
CluMSy: A Middleware for Cluster Management
Elaine Jane E. Chua1 Philip Chan2 Reynaldo Jose C. Camarillo1

Frances Ellen O. Pe-Aguirre1 Jessamine Y. So1 Mara Ailiez C. Sy1
1College of Computer Studies, De La Salle University

2401 Taft Avenue, Manila 1004 Philippines
chuae@dlsu.edu.ph, {fleas2016,francesellen8,jazzy_ph,ailiez}@yahoo.com

2School of Computer Science and Software Engineering
Monash University, Caulfield, VIC Australia

pchan@csse.monash.edu.au

ABSTRACT

Handling common tasks, such as listing of files or processes, and
manually setting up consistent software installation on all nodes
of a cluster will require a lot of time and effort and may affect
productivity of the cluster. Thus, interactive monitoring and
management functions in a cluster environment are becoming a
necessity. CluMSy is a cluster middleware that provides support
for parallel programming through interactive monitoring and
management functions on a cluster of independent nodes running
Linux. These are classified into three (3) categories: cluster-level
file management, cluster-level process management, and cluster-
level account management commands. Aside from monitoring
and management functions that incorporate classical UNIX
commands, CluMSy also assists users in the preparation and
termination of parallel program executions.

1. INTRODUCTION
Clusters of workstations (COWs) are fast becoming successful
alternatives to more expensive specialized parallel computers. A
cluster is typically a collection of interconnected standalone
computers, or computing nodes, and is used as a single, unified
computing resource [4]. Because of their loosely coupled
architecture, clusters can be built with a large number of nodes.
Management of such huge systems is a tedious as it is often
necessary to individually install/configure software on each node.
This can be eased by software systems, which allow monitoring
and managing of the cluster of workstations. Such systems are
known as cluster management systems.

Cluster management systems aid users in monitoring and
managing COWs. These systems manage the utilization of nodes
in a cluster and maintain up-to-date information about the load of
each node, the memory utilization and the processes running on
the nodes. Currently, almost all cluster management systems deal
solely with either monitoring of processes of the cluster or the
management of processes of the cluster. In addition, there exist
cluster management systems for load balancing but they focus
mainly on high-performance computing functionality to provide a
stable service cluster configuration, but status monitoring was not
considered [3].

One common pitfall of neophyte cluster administrators is that
these administrators would have to maintain an entire cluster by
performing the administrative same task on each of the nodes. At
first glance it appears manageable, especially for small clusters,

but as clusters scale and as time passes, small differences in each
node configuration negatively affects system stability.

1.1 Related Works
There are some systems that are similar to CluMSy.

Gropp, Ong, and Lusk have implemented scalable UNIX tools for
parallel processors [2]. It makes use of UNIX commands
modified for parallel environments, which were utilized because
the usefulness of these commands (ls, ps, find, grep, etc.)
has endured the age of GUI not only because of their simple,
straightforward design but also because of the way they work
together.

In specifying hosts, all the commands use the same method for
specifying the collection of hosts on which the given commands is
to run. A host list can be given either explicitly, as in the blank-
separated list ‘donner dasher blitzen’, or implicitly in the form of
a pattern like ccn%d@1-32,42,65-96, which represents the list,
ccn1,…,ccn32,ccn42, ccn65,…, ccn96. All of the commands that
will be described below have host arguments as a (optional) first
argument [2].

The Parallel Unix Commands fall into three types: straightforward
parallel versions of traditional commands with little or no output
(parallel shgrp, parallel chmod, parallel cp, etc), parallel
versions of traditional commands with specially formatted output
(parallel ls, parallel find, parallel cat), and new commands in
the spirit of the traditional commands but particularly inspired by
the parallel environment (parallel exec, parallel pred, parallel
distrib).

In February 2000, Alta Technologies developed ClusterWorX [5],
a commercially-available solution to control the cluster as one
single system and provides remote monitoring and management
capabilities [5]. It is primarily designed to monitor and manage
Linux-based clusters. Its notable features include increased system
uptime, improved cluster efficiency, cluster performance tracking,
and cluster installation and configuration.

