, ∆i = (Ni ∪ Ti ∪ {$}).

Since Γ uses leftmost derivation context-free grammar com-
ponents, for a production rule r : A → x, x = x1x2...xk, for
a positive integer k, the first symbol to be placed in the stack
is xk. Then followed by xk−1 and so on, so that x1 is now at
the top of the stack.

For each rule r : A → x ∈ Pi, for x = x1x2...xk, there would
be k transitions associated with r. We label them as follows:
s1 : (qiloop, ε, A) " (qs1 , xk), s2 : (qs1 , ε, ε) " (qs2 , xk−1), ...,
sk−1 : (qsk−2 , ε, ε) " (qsk−1 , x2), sk : (qsk−1 , ε, ε) " (qloop, x1).
These k transitions are added to δi. We add the following
states to Qi: {qs1 , ..., qsk−1}.

The k transitions are denoted by s : (qiloop, ε, A) " (qiloop, x)
for brevity and s is referred to as a transition sequence. We
say that rule r is equivalent to transistion sequence s. s ∈ δi
if s1, ..., sk ∈ δi.

The transition t : (qiloop, a, a) " (qiloop, ε) is also added to
δi for all a ∈ Ti. In addition, a special rule is added, an ε-

9

transtion, εi : (qiloop, ε, ε) ! (qiloop, ε). Finally, let the initial
stack Zi be empty.

2.) For each tuple in the production rule control, Q of Γ, of the
form (r1, ..., rn), each ri ∈ Pi, add (s1, ..., sn) to the transition
control of Λ, P , for each si ∈ δi, and si is the equivalent
transition sequence of the production rule ri.

For a given transition control tuple (s1, ..., sn), notice that the
number of transitions in each sequence, si, i = 1, ..., n may
not be equal. A transition sequence si can be represented as
si1, si2, ..., siki in order, where ki ≥ 1 is the number of transi-
tions in si. Let max be the most number of transitions in any
transition sequence in the elements of (s1, s2, ..., sn). Then
(s1, s2, ..., sn) represents the following set of transition con-
trol tuples: {(s11, s21, ..., sn1), (s12, s22, ..., sn2), ..., (s1max,
s2max, ..., snmax)}.

For all i = 1, ..., n, j = 1...max, if 1 ≤ j ≤ ki, then sij is the
jth transition of sequence si. Else, ki < j ≤ max, sij is an
ε-transition, εi.

Note that (s1y, s2y, ..., sny) cannot be used by Λ before (s1x,
s2x, ..., snx), for 1 ≤ x < y ≤ max. As stated in step (1),
each transition sequence, s, is composed of at least one tran-
sition in δi. The transition sequence s can only be completed
if the set of transitions are applied in proper order. Therefore
as a consequence, the transition control tuples can only be
applied in proper order.

The notation, (s1, s2, ..., sn), can then be used to refer to these
set of transition control tuples in P without ambiguity.

3.) Add the two n-tuples (q1ol, ..., qnol) and (q1lf , ..., qnlf),
where for all i = 1, ..., n qi0l : (qi0, ε, ε) ! (qiloop, Si$) and
qilf : (qiloop, ε, $) ! (qif , ε)

4a.) Add an n-tuple (t1, ε2, ..., εn) to P for all t1 ∈ δ1. Add
(ε1, t2, ..., εn) to P for all t2 ∈ δ2. Add an n-tuple (ε1, ..., ti,
..., εn) for all ti ∈ δi, for all i = 1, ..., n, for ti : (qiloop, a, a) !
(qiloop, ε), a ∈ Ti.

Another way is to have all possible permutations of which
components have terminal symbols on the top of the stack at
the same time. This is so that Λ can perform in parallel the
popping procedure for terminal symbols. (4a) is not used at
the same time with (4b) when constructing Λ.

4b.) Add all possible n-tuple (t̄1, t̄2, ..., t̄n) to P such that for
all i = 1, ..., n, a transition t̄i is either εi or ti : (qiloop, a, a) !
(qiloop, ε), a ∈ Ti, εi, ti ∈ δi.

The purpose of steps (4a) and (4b) is to make Λ prioritize the
removal of terminal symbols from the top of the stack. This
is so that Λ faithfully follows the derivation steps of Γ.

Given an input tuple w = (w1, ..., wn), the initial n-configu-
ration of Λ is of the form ((q01, w1, ε), ... ,(q0n, wn, ε)). The
accepting n-configuration is ((qf 1, ε, ε), ... ,(qfn, ε, ε)).

