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ABSTRACT

This study developed a model and implemented a simulation of a
typical Metro Manila intersection. The simulation is implemented
in  serial  programming  using  JAVA.  Two-dimensional  four-
segment  intersections  and  deterministic  and  stochastic  cellular
automata  models  with  non-periodic  boundary  conditions  are
employed. Results  show that  the  intersection  models developed
satisfy the theoretical assumptions of the classical theory of traffic
dynamics.
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1.INTRODUCTION

Vehicular traffic is a major problem not only in the Philippines
but also in many countries around the world. Several studies have
shown  that  mathematical  modeling  and  computer  simulation
techniques can be used to study the dynamics of vehicular traffic.
Since  the  year 2000,  the  Computational  Science and  Scientific
Computing Group of the Mathematics Department of Ateneo de
Manila  University  has  been  conducting  studies  on  the
computational aspects of vehicular traffic dynamics [2, 3, 4, 5, 6].
The present study considers the dynamics of the  two-lane road
intersection model based on the Cellular Automata traffic model
developed by Nagel and Schreckenberg [ 1 ].

2. TWO-LANE INTERSECTION MODEL

The two-lane intersection model involves four-segment, two-lane
intersections.  It simulates the movement of cars in one segment
of an intersection without considering the traffic light restraints.    

In addition to the two-lane model in freeways, the destination of
each car  is  considered.   A tag determines the  said  destination.
There are four possible actions: u-turn, left, right and straight.  A
car that will take a u-turn or a left turn should take the left lane
while a car that will go straight or right should take the right lane.
The whole segment is divided into three parts: the regular two-
lane region where each car is to behave similar to a car in a two-
lane freeway (TL), the lane-changing region (LC) where each car
places itself in the lane which is dictated by its destination and the
no-change region where each car behaves similar to a car in just
one  lane  (OL).    This  division  is  assumed so  as  to  model  the
behavior of cars along an intersection.  

Normally, a car that is far from the intersection is in a free-drive
mode.  This means that the car moves from one lane to another
without considering its destination.  This is the reason behind the
two-lane region  (TL).  Once it  reaches a certain  section  of the
road, the car will have to place itself in the proper lane.  The lane-
changing  region  addresses  this  case.   After  transferring  to  the
proper lane, the car should no longer be allowed to change lanes.
Otherwise, the car might miss its destination.  This is why the last
few cells follow one-lane neighborhood rules.        

Figure 4.4:  Three Divisions in the Two-Lane Intersection Model

The neighborhoods  for  the  two-lane(TL) and  one-lane  division
(OL) follow the same rules as the neighborhoods for the two-lane
and  one-lane  freeways,  respectively[6].   The  third  kind  of
neighborhood follows different rules.  Based on the behavior of
vehicles that need to transfer lanes in order to go to its destination,
certain rules for lane-changing are formulated.  The rules for the
forced lane-change region include the following:
o Check if  the car is in  the  proper  lane.   A car is  in  the

proper lane if:
o The tag is either straight or right turn and the car is

on the rightmost lane of the road. 
o The tag is either u-turn or left turn and the car is on

the leftmost lane of the road.
o If the car is in the proper lane, stay on the current lane.
o If the car is not in the proper lane, follow these rules:

o Check back on the other lane if the car will get in the
way of another car.  

o If  the  car will  get  in the  way of another  car,  slow
down and stay on the current lane.  

o If  the  car  will  not  get  in  the  way of  another  car,
change lanes and update the speed as needed.   