ClusterWorX provides monitoring of the system properties,
among them are CPU usage, memory usage, disk I/O and network
bandwidth [5]. It also allows administrators to remotely monitor
and manage Linux NetworX cluster systems from an onsite or
offsite location, with any Java enhanced browser. These functions
are all accessible through their own Graphical User Interface.
ClusterWorX is designed to work with Linux NetworX hardware

solution to Linux-based clusters, ICE Box™ to provide power
management and serial console access to each node in the cluster.

The Cluster Command Control (C3) [1] is a suite of cluster tools
developed at Oak Ridge National Laboratory. The tools cover
cluster-wide command execution, file distribution and gathering,
process termination, remote shutdown and restart, and system
image updates [1]. Similar to the study of Gropp el. al. [2], the C3
tool suite makes use of native UNIX commands modified to serve
as parallel commands.

Windows Network Neighborhood [10] allows users to remotely
look at the files that other PCs have, provided that they are
connected through a network and the files are shared. The user is
able to manage files or folders on a remote node just as he does on
his own local node. The user can view shared files and folders in
My Network Places or Network Neighborhood, or, if users have
mapped the drives or folders, in My Node or Windows Explorer.
Depending on the share access level of the files and folders, users
can select files and delete them, or move them to another folder
on the remote node. The user can also create, rename, move, or
delete folders on the remote node.

Table 1. File Management Commands
Command Description

clu_ls Performs ls on target nodes. It allows the user to view
available files and directories on each node of the cluster
where the user has an account. Other than listing the
names of the available files, the user also can view other
information about the file like size of the file, owner and
the current user’s permissions on the file.

clu_find Performs find on target nodes. It allows the user to
search for a specific file or directory using a given
expression on the current directory hierarchy.

clu_locat
e

Performs locate on target nodes. It allows the user to
search for a specific file or directory with a name
satisfying the given regular expression on the entire file
system.

clu_cp An extension of the cp utility. It copies files or directories
to a specific location on target nodes. It uses the remote
copy DPI of the CCM.

clu_rm Performs rm –vf on target nodes. The function will
allow the user to delete for a specific file or directory.
This utility will delete for a specific file or directory
indicated by the user on nodes where the user has an
account.

clu_mv Similar to the mv command. It copies files or directories
to a specific location on target nodes. It uses the remote
copy DPI of the CCM. After copying, it deletes the source
files; hence the old file is moved to the new destination.

clu_cat Performs cat on target nodes. The utility will allow the
user to view a specific file. It does not support stdin
(standard input) redirection.

clu_exec Allows users to execute an arbitrary command on target
nodes. It uses the remote execution DPI of the CCM.

clu_chmod Performs chmod on target nodes. It allows the user to
change the file permissions of a given file.

clu_stat Performs stat on target nodes. It allows the user to view
statistics of a single file or directory.

clu_mkdir Performs mkdir on target nodes. It allows he users to
create directories.

1.2 Motivation
The short survey above reveals that there is substantial interest in
developing software for cluster management. We found that none
of these systems provide services for account management and
software component deployment. Account management functions
include cluster-wide user account creation and deletion as well as
handling inconsistencies between nodes during downtimes. As
our base operating system is Linux, we also needed a facility to
manage Red-Hat Packages at the level of the cluster. We need to
install software packages consistently on selected or all nodes.

The goal of the paper is to present a familiar and complete cluster
management system running on top of the Linux Operating
System [7]. This system called CluMSy is aimed not only for
cluster management but also to provide as a support tool for high-
performance computing on top of clusters. Parallel execution of
applications will require some preparations (e.g., deploying
executables, moving data files between nodes, etc.). CluMSy
aims to provide this support, rather than focus on being a parallel
programming environment like MPI [6] implementations or PVM
[8][9].

2. CLUMSY COMMAND INTERFACE
CluMSy provides the sets of commands at the command-line.
Table 1 is the set of commands that handle file-related activities;
Table 2 is the set of commands that handle process-related
activites; and Table 3 is the set of commands that handle user-
related and group-related activities.

CluMSy also provides a package manager utility that runs rpm on
target nodes. It allows the user to view the information regarding
a specific package. It can show details of the specific package
such as the following: name, version, release, install date, group,
size, summary, description, distribution, vendor, build date, build
host and source RPM. It also allows the user to install, uninstall
and update a specific package on the different nodes in the cluster.