We have successfully constructed a Λ given a Γ. We now
prove that Λ correctly simulates the derivation of Γ.

We prove the claim:

CLAIM 1. (S1, ..., Sn) ⇒∗ (α11α12, ..., αn1αn2), where for
i = 1, ..., n, αi1 ∈ T ∗

i and αi2 ∈ Ni(Ni ∪ Ti)
∗ ∪ {ε}, if and

only if ((q1loop, α11, S1$), ..., (qnloop, αn1, Sn$)) !∗ ((q1loop, ε,
α12$), ..., (qnloop, ε, αn2$)).

Once the claim is proven, it follows that (S1, S2, ..., Sn) ⇒∗

(α1, ..., αn), where for i = 1, ..., n, αi ∈ T ∗
i = Σ∗

i , if and only
if ((q1loop, α1, S1$), ..., (qnloop, αn, Sn$)) !∗ ((q1loop, ε, $), ...,
(qnloop, ε, $)). When Λ reaches the n-configuration ((q1loop,
ε, $), ..., (qnloop, ε, $)), it will only take one more direct tran-
sition to reach its accepting n-configuration ((qf 1, ε, ε), ...,
(qfn, ε, ε)) since no other transitions can be made at this point
of the computation. This would mean that for α = (α1, ...,αn),
α ∈ n-L(Γ) if and only if α ∈ n-L(Λ).

Proof of Claim 1:

The claim is an if and only if statement and therefore the
proof will have two parts.

Suppose that (S1, S2, ..., Sn) ⇒∗ (α1, ..., αn), where for i =
1, ..., n, αi = αi1αi2, αi1 ∈ T ∗

i and αi2 ∈ Ni(Ni ∪ Ti)
∗ ∪ {ε}.

The proof is by induction on the length of the computation
of (α1, ..., αn) from (S1, S2, ..., Sn) by Γ.

Basis Step. If the derivation length is 0, then (S1, S2, ..., Sn)
= (α1, ..., αn) = (α12, ..., αn2), since for i = 1, ..., n, αi1 = ε;
then, ((q1loop, α11, S1$), ..., (qnloop, αn1, Sn$)) !∗ ((q1loop, ε,
α12$), ..., (qnloop, ε, αn2$))

Induction Hypothesis. Assume that if (S1, S2, ..., Sn) ⇒∗

(α11α12, ...,αn1αn2) by a derivation of length k or less, k ≥ 0,
then ((q1loop, α11, S$), ..., (qnloop, αn1, S$)) !∗ ((q1loop, ε,
α12$), ..., (qnloop, ε, αn2$)).

Induction Step. Let

(S1, S2, ..., Sn) = h0 ⇒ h1 ⇒ ... ⇒ hk+1 = (α1, ..., αn)

be a leftmost derivation of (α1, ..., αn) from (S1, S2, ..., Sn),
and for i = 1, ..., n, let αi = αi1αi2. hn has at least one non-
terminal, so hk = (u1A1v1, ..., unAnvn) and hk+1 = (u1x1v1,
..., unxnvn), where for i = 1, ..., n, ui ∈ T ∗

i , Ai ∈ N , vi ∈
(Ni∪Ti)

∗, ri : Ai → xi, and (r1, ..., rn) ∈ Q. By the induction
hypothesis

((q1loop, u1, S1$), ..., (qnloop, un, Sn$)) !∗

((q1loop, ε, A1v1$), ..., (qnloop, ε, Anvn$))

and since for i = 1, ..., n, ri : Ai → xi, and (r1, ..., rn) ∈
Q, si : (qiloop, ε, Ai) ! (qiloop, xi) is a transition sequence of
Mi and (s1, ..., sn) ∈ P . And whenever a terminal symbols
appears at the top of the stack of at least one component, a
transition control tuple from step (4) of the construction is
used by Λ to remove the terminal symbol at the top of the
stack from all components. So,

10

((q1loop, ε, A1v1$), ..., (qnloop, ε, Anvn$)) !
((q1loop, ε, x1v1$), ..., (qnloop, ε, xnvn$)).

Now (α1, ...,αn) = (u1x1v1, ..., unxnvn) = (α11α12, ...,αn1αn2).
For i = 1, ..., n, αi1 ∈ T ∗

i and αi2 is ε or begins with a
non-terminal symbol. Hence |αi1| ≥ |ui| and |αi2| ≤ |xivi|
and αi1 can be rewritten as uiu

′
i for some u′

i ∈ T ∗
i such that

u′
iαi2 = xivi. Therefore

((q1loop, u
′
1, x1v1$), ..., (qnloop, u

′
n, xnvn$)) !∗

((q1loop, ε,α12$), ..., (qnloop, ε,αn2$))

by using transitions defined by the transition control tuples
in step (4). Finally, to complete the induction,

((q1loop,α11, S1$), ..., (qnloop,αn1, Sn$)) =
((q1loop, u1u

′
1, S1$), ..., (qnloop, u1u

′
1, Sn$)) !∗

((q1loop, u
′
1, A1v1$), ..., (qnloop, u

′
1, Anvn$)) !

