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ABSTRACT
In face recognition, Principal Component Analysis (PCA)
is often used to extract a low dimensional face representa-
tion based on the eigenvector of the face image autocorrela-
tion matrix. Kernel Principal Component Analysis (Kernel
PCA) has recently been proposed as a non-linear extension
of PCA. While PCA is able to discover and represent linearly
embedded manifolds, Kernel PCA can extract low dimen-
sional non-linearly embedded manifolds from data, thus pro-
viding a more suitable representation for subsequent recog-
nition by a classifier. We provide experimental evidence
which show that Kernel PCA performs better than PCA on
the ATT Face Dataset when both are used with a linear
Support Vector Machine Classifier.

1. INTRODUCTION
Thirty years ago, the problem of face recognition by a com-
puter was considered among the hardest in artificial intelli-
gence and computer vision. This past decade has seen great
progress in face recognition research beginning with Koho-
nen’s idea of a face representation based on the eigenvectors
of the face image’s autocorrelation matrix [5]. Turk and
Pentland [8], inspired by the findings of Kirby and Sirovich
[4], further developed the eigenvector representation and de-
vised a practical method for detecting and recognizing faces
which is the basis of many of the current commercial real
time face recognition systems.

Face recognition has potential applications in security con-
trol, office automation, prevention of fraud, automatic per-
sonalization of environments, etc. Face recognition has the
advantage of being completely passive and non-intrusive, un-
like other biometric techniques such as those using finger-
prints, speech, and signature.

There are two main categories of face recognition systems
that are available:

• systems that identify a person given a large database
of faces (e.g. face database of a large corporation).
The system returns a list of names that most likely
identifies the query face image. There is usually just
one image per person that is stored in the database.
The application is usually not real time.

• systems that identify a person given a smaller database

of faces so that he/she can gain entry to a particular lo-
cation or access a particular resource (e.g. computer).
Multiple images per person are usually available but
real time recognition is necessary.

In this paper, we are interested in developing a simple face
recognition algorithm for the second application category.
In particular, we want to recognize faces in real time given
a set of example images of faces with varying facial expres-
sions, hairstyle, and image background. We will assume that
the faces have been localized by a previous localization algo-
rithm, that is, the faces are properly centered in the image.

Many face recognition systems having high recognition rates
use Principal Component Analysis (PCA) to convert an in-
put face image into its principal component representation
called eigenface. The eigenface representation of a face im-
age is then submitted to a classifier such as a k-Nearest
Neighbor Classifier.

Principal Component Analysis has long been used for ex-
tracting structure from high dimensional data sets. Clas-
sic PCA literature are found in the works of Pearson [6],
Hotelling [1], and Karhunen [3]. Kernel Principal Compo-
nent Analysis [7] has recently been proposed by Scholkopf,
Smola and Muller as a non-linear extension to Principal
Component Analysis, drawing inspiration from the idea em-
ployed in Support Vector Machines, of implicitly mapping
data into a high dimensional feature space and doing what
we want done in that feature space.

Face recognition using Kernel Principal Component Analy-
sis was first demonstrated by Yang, et. al. [10] who com-
pared it with PCA. Their experiments showed that a 3rd
degree polynomial Kernel PCA with a reduced space of 50
principal components outperforms PCA when a k-Nearest
Neighbor Classifier is used. We call the face representation
produced by Kernel PCA as kernel eigenface.

We investigate the performance of Kernel Principal Compo-
nent Analysis (Kernel PCA) to represent faces using a Soft
Margin Support Vector Machine (SVM) for our classifier.
To test our approach, we use the ATT Face Dataset (for-
merly called ORL Face Dataset) available from the Web.
To emphasize the power of Kernel PCA for face recognition,
no further preprocessing such as histogram equalization (to



compensate for illumination variations) or image warping
(to account for facial expression differences) is done on the
images.

Visual data are often represented as points in high dimen-
sional space. A m × n image can be mapped as a vector
of dimension <N=m×n by lexicographic ordering of its pixel
elements. The intrinsic dimensionality of visual data, how-
ever, is much lower and the relevant structure sought in face
recognition, as in many computer vision tasks, lies in a low
dimensional manifold. Subspace methods such as PCA and
Kernel PCA try to extract the low dimensional structure
manifold embedded in the the high dimensional raw input
visual data.

Principal Component Analysis has been found to be an ef-
fective method for face recognition [8]. PCA projects the
high dimensional image vector into the subspace spanned
by the dominant eigenvectors (eigenvectors whose eigenval-
ues are large) where the variance of the training images is
high, making it easy for the classifier to compute for the
correct decision surface.