Table 2. Process Management Commands

Command Description

clu_ps Performs ps on target nodes. It allows the user to
monitor the processes running on the different nodes
of the cluster. It can show the current processes
running as well as properties like the process name,
process ID, RSS value, nice value, priority, arguments,
CPU usage and memory usage of the process.

clu_top Performs top n 1 b on target nodes. It shows the
current CPU usage, memory usage, and SWAP
usage. The CPU usage will show the system, user
and idle CPU space. The memory and SWAP usage
will show the total memory, used and free memory.

clu_kill Performs kill on target nodes. It allows the user to
terminate a process with the specified process ID.

clu_killall Performs killall on target nodes. It allows the user
to terminate a series of processes.

clu_iostat Performs iostat on target nodes. It allows the user
to view the current CPU Usage of the user, system,
nice as well as the remaining idle CPU space.

clu_free Performs the free command on target nodes. It
allows the user to view the current swap and memory
usage. It displays both swap and memory total used
and free space.

Table 3. Account Management Commands
Command Description

clu_useradd Allows the superuser to add another user.

clu_userdel Allows the superuser to delete another user.

clu_usermod Performs usermod on target nodes. It allows
the user to modify information about his account.

clu_userlist Performs userlist on target nodes. It allows
the user to list all user accounts present in the
node. The userlist utility is not built-in and it
is installed with the system.

clu_users Performs users on target nodes. It allows the
user to list logged user accounts in the node.

clu_groupadd Performs groupadd on target nodes. It allows
the superuser to add a group.

clu_groupdel This utility runs groupdel on target nodes. It
allows the superuser to delete a group.

clu_groupmod This utility runs groupmod on target nodes. It
allows the superuser to modify information about
groups.

clu_grouplist This utility runs grouplist on target nodes. It
allows the user to list all groups present in the
node. The grouplist utility is not built-in and it
is installed with the system.

clu_groups This utility runs groups on target nodes. It
allows the user to list the groups the user is a
member of.

3. SYSTEM ARCHITECTURE
Figure 1 shows the architecture of CluMSy. The cluster consists
of a number of independent homogenous Linux nodes
interconnected by a network. These nodes can be logically
considered as a single-unified resource due to the CluMSy
middleware.

Figure 1. System Architecture

The Cluster Connection Manager (CCM) is the base layer that
provides the parallel programming environment used by the upper
layers. The Cluster Management System (CMS) is the set of
cluster-enabled utilities that, in turn, provides the file, process,
accounts, and package management and monitoring. The CluMSy
User Interface (CUI) provides the user with a point-and-click
interface and issues corresponding commands to the CMS.

Every node connected in the cluster or unified resource will run
the CluMSy daemon which performs the monitoring and
management functions in each node.

3.1 Cluster Connection Manager (CCM)

The Cluster Connection Manager (CCM) is all the necessary low-
level facilities like communication and node membership
management. The CCM makes use of XML messages as
communication protocols. It is comprised of three (3) Application
Programming Interfaces (APIs) and a daemon.

XML. Extensible Markup Language (XML) messages are plain-
text documents that can be converted into XML tree. XML was
used because of the provided extensibility of XML. As long as
the XML document follows the basic XML message formats
needed by the CCM, it is possible to add additional information
without major modifications to internal data structures. Also, the
ability to convert the XML tree back to XML documents makes it
easier to use TCP to send XML messages over the network. It also
makes it easier to make those connections secure.

Secured Communication. The CCM uses TCP sockets in order
to communicate and ensure reliability of connections. The CCM
also encrypts messages before sending it over the network as a
security measure. This is to discourage users with malicious
intent from easily obtaining any information from the CCM
messages. It is also a necessity since the user password is
included in the distributed processing messages.

Functional Requirements. Similar to MPI and PVM, the CCM
requires the needed libraries and programs and the CCM daemon
to be running in order to function. It does not require users to
create a specific account for use of the parallel programming
environment. Developers that aspire to use CCM only need to
include the CCM header file ccm.h and link the static CCM
library libccm.a. After linking, developers can now use any of
the API (Common Interface, Message Passing Interface, and
Distributed Processing Interface) that the CCM provides. Each of
these interfaces contains functions that instruct the CCM daemon
to do specific tasks and return the result of the task.