These rules alone, however, may cause deadlocks in the last cell
of the neighborhood.  This is why additional rules for the last cell
are set.  In case a car reaches the last cell in the region and the
next cell on the other lane is empty, it transfers to the next cell on
the  other  lane  at  the  next  time  step  once  certain  probability
conditions are satisfied.  This prevents deadlocks from happening.
Unlike the freeway models, the intersection model is nonperiodic.
The movements of the cars at the end of the road do not depend
on the cars at  the  beginning of the road.   To make the system
nonperiodic, a car-replacement scheme is formulated.  This keeps
the number of cars in the system constant.  Once a car crosses the
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intersection,  a car with a randomly generated destination,  speed
and location is placed at the beginning of the lattice.  In case the
section is full, the number of cars that crossed the intersection will
be stored.  At the next timestep, the corresponding (replacement)
cars will be generated.       
As in the one-lane and two-lane simulations, stochasticity is also
introduced in this model.  If the random number generated is less
than the noise factor, then the car will stay in its lane instead of
changing lanes right away.  After the forced lane-changing rules
have been implemented, the velocity and movement updates are
done on each of the two lanes.  

3.Four-segment, Two-lane Intersection Model
In  the  four-segment,  two-lane intersection model,  four  two-lane
intersection  segments  are  put  together  to  form  a  complete
intersection.  The intersection follow this diagram:
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Figure 3.5:  Four-Segment, Two-Lane Road Representation

Another important feature of the simulation is the implementation
of traffic lights.  The model follows a one-segment per traffic light
system wherein each segment is given a go-time depending on the
user’s  input.   Once  a  go  signal  is  given,  all  the  cars  in  that
particular segment are allowed to move.  Otherwise, the cars on
the cells near the intersection are put to a stop.  
A limitation  of  the  said  simulation,  though,  is  that  it  does  not
simulate where each specific car will go after it has crossed the
intersection.   In essence, it only models the behavior of cars in
each segment without  including the movement of cars after the
intersection.  The model is illustrated as follows:
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Figure 3.6:  Intersection Representation

4. THE JAVA IMPLEMENTATION
The simulation for road-intersections  is composed of two-parts:
the two-lane intersection  model  and the  four-segment,  two-lane
intersection model.  Using the Java Software Development Kit, a
program for  the  road-intersection  is  created.   As stated  earlier,
three types of neighborhoods are used.   The one-lane and two-
lane neighborhoods follow the Nagel-Schreckenberg CA model
with minor modifications for the traffic light, while the third type
of neighborhood (forced-turn) is set up as a new system.

The program requires the following inputs:
maxSpeed   -   maximum speed
normalize  -   number of timesteps before data is gathered
roadLength  -  length of the road
timeDuration  - number of timesteps in the simulation (to  be
stored)
turnRegionSize - size of the forced lane-changing region
turnPoint  - point in the lattice where all the vehicles 
should be in the desired lane
noise  - randomization parameter
pDest[] - probability (for each segment) that a car will
go straight, left, right or back
numOfCars[] - number of Cars per segment

goTime[] - duration of the go signal per segment

5. RESULTS AND DISCUSSION
5.1Two-Lane Intersection
For  the  intersection  simulation  in  the  two-lane  with  car
destination case, it is to be shown that the model follows and is
consistent  with  qualitative  observations  of  real  traffic.   This  is
equivalent  to  saying that,  for  the  average  speed  versus  density
plot, speed increases as density increases.  It also means that for
the flux versus density graph,  flux initially increases as density
decreases  but  eventually  decreases  as  the  density  is  increased
further.



Figure  5.1  and  5.2  illustrate  this  point.   For  these  graphs,  the
system is composed of 200 cells.  Each car can be allowed to run
at a maximum speed of 6 cells/second.  There is no noise in the
set-up, which is run for 1000 time steps.
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Figure 5.1:  Speed vs Density
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Figure 5.2:  Flux vs Density