Principal Component Analysis can discover linearly embed-
ded manifolds and produce a compact orthonormal basis
representation. For example, projection of data points onto
the first principal component corresponds to a 1-dimensional
linear manifold representation.

The manifold structure of the facial recognition task, how-
ever, cannot be assumed to be linear since it unlikely that
the complications present in this task such as variations in
facial expression, illumination, etc. are linear in nature. One
promising subspace method that could deal with nonlinearly
embedded manifolds is Kernel Principal Component Anal-
ysis [7]. Kernel PCA is one of the many algorithms that
exploit the following idea:

Data x1, ...,xn ∈ <N , via the nonlinear mapping

Φ : <N → F

x 7→ Φ(x)

is mapped into a very high (possibly infinite) feature space
F .

Kernel PCA uses a nonlinear kernel function Φ(x) to project
input data x into feature space F which is nonlinearly re-
lated to the input space and performs PCA in feature space
F . Although the dimensionality of the kernel feature space
F is much higher than that of the input space, kernel meth-
ods do not suffer from curse of dimensionality because com-
putation in feature space is carried out implicitly.

2. THE EIGENFACE APPROACH
Principal Component Analysis (PCA) is used for extracting
relevant features from high-dimensional data sets. It per-
forms an orthogonal transformation of the coordinate sys-
tem in which the data is originally described. After coordi-
nate transformation, it is often the case that only a subset
of the new coordinate values is necessary to describe most of

the data. This subset is called the principal components of
the data. The principal components possess large variance.

The PCA algorithm is formulated as follows:

Let xi be an m-dimensional vector obtained from a set of N
vectors. The mean vector x of the set is

x = E{x} =
1

N

NX
i=1

xi

The covariance matrix of the set of vectors is

R = E{(x− x)(x− x)>}
Given this covariance matrix we solve the eigenequation

Ru = λu

for positive eigenvalues λj , (j = 1, . . . , m) with these eigen-
values sorted in decreasing order (λj ≥ λj+1). The eigen-
vectors uj are orthonormal vectors.

This eigenequation is usually solved using eigendecomposi-
tion or Singular Value Decomposition (SVD) methods.

The principal components are also uncorrelated since they
are the components of the orthonormal basis. The first
p(1 ≤ p ≤ m) principal components carry more variance
than the other orthogonal directions and they have maxi-
mal mutual information with respect to the inputs.

3. KERNEL EIGENFACES
Kernel Principal Component Analysis (Kernel PCA) is very
similar to Principal Components Analysis. While PCA ex-
tracts relevant features from data by performing an orthog-
onal transformation, Kernel PCA uses a kernel to map the
data from input space to a higher dimensional feature space
and perform PCA in that feature space. This mapping is
not computed explicitly. The kernel must satisfy Mercer’s
Theorem [7].

Since input space to feature space mapping is nonlinear, the
resulting coordinate transformation in input space is not or-
thogonal. Kernel PCA has the advantage of extracting rele-
vant features from principal components of a non-orthogonal
coordinate system having variance greater than what PCA
could achieve due to some hidden structure inherent in the
data.

The Kernel PCA algorithm is as follows:

Given a set of N vectors x1, . . . ,xN , and an inner product

kernel k(xi,xj) we construct the N × N kernel matrix K
′

whose ij-th element is k(xi,xj). We center the mapped data
points in feature space using the following equation:

Kij = K
′
ij − 1

N

NX
m=1

1imK
′
mj − 1

N

NX
n=1

K
′
in1nj

+
1

N2

NX
m=1

NX
n=1

1imK
′
mn1nj

where 1 is an N ×N matrix whose entries are all 1’s.



We then solve the eigenvalue problem

Ka = λa

for positive eigenvalues λj with these eigenvalues sorted in
decreasing order (λj ≥ λj+1) and normalize the eigenvector
coefficients

a(n) · a(n) =
1

λn
n = 1, . . . , p (p ≤ N)

To extract the n-th kernel principal component q(n) of a test
image xt we use the following formula:

q(n) =

NX
i=1

a
(n)
i k(xi,xt)

Another difference between PCA and Kernel PCA is the
maximum number of principal components that we can ex-
tract from them. The upper limit for PCA is the dimen-
sionality of the image vector while for Kernel PCA it is the
number of samples in the training set. Thus, for Kernel
PCA, it is possible for us to use more eigenvector projec-
tions than the dimensionality of the input data.

4. SUPPORT VECTOR MACHINES
In pattern classification using Support Vector Machines (SVM),
examples are mapped to a higher dimensional feature space
and a decision hyperplane in feature space that separates the
data points is computed. The SVM algorithm [9] computes
for the separating hyperplane whose margin of separation
between positive and negative examples is maximized.