3.1.1 CCM Daemon

This provides the core CCM services such as node initialization,
handling of XML messages, handling broadcasts, remote
execution, resource tracking, multicasting, and other utility
functions.

3.1.2 CCM Common Interface

The Common Interface (CI) is a set of functions that creates the
appropriate CCM message for manipulating the cluster groups,
node list and client list on the local daemon. More specifically,
the common interface functions allows users to clear, set or
retrieve a cluster group; to clear or retrieve the current online
node list; and to retrieve the client list.

3.1.3 CCM Message Passing Interface

This covers a set of functions for node registration (subscription)
and message passing. It uses the multicast facility provided by the
daemon for sending messages to a collection of receivers.

3.1.4 CCM Distributed Programming Interface

The Distributed Processing Interface (DPI) deals with remote host
operations, providing functions for remote execution or remote
copying. It communicates with the daemon via port 2016 for
issuing commands like remove_execute, local_execute,
etc.

3.2 Cluster Management System (CMS)

The Cluster Management System (CMS) is a set of cluster-
enabled extensions of the Linux built-in utilities. The CMS uses
the remote execution DPI of CCM to allow the Linux built-in
commands to be executed in parallel. Afterwards, the
consolidated XML output generated by the DPI is processed to be
similar as much as possible to the output of the Linux built-in
commands to facilitate familiarity with Linux users.

Each utility that makes up the CMS includes an option parser to
determine the cluster-enabled utilities options from the built-in
UNIX commands. The option parser stores the targets specified
by –target in a string called sTargets. The optional
username specified by –user is stored in a string called
sUsername. The option –prefix sets an integer isPrefix
to 1. The optional –dir option for file utilities is stored in the
string called sCWD. All other options are appended to the
sOptions string and non-options are appended to the
sArguments string. The variables used to store the different
values of global variables of the specific utility. These variables
are later used in the general implementation of the CMS.

General Implementation. The CMS is implemented using the
Distributed Processing Interface (DPI) of the Cluster Connection
Manager (CCM). The parameters of the remote execute DPI is
supplied in the main() function of each utility. The password
parameter is retrieved using the clu_getpassword() function
provided by the clu_login.h header file. The command to be
executed is the built-in LINUX command with sOptions and
sArguments appended to it. The array of hosts is tokenized
from the string sTargets. Once the parameters are fixed, the
remote execute DPI is called and returns an XML reply. Inside
the XML reply is the names of the output files stored in the /tmp
directory. These temporary files contain the consolidated output
of the different nodes and should be removed after use. Each file
is opened and printed to stdout to display the output of the
command. If isPrefix is equal to 1, the alias of the current
node is displayed with prefixed before each line of its output.

Exceptions. There are exceptions to the general implementation
stated above.

The cluster login utility is not implemented using Distributed
Processing Interface (DPI). It creates a CluMSy session file in the
specified user’s home directory. This session file contains the
encrypted password to be used by the different cluster-enabled
utilities.

The cluster file utilities have an extra command before the actual
built-in UNIX command. The first command is a cd command
changing the current working directory to the directory specified
by sCWD. This is added so that CluMSy users can perform built-
in UNIX file commands on other directories besides the user’s
home directory without specifying the full path to the file.

The cluster rm has an extra fixed option attached to it. It is fixed
with the -vf option to make its output verbose and to prevent
interactive input from the user.

The cluster top also has an extra fixed option attached to it. It is
fixed with the n 1 b option to make it a non-interactive
command.

3.3 CluMSy User Interface (CUI)

The CluMsy User Interface (CUI) is a sample GUI which uses the
output of CluMSy utilities for input. Its design is based on the
client-server model similar to the X-Windowing system in Linux.
The CUI provides abstraction and configuration only on selected
CluMSy utilities.