((q1loop, u
′
1, x1v1$), ..., (qnloop, u

′
1, xnvn$)) !∗

((q1loop, ε,α12$), ..., (qnloop, ε,αn2$))

and this completes the first part of the proof for Claim 1. The
next induction is for the second part of the proof.

Now suppose that ((q1loop,α11, S1$), ..., (qnloop,αn1, Sn$))
!∗ ((q1loop, ε,α12$), ..., (qnloop, ε,αn2$)), where for i = 1, ..., n,
αi1 ∈ Σ∗

i and αi2 ∈ (Ni ∪ Ti)
∗; we show that (S1, ..., Sn) ⇒∗

(α11α12, ..., αn1αn2). The proof is by induction on the length
of the computation of Λ.

Basis Step. If ((q1loop,α11, S1$), ..., (qnloop,αn1, Sn$)) !∗

((q1loop, ε,α12$), ..., (qnloop, ε,αn2$)) in zero steps, ((q1loop,
α11, S1$), ..., (qnloop, αn1, Sn$)) = ((q1loop, ε, α12$), ..., (qnloop,
ε, αn2$)), then for i = 1, ..., n, αi1 = ε, αi2 = Si, and thus
(S1, ..., Sn) ⇒∗ (α11α12, ..., αn1αn2).

Induction Hypothesis. If ((q1loop,α11, S1$), ..., (qnloop, αn1,
Sn$)) !∗ ((q1loop, ε,α12$), ..., (qnloop, ε,αn2$)) by a computa-
tion of k steps or fewer, k ≥ 0, then (S1, ..., Sn) ⇒∗ (α11α12,
..., αn1αn2).

Induction Step. Suppose that if ((q1loop, α11, S1$), ..., (qnloop,
αn1, Sn$)) !∗ ((q1loop, ε,α12$), ..., (qnloop, ε,αn2$)) in k + 1
steps. Then for i = 1, ..., n, there exists βi ∈ Σ∗

i , γi ∈ (Ni ∪
Ti)

∗, ((q1loop,α11, S1$), ..., (qnloop,αn1, Sn$)) !∗ ((q1loop, β1,
γ1$), ..., (qnloop, βn, γn$)) in k steps, and ((q1loop, β1, γ1$),
..., (qnloop, βn, γn$)) ! ((q1loop, ε, α12$), ..., (qnloop, ε, αn2$)).
This last n-configuration transition is the result of a transition
control tuple in step (2) or a set of transition control tuples in
step (4).

If the last transition was a result of using a transition control
tuple in step (2), then for i = 1, ..., n, βi = ε, γi = Aivi,
and αi2 = xivi, for some Ai ∈ Ni, xi ∈ (Ni ∪ Ti)

∗, ri :
A → x, and (r1, ..., rn) ∈ Q. Since (S1, ..., Sn) ⇒∗ (α11A1v1,
..., αn1Anvn) by the induction hypothesis, (S1, ..., Sn) ⇒∗

(α11x1v1, ..., αn1xnvn) = (α11α12, ..., αn1αn2).

If the last transition was a result of using a set of transition
control tuple in step (4), then for i = 1, ..., n, βi = ai, ai ∈ Ti

and γ = aiαi2. Then αi1 = uiai, for some ui ∈ T ∗
i , and

((q1loop, u1, S1$), ..., (qnloop, un, Sn$)) !∗ ((q1loop, ε, a1α12$),
..., (qnloop, ε, anαn2$)) within k steps, so by the induction hy-
pothesis (S1, ..., Sn) ⇒∗ (u1a1α12, ..., unanαn2) = (α11α12,
..., αn1αn2).

This completes the proof for Claim 1.

Claim 1 implies that for an n-tuple string w, w ∈ n-L(Γ) if
and only if w ∈ n-L(Λ).