The Speed vs Density chart (Figure 5.1) shows that the two-lane
intersection model follows qualitative observations of real traffic;
that is, as the density of the system increases, the average speed of
the cars in the system decreases.  For  the Flux vs Density plot
(Figure 5.2), it can be seen that the curve reaches a plateau stage
instead of having a decreasing flux.  This is due to the fact that the
model allows for a non-periodic car replacement scheme.  At the
point  where  the  curve  starts  to  plateau,  the  system  becomes
saturated.  This means that no car can enter the system because
there are cars blocking the entrance (the leftmost part of the road).
It must also be noted that the model allows for a continuous flow
of traffic.  In contrast to the periodic traffic flow model, the flow
of the cars at the rightmost section of the road does not depend on
the traffic situation at the beginning of the road.  This prevents the
flux level from decreasing since the cars at the rightmost section
of the road are always moving.
The  next  few graphs  (Figure  5.3-5.6)  show the  relation  of  the
number  of  iterations  to  the  average speed  in  the  system.  The
system uses 100 timesteps, and no noise at varying densities (0.2,
0.4, 0.6, 0.8).  

From these plots, one can infer that as the density increases, the
average speeds of the  systems fluctuate  less.   This  is a logical
result.  As the number of cars in the road decreases, there will be
less room for changing the speed at every time step.  It can be
observed though that, unlike the Nagel-Schreckenberg model (in

the case where there is no noise),  the average speed fluctuates.
This can be explained by the fact that the different sections of the
road require different movements and speed variations.  
For the next set  of graphs,  average speed,  flux and density are
plotted.  This is run on a lattice with a roadlength of 200 in 2000
iterations.   The randomization parameter is pegged at 0.1.   The
maximum speed is varied from one to six.  For  Figure 5.7,  the
topmost  curve  represents  the  data  at  a  maximum speed  of  six
while the curve at the bottom represents the data at a maximum
speed of one.  
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Figure 5.3:  Average Speed at density=0.2
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Figure 5.4: Average Speed at density=0.4
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Figure 5.5:  Average Speed at density=0.6
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Figure 5.3:  Average Speed at density=0.2
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Figure 5.6:  Average Speed at density=0.8
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Figure 5.7:  Average Speed vs Density
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Figure 5.8:  Flux vs Density 
Again, this follows the qualitative behavior of real traffic [6].  At
a density of 0.1,  the maximum average speed is attained.   This
occurs  at  the  curve where  the  maximum allowable  speed  is  6.
There  is  continuous  decrease  as  the  density  increases  until  a
certain  density  level  in  which  the  maximum speed  limit  is  no
longer  significant.   In  essence, this  shows that  when there is a
large number  of cars on the road,  an increase in the maximum

speed has little effect on the average speed.  All cars are already
travelling  at  low speeds.   This  also  holds  true  for  the  flux  vs
density graph.  Given a high density on the road, the flux of the
system will  no  longer  be  affected  by  the  maximum allowable
speed.  
The  next  two  graphs  show  that  changing  the  randomization
parameter (noise) of the system affects the speed and flux on the
road.  This is run on a lattice with a roadlength of 200 in 1000
iterations.   The randomization parameter is varied from 0.1-0.5.
The maximum speed is set at  six.  For Figure 5.9,  the topmost
curve represents the data at a noise of 0.1 while the curve at the
bottom represents the data at a noise of 0.5.
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Figure 5.9:  Average Speed vs Density
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Figure 5.10:  Flux vs Density 
As stated earlier, these plots show that increasing the inefficiency
of  the  cars  in  the  system will  affect  the  average  speed  of  the
system.  Figure 5.10 shows that the flux is decreased as the noise
level increases.  At a noise rate of 0.5, the flux is between 200-
400 cells per timestep whereas at a rate of 0.1, the flux is between
600-800.
Figures  5.11-5.14  compare  the  traffic  dynamics  at  varying
densities(0.2, 0.4, 0.6, 0.8).  It plots time against space.