Unlike the other layers in the architecture, the CUI is
implemented in Java instead of C. This is to demonstrate the
possibility of creating a Graphical User Interface (GUI) based on
the standard I/O streams of the Cluster Management System
(CluMSy). The CUI was constructed mainly to abstract the users
from the lengthy utility calls that need to be called from the
backend and at the same time format and display the output
generated by these calls.

When the CUI is opened, the CluMSy login screen would be
displayed initially. After the user has entered his username and
password, the clu_login command is called to check the user
name and passwored keyed in. If the user has entered the correct
user name and password the CluMSy main screen is displayed.
Otherwise, and error message is displayed indicating that the
username and password entered is incorrect.

Upon login, a tree that displays the current online nodes is shown.
This tree is called the node explorer. To facilitate easier
monitoring and management operations performed on these
nodes, groups that consist of particular nodes can be assigned
instead. This is helpful more specifically if the number of online
nodes in the system is too large to handle. A file containing a
listing of group names and nodes is stored and is parsed every
time the user opens the CluMSy GUI.

When issuing management commands, a tree view containing the
list of online nodes where the user has an account in the cluster is
shown. This is quite similar to the node explorer mentioned
above. The only difference is that from this tree, the users are
allowed to choose the targets from this tree and CUI will produce
the proper CluMSy utility will be called. Almost all of the
outputs of management commands that are implemented in the
CUI are displayed through dialog boxes that contain the result of
the management utility calls.

The CUI uses the Runtime.exec() command in Java to access
the CluMSy utilities. Once Runtime.exec() is executed, the
system waits for the process to be completed. If the result of the
command is successful, two situations may arise. First, a message
may be displayed to convey that the operation has been successful
in such cases where the verbose (--verbose) option is allowed;
utilities such as clu_cp and clu_kill are examples of this
format. If not, the resulting output of the query from the input
stream will be parsed line by line. The parsed values will then be
stored into hash tables and classes before being displayed in the
CUI. If the operation generates and exit status thus indicating that

an error occurred, the error message from the input stream will be
displayed in an alert / dialog box. The following basic algorithm
demonstrates how the CluMSy utilities are called and how the I/O
stream data is handled, stored and formatted. The file, process,
account, and package utilities make use of this procedure in
invoking its respective tasks.

We present some representative screen captures of the CUI below:
First is the process explorer shown in Figure 2. It lists processes
executing on the nodes, similar to the top command, except that
it displays processes running on nodes of the clusters.

Next, we show the package explorer in Figure 3. It allows the
user to ensure that each node has the same set of packages
installed.

In Figure 4, we show the account explorer allowing a superuser to
manage user accounts on each node.

4. PROTOTYPE EVALUATION
The prototype implementation of CluMSy was built and tested on
a cluster of four (4) nodes connected via a local area network
(LAN) - one node runs Red Hat Linux 8.0 and the others run Red
Hat Linux 9.0. The specifications of the different nodes are listed
in Table 4.

Figure 2. Process Explorer

Figure 3. Package Explorer

Figure 4. Account Explorer

First, we compared the elapsed times for running commands using
CluMSy in parallel mode against the sequential mode. In the
sequential mode of operation, we used the DPI execute command
locally, thus, the result will reflect the same delay experienced by
the DPI remote execute due to the login process. The results of
the sequential execution will provide a greater reference point for
measuring the scalability of the performance of the parallel
commands.

In Figure 5, we see a difference between running the short
commands using the parallel mode versus sequential mode. Short
output commands include clu_kill, clu_mkdir, etc.

Table 4. Test Nodes Specification
Processor Memory

Intel Pentium IV – 1.8 Ghz 256 DDRAM
Intel Pentium IV – 1.6 Ghz 512 DDRAM
Intel Pentium IV – 1.5 Ghz 512 DDRAM
Intel Pentium III – 1.0 Ghz 128 SDRAM