Given a set of labeled training examples (z1, d1), ..., (zN , dN ),
the algorithm minimizes the following cost function:

φ(w, ξi) =
1

2
w>w + C

X
i

ξi

subject to the constraints:

di(w
>zi − b) ≥ 1− ξi i = 1, 2, . . . , N

0 ≤ ξi ≤ C i = 1, 2, . . . , N

where w is the weight vector, b the bias that measures the
perpendicular distance of the hyperplane from the origin,
and ξi is a set of slack variables and C is a user-specified
complexity parameter.

The presence of the slack variables allows the possibility for
some of the examples to be misclassified by the hyperplane
as long as there is an upper bound on the number and de-
gree of misclassifications. This type of SVM is called a soft
margin SVM [9].

The decision rule for SVM is

g(z) =

NX
i=1

αo,idik(zi, z) i = 1, . . . , N

The examples zi for which αo,i is non-zero are called support
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Figure 1: Recognition Rates with Increasing Dimen-
sionality of Principal Subspace for Different Polyno-
mial Kernel Degree Values

vectors. These support vectors are those training examples
that define the decision hyperplane.

5. EXPERIMENTS
The ATT Face Dataset consists of 10 different greyscale im-
ages of 40 different persons. The resolution of each image
is 92 by 112 pixels. The images for each person have vari-
ations in facial expression (open/closed eyes, smiling/non-
smiling), and facial details (glasses/no glasses). The varia-
tions in scale is up to 10%. Yang, et. al. [10] also used the
ATT Face Dataset for their experiments but derived exper-
imental data only for the k-Nearest Neighbor Classifier.

We use a 50/50 partition for training and testing. Each
training set contains 200 labeled images of which 5 and 195
are positive and negative examples respectively. We perform
a 10-fold cross validation on the dataset.

Feature extraction was performed on the training set of 200
labeled examples using Kernel Principal Component Anal-
ysis. In forming the input vector, we down-sampled the
images by 4 resulting in an image resolution of 23 × 28 pix-
els. The pixels are then normalized by dividing each gray
level value by 256.

For the kernel, we tried the polynomial kernel

k(xi,xj) = (x>i · xj)
d

The values of d were varied from 1 to 6. For d = 1 we simply
have the standard PCA.

Computing the kernel components of the full N×N(= 200×
200) matrix required around 2 minutes of computation on
a 1.6 GHz Pentium IV machine running Mandrake Linux
9.0. Most of the computation time was spent in solving the
eigenequation.

For each image, the top n kernel principal components q(n)

corresponding to the kernel were then extracted using the
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Figure 2: Comparison of Best Performing Kernel
PCA (Polynomial kernel degree = 2) with PCA

following equation:

q(n) =

NX
i=1

a
(n)
i k(xi,xt)

The principal components were submitted to the Support
Vector Machine Classifier for processing.

We used the publicly-available SVMlight pattern classifier
code written by Thorsten Joachims which implements Vap-
nik’s SVM algorithm for pattern classification [2] .

The results of the experiments for the different values of
polynomial kernels are shown in Fig. 1. The best performer
was found to be the 2nd degree polynomial Kernel PCA.

We then compared the best performing Kernel PCA with
standard PCA for the lower range of principal subspace val-
ues. The purpose of this experiment is to evaluate the how
compact these two subspace representations are. The results
are shown in Fig. 2.

It is evident from our experiments that Kernel PCA per-
forms better than standard PCA by a noticeable margin.
The difference is about 1 % for a reduced space of 50 prin-
cipal components.

We also notice a slight, though progressive decrease in recog-
nition accuracy as the polynomial kernel degree increases.
However, Yang et. al. [10], found that 10th degree polyno-
mial kernel also achieved low error rates for the k-Nearest
Neighbor Classifier.

The second figure is illustrative for it tells us just how much
information useful for recognition is contained in the first n
principal components for both methods. Using only 4 prin-
cipal components, the recognition rates for PCA and Kernel
PCA are 78.3 % and 81.1 % respectively. This shows us
that Kernel PCA provides a more compact face representa-

tion than PCA.

6. CONCLUSION
Kernel Principal Component Analysis is a non-linear exten-
sion of Principal Component Analysis (PCA) which is the
basis of the eigenface method. In this paper we argue that
Kernel Principal Component Analysis provides a face rep-
resentation that is more suitable for recognition than PCA.
Our experiments show that Kernel PCA with a polynomial
kernel outperforms PCA on the face recognition task when
both are used with a linear Support Vector Machine classi-
fier.
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