Figure 5.11 
Density=0.2

Figure 5.12
Density=0.4

Figure 5.13  
Density=0.6

Figure 5.14 
Density=0.8

Similar to previous studies, it shows the backward movement of
traffic[6].  At a density of 0.2, the cars at the leftmost section of
the road move forward.  This can be attributed to the density of
the system in that section.  The cars can move freely since there
are only a few cars on the said part of the road.  The decrease in
the  speed  occurs  at  the  latter  section  of  the  road.   This is  the
section where the cars are forced to change lanes to reach their
destination.  As the density increases, the traffic congestion at the
rightmost  section  accumulates  and  moves  towards  the  leftmost
part  of the  road.   At a density level  of  0.6  or  0.8,  one can no
longer notice where the congestion is coming from (unlike in the
case where density is 0.2 or 0.4).       
The graphs in  Figures  5.15-5.18  show the movement of traffic
when the noise is changed.

Figure 5.15
Noise=0

Figure 5.16
Noise=0.2

Figure 5.17
Noise=0.4

Figure 5.18
Noise=0.8

This follows the observations made in previous studies; that is, as
the noise increases, more black areas are clustered together [1,6].
These  graphs  also  show  that  the  number  of  cars  entering  the
system decreases  as  the  noise  is  increased.   This  can  be  seen
through the number of forward-moving lines moving toward the
traffic congested regions in the system.  As the noise increases,
the number of lines also decreases.  Another remark is that, as the
noise increases, the backward movement of the cars seems more
steep.  This can be seen by considering the plot of Figure 5.15 and
5.18.

5.2Four-Segment Two-Lane Intersection
Model
For the four-segment, two-lane intersection model,  two types of
relationships will be shown.  For the first set-up, the density of
each  segment  is  fixed  while  the  duration  of  the  green  light  is
changed.   The  second  set-up  sets  a  fixed  traffic  light  duration
while  changing  the  density  of  each  segment,  leading  to  the
creation  of  major  roads  (segments  with  significantly  greater
density than the others) in the system.  
Some of the Time vs Space plots the model are shown in Figures
5.19-5.22.



Figure 5.19
Segment 1

Figure 5.20
Segment 2

Figure 5.21
Segment 3

Figure 5.22
Segment 4

In these graphs, the go signal occurs at the region located right
before  the  forward movement section  of  the  cars  (found  at  the
leftmost  section of  the  road).   This shows that  the traffic light
alternates between the segments of the road.  As stated earlier, the
model still simulates the backward movement of traffic as seen in
all the segments of the four-segment intersection.
The  next  few  graphs  are  run  on  a  four-segment,  two-lane
intersection  with  720  iterations.   Noise  is  set  at  0.1  and  the
average density is fixed (0.25, 0.5, 0.75 for each graph).  Speed
and  flux are plotted against  traffic light  combination.   For  this
study, five different combinations for the traffic lights are used.
Each round (each segment being given a go signal)  consists  of
360  seconds.   Since there are 720  iterations,  there will  be  two
rounds  for  the  simulation.   This  is  roughly  twelve  minutes,
allowing six minutes for each round.  The combinations represent
the time allowed for segment 1 and 3 (opposite roads), and for
segment  2  and  4,  respectively.   For  example,  a  60-120
combination would mean that roads 1 and 3 are given a 60-second
go signal whereas segments 2 and 4 are given 120 seconds.  One
round, then, runs as follows:

Segment # time elapsed
1 60
2 120
3 60
4 120

Total 360
Table 5.1

The traffic light combinations in the system are shown in Table
5.2:

combination section 1 & 3 section 2 & 4
1 18 162
2 36 144
3 54 126
4 72 108
5 90 90