Given an input n-tuple w = (w1, ..., wn) and w ∈ n-L(Γ),
from the initial n-configuration of Λ, ((q01, w1, ε), ..., (q0n,
wn, ε)), Λ uses the transition control tuple, (q1ol, ..., qnol),
to push the start non-terminals S1, S2, ..., Sn and the bottom
of the stack marker, $ to their respective PDA components’
stacks. Now the current n-configuration is similar to the ba-
sis of Claim 1, ((q1loop, α1, S1$), ..., (qnloop, αn, Sn$)), where
for i = 1, ..., n, αi = wi. By Claim 1, ((q1loop, α1, S1$), ...,
(qnloop, αn, Sn$)) !∗ ((q1loop, ε, $), ..., (qnloop, ε, $)) since
w ∈ n-L(Γ). When Λ can only use the transition control
tuple (q1lf , ..., qnlf), then ((q1loop, ε, $), ..., (qnloop, ε, $)) !
((qf 1, ε, ε), ..., (qfn, ε, ε)), which is the accepting n-configu-
ration of Λ and therefore w ∈ n-L(Λ).

If w /∈ n-L(Γ), from n-configuration ((q1loop, α1, S1$), ...,
(qnloop, αn, Sn$)) of Λ, by Claim 1, there does not exist a com-
putation such that ((q1loop, α1, S1$), ..., (qnloop, αn, Sn$)) !∗

((q1loop, ε, $), ..., (qnloop, ε, $)). Any computation of Λ must
pass through the n-configuration ((q1loop, ε, $), ..., (qnloop,
ε, $)) since we require that all symbols of the input strings
of the components must be read and that their respective
stacks be empty with only the bottom of the stack marker,
$, is left. Λ can only reach its accepting n-configuration from
this n-configuration. Therefore, Λ cannot reach the accepting
n-configuration and thus w /∈ n-L(Λ).

And finally, by Claim 1 and the definition of the languages
under an operation of Λ, as a consequence the following is
true and is trivial to prove:

• Lfirst(Γ) = Lfirst(Λ)

• Lunion(Γ) = Lunion(Λ)

• Lconc(Γ) = Lconc(Λ)

With these, we can say that L(Γ) = L(Λ). This ends the proof
for Theorem 3.

We illustrate the construction of an n-MAS from an n-MGS
through the next example:

EXAMPLE 3. Suppose we have an n-MGR, Γ = (G1, G2, Q),
with G1, G2 and Q defined as follows:

G1 = (N1 = {S1}, T1 = {a, b}, S1, P1 = {r11 : S1 ⇒ aS1b,
r12 : S1 ⇒ ε}

G2 = (N2 = {S2}, T2 = {c, d}, S2, P2 = {r21 : S2 ⇒ cS2d,
r22 : S2 ⇒ ε}

11

Q = {(r11, r21), (r12, r22)}

We construct the equivalent n-MAS, Λ, of the n-MGS, Γ using the
four steps of the proof of Theorem 3.

Step 1:

The n-MAS Λ = (M1,M2, P) will be constructed as follows:

M1 = (Q1,Σ1,∆1, δ1, qstart, F1, Z1)

where:

• Q1 = {q10, q1loop, q1f} ∪ {qt11,s1, qt11,s2}

• Σ1 = {a, b}

• ∆1 = {S1, a, b, $}

• qstart = q10

• F1 = {q1f}

• Z1 = ∅

• δ1 =

– {t11,s1 : (q1loop, ε, S1) # (qt11,s1, b),
t11,s2 : (qt11,s1, ε, ε) # (qt11,s2, S1),
t11,s3 : (qt11,s2, ε, ε) # (q1loop, a)} ∪

– {t12,s1 : (q1loop, ε, S1) # (q1loop, ε, ε)} ∪
– {ta : (q1loop, a, a) # (q1loop, ε),

tb : (q1loop, b, b) # (q1loop, ε),
ε1 : (q1loop, ε, ε) # (q1loop, ε)} ∪

– {q10l : (q10, ε, ε) # (q1loop, $),
q1lf : (q1loop, ε, $) # (q1f , ε)}

M2 = (Q2,Σ2,∆2, δ2, qstart, F2, Z2)

where:

• Q2 = {q20, q2loop, q2f} ∪ {qt21,s1, qt21,s2}

• Σ2 = {c, d}

• ∆2 = {S2, c, d, $}

• qstart = q20

• F2 = {q2f}

• Z2 = ∅

• δ2 =

– {t21,s1 : (q2loop, ε, S2) # (qt21,s2, d),
t21,s2 : (qt21,s1, ε, ε) # (qt21,s2, S2),
t21,s3 : (qt21,s2, ε, ε) # (q2loop, c)} ∪