Short Output Utilities

0

0.5

1

1.5

2

2.5

No. of Nodes

se
co

nd
s

Parallel Sequential

Parallel 0 0.48866667 0.51766667 0.56166667 0.62433333 0.82366667

Sequential 0 0.3992 0.7984 1.1976 1.5968 1.996

0 Nodes 1 Nodes 2 Nodes 3 Nodes 4 Nodes 5 Nodes

Figure 5. Short Output Commands

Long Output Utilities

0

10

20

30

40

50

60

No. of Nodes

se
co

nd
s

Parallel Sequential

Parallel 0 10.7588333 10.806 11.5983333 10.4253333 13.044

Sequential 0 10.4206 20.8412 31.2618 41.6824 52.103

0 Nodes 1 Nodes 2 Nodes 3 Nodes 4 Nodes 5 Nodes

Figure 6. Long Output Commands

Finally, we present the results for remote copying a 300 MB file
to all other nodes in Figure 7. In one case, we measured the times
for copying a 300MB file from 1 source to all other target nodes.
In the second case, we considered copying two 0MB files (one
from a different source node) instead of one source for the file.
Because of the extra traffic on the network, the 2-source case took
additional time to complete.

Remote Copy

0

100

200

300

400

500

600

No. of Nodes

se
co

nd
s

1-Source Parallel 2-Source Parallel Sequential

1-Source Parallel 0 142 162 210.231 223.11 246.09

2-Source Parallel 0 142 190 252.23 312.231 366.996

Sequential 0 97.4436 194.887 292.331 389.774 487.218

0 Nodes 1 Nodes 2 Nodes 3 Nodes 4 Nodes 5 Nodes

Figure 7. Remote Copy

5. CONCLUSIONS AND FURTHER WORK
We have presented our prototype cluster management system
called CluMSy. This system is aimed to provide a complete set of
commands that operate at the level of a cluster. It is hoped that
this will be a useful facility for management and monitoring of a
cluster. We have also described the architecture and some design
and implementation issues. Finally, we present some timing
results obtained from performing commands on an experimental
cluster.

Our goal is to continue developing CluMSy so that it will become
a production environment facility. By providing the following
features and functionalities: job monitoring, job termination, job
execution, and resource monitoring and statistics through the CPU
and memory monitoring, file and account monitoring and
management, and package manager, we believe that CluMSy
already satisfies the requirements of a cluster management tool.

Nevertheless, several aspects of CluMSy may be improved upon,
namely: the GUI may be improved to provide a more user-friendly
environment; optimizations may be used to improve the
performance of global operations like remote copy; and
considering the possibility of interoperability with MPI
implementations and PVM.

REFERENCES
[1] Brim, M., et. al. (2000). Cluster Command and Control (C3)

Tool Suite [online]. Available:
http://www.csm.ornl.gov/torc/C3/Papers/pdcp-v2.0.pdf.
(February 9, 2003).

[2] Gropp, W. & Lusk, E. (1994). Scalable Unix Tools for
Parallel Processors: A High-Performance Implementation.
In Proceedings of the Scalable High Performance Computing
Conference [online]. Available: www-
fp.mcs.anl.gov/~lusk/papers/scalable/paper.html. (February
7, 2003).

[3] Kim, M., Choi, M. & Hong, J. (2002). A Load Cluster
Management System (LCMS) using SNMP and
Web.International Journal of Network Management, vol. 12
pp.367 - 378.

[4] Leopold, Claudia. Parallel and Distributed Computing A
Survey of Models, Paradigms and Approaches. John Wiley
& Sons, Inc., Canada, USA, 2001.

[5] Linux Networx ClusterWorx Management [online].
Available:
http://www.linuxnetworx.com/products/clusterworx.ph.
(July 2, 2003)

[6] Message Passing Interface Forum (1994). The MPI Standard.

[7] Papadopoulos, P, Katz, M. & Bruno, G. (2001). NPACI
Rocks: Tools and Techniques for Easily Deploying
Manageable Linux. Available:
http://www.rocksclusters.org/rocks-
documentation/2.3/papers/clusters2001-rocks.pdf. (February
15, 2003).

[8] PVM [online]. Available: http://www.netlib.org/pvm3/.
(July 5, 2003).

[9] PVM Tutorial [online]. Available:
http://csep1.phy.ornl.gov/CSEP/PVM/NODE1.html#SECTI
ON00010000000000000000. (July 5, 2003).

[10] Supercomputing: From Classics to Clusters [online].
Available: http://www.microsoft.com/windows2000/hpc/.
(July 2, 2003)