Table 5.2
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Figure 5.23: Speed vs Light at Density=0.25
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Figure 5.24: Flux vs Light at Density=0.25
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Figure 5.25: Speed vs Light at Density=0.5
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Figure 5.26: Flux vs Light at Density=0.5
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Figure 5.25: Speed vs Light at Density=0.5
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Figure 5.27: Speed vs Light at Density=0.75
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Figure 5.28: Flux vs Light at Density=0.75
For  all  the  graphs,  it  can  be  noted  that,  as  the  traffic  light
combination  reaches  5  (90-90  combination),  the  flux  and  the
speed  approach  a  certain  range  of  values.   In  the  case  of  the
topmost curves (segments with longer go signals), as the go signal
is decreased, the flux and the average speed are also decreased.
This is a logical occurrence since, in real life, a decrease in the go-
time in the road would also lead to slower movement of vehicles.
In the case of the curves at the lower part of the graphs, as the go
signal is increased, the average speed and the flux also increases.  
Figures  5.29-5.30  cover  the  case  when  the  traffic  light
combination is held constant at a rate of 90 seconds (roughly one
and a half minutes) while changing the density combination.  The
same time  frame is  used  (720  iterations  or  two rounds).   The
system is run on a road length of 100 cells at a noise of 0.1.  This
is similar to the approach earlier.  In this case, the combinations
are as follows: 

combination section 1 & 3 section 2 & 4
1 20 180
2 40 160
3 60 140
4 80 120
5 100 100

Table 5.3
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Figure 5.29: Speed vs Density at Light=.25
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Figure 5.30: Flux vs Density at Light=.25
In this set-up,  it can be noted that, at a combination of 20-180,
there is a great difference in the average speed and the flux of the
cars.  As the density becomes equal however, the average speed
and flux of the system approaches a certain range of values.  This
shows that,  given  a  certain  traffic  light  duration,  one  can  find
combinations  in  densities  where there is  great  difference in  the
flux rate. 
The  last  two  graphs  show  that  for  the  systems  previously
mentioned (varying the traffic light and the density), one can find
a combination which can give the highest flux.  For Figure 5.31
and Figure 5.32, one can see that the highest total flux occurs at a
traffic light with a 90-90 combination.   This means that,  for an
intersection  with  equal  densities  on  each  segment,  an  equal
duration for the traffic light would also give the highest total flux.

In the case of Figure 5.33,  one can infer that there is  no
clear  and optimal  traffic  light  combination.   This  can be
attributed to the fact  that  the system has a  large density.
Varying the traffic light, in this case, will no longer give
any  significant  and  absolute  increase  in  the  flux  of  the
system.  The last graph (Figure 5.34) covers the case when
the  density  is  changed.   This  shows that  as  the  density
increases (given a constant traffic light), the total flux will
increase.  It must be observed, though, that as the density
reaches a certain level, the increase in the flux will only be
minimal.           
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Figure 5.31: Flux vs Light at Density=0.25
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Figure 5.32: Flux vs Light at Density=0.50
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Figure 5.33: Flux vs Light at Density=0.75
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Figure 5.34: Flux vs Density at Light=0.25

6.CONCLUSION 
A  cellular  automata-based  two-lane  intersection  model  of
vehicular  traffic  dynamcis  has  been  studied  using  computer

simulations implemented in JAVA. The following is a summary
of results:
• Simulations  using  the  two-lane  intersection  CA  model

produces  speed  vs  density  plots  which  follow the  behavior
obtained using theories on vehicular traffic dynamics.  Flux vs
density  graphs  are  not  as  similar  due  to  the  non-periodic
aspect of the simulation.  

• As the  density  of  the  system increases,  the  average  speeds
fluctuates less.

• When there is a large number of cars on the road, an increase
in the maximum speed has little effect on the average speed.

• At low densities, the cars at the leftmost section of the roads
move  forward.   At  the  same time,  a  decrease  in  the  speed
occurs  at  the  latter  section of the  road.   This is  due  to  the
forced lane-changing region.  

• Changing the randomization parameter (noise) of the system
affects the speed and flux on the road.

• As the density becomes equal, the average speed and flux of
the system approaches a certain range of values

• For an intersection with equal densities on each segment (with
low densities),  an equal  duration  for  the traffic light  would
also give the highest total flux

• As the density increases (given a constant  traffic light),  the
total flux will increase.  As the density reaches a certain level,
the increase in the flux would be minimal.           
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