– {t22,s1 : (q2loop, ε, S2) # (q2loop, ε, ε)} ∪
– {tc : (q2loop, c, c) # (q2loop, ε),

td : (q2loop, d, d) # (q2loop, ε),
ε2 : (q2loop, ε, ε) # (q2loop, ε)}

– {q20l : (q20, ε, ε) # (q2loop, $),
q2lf : (q2loop, ε, $) # (q2f , ε)}

Step 2: Define the set of control n-tuple Pstep2:

Pstep2 =

• {(t11,s1, t21,s1), (t11,s2, t21,s2), (t11,s3, t21,s3)} ∪

• {(t12,s1, t22,s1)}

Step 3: Define the set of control n-tuple Pstep3:

Pstep3 =

• {(q10l, q20l), (q1lf , q2lf)}

Step 4: Define the set of control n-tuple Pstep4:

Pstep4 =

• {(ta, ε2), (tb, ε2)} ∪

• {(ε1, tc), (ε1, td)}

Combining Step 2 to Step 4, we have

P = Pstep2 ∪ Pstep3 ∪ Pstep4

5. FINAL REMARKS
We have presented a construction method for building an
MAS, given an MGS, showing that the MGS can be simulated
by an MAS. This construction method is intuitive, as it is
based on the classic automata theory literature of construct-
ing an equivalent PDA from a given CFG. The downside of
the presented construction method is that the MAS may have
components that become idle, indicated when they use the
ε transitions. The ε transitions are more prominent when
the pushdown automata components produce non-terminal
symbols. This is certain to result in increased time complex-
ity of the automata system for accepting a given language.

One of the future works that can be looked at is the construc-
tion of a MGS given the MAS. Designing the construction
method is difficult, as the process is more complex, if the con-
struction is based on literature of constructing a CFG from a
PDA.

Results of [6] and [7] shows that the computing power of
MGS is equivalent to that of a Matrix Grammar, that is the
set of Context-Sensitive Languages. This shows that MAS
can also accept context-sensitive languages.

As the both MAS and MGS work as parallel computing de-
vices, for future works, we can look into how to use MAS
and MGS for solving computationally hard problems. Sim-
ilar to the works done in [3], we can add some features to
the existing formal systems to be able to solve hard problems
in lower time complexity, with the trade-off of higher space
complexity.

12

6. REFERENCES
[1] M. C̆ermák.; Multilanguages and Multiaccepting

Automata System.; In: Proceedings of the 16th
Conference and Competition STUDENT EEICT 2010
Volume 5, Brno, CZ, FIT VUT, 2010, p. 146-150.

[2] M. C̆ermák.; Formal Systems Based Upon Automata and
Grammars.; Information Sciences and Technologies
Bulletin of the ACM Slovakia, Volume 4, Number 4
(2012) p. 7-14.

[3] Csuhaj-Varjú, Erzsébet. Vaszil, György. Păun, Gheorghe.;
Grammar System versus Membrane Computing: The
Case of CD Grammar Systems. Fundamenta
Informaticae 76(3) (2007), 271-292.

[4] E. Csuhaj-Varjú, C. Martin-Vide, V. Mitrana, G. Vaszil;
Parallel Communicating Pushdown Automata System.
Int. J. Found. Comput. Sci. 11(4): 633-650 (2000)

[5] E. Csuhaj-Varjú. T. Masopust. G. Vaszil.; Cooperating
Distributed Grammar System with Permitting
Grammars as Components.; Romanian Journal of
Information Science and Technology, Volume 12,
Number 2, 2009, 175-189.

[6] Meduna, Alexander. Lukas, Roman.; Multigenerative
Grammar Systems.; Contents & Abstracts, Schedae
Informaticae, Issue 15 (2006) Multigenerative Grammar
Systems, pp. 175-187.

[7] Meduna, Alexander. Lukas, Roman.; Multigenerative
Grammar Systems and Matrix Grammars.; Kybernetika
- Vol 46 (2010), Number 1, Pages 68-82.

[8] Petrik, Patřík.; Parallel Finite Automata Systems
Communicating by Transistions.; In: Proceedings of the
16th Conference and Competition STUDENT EEICT
2010 Volume 5, Brno, CZ, FIT VUT, 2010.

[9] G. Pǎun, L. Sântean; Parallel communicating grammar
systems: The regular case. Annals of University of
Bucharest, Ser. Matematica-Informatica (1989).

[10] Hopcroft, John E.. Ullman, Jeffrey D.. Introduction to
automata theory, languages, and computation.
Addison-Wesley Publishing Company, 1979.

[11] Sipser, Michael. 1997. Introduction to the Theory of
Computation.

13

