
String Matching Using Quantum Fourier Transform

Jeffrey A. Aborot∗
Advanced Science and Technology Institute

Department of Science and Technology
ASTI Bldg., U.P. Techno Park, C.P. Garcia Ave.

Diliman, Quezon City
jep@asti.dost.gov.ph

Henry N. Adorna
Algorithms and Complexity Laboratory

Department of Computer Science
University of the Philippines Diliman

Diliman, Quezon City
hnadorna@dcs.upd.edu.ph

ABSTRACT
Pattern matching has always been applicable to many areas
of interest. Particular to the string data structure, this prob-
lem abstracts computational tasks found in areas such as
computational biology, signal processing and network secu-
rity. Due to its high applicability several approaches has al-
ready been devised for solving the problem using its various
models. Main classical approaches developed are dynamic
programming, automata-based algorithms, bit-parallelism
techniques and filtering.
One particular approach to string matching problem is

the semi-numerical approach of viewing pattern matching
as the process of multiplying polynomials. A classical tech-
nique used for speeding up multiplication is the convolution
method which uses Discrete Fourier Transform and its in-
verse. The Fast Fourier Transform algorithm can be used
to speed up computation of the Discrete Fourier Transform
by a large factor. In this paper we propose a quantum al-
gorithm which applies the classical convolution method to
pattern matching but uses Quantum Fourier Transform for
computation of the Discrete Fourier Transform instead of the
classical Fast Fourier Transform. Its complexity is analysed
and compared to that of the current classical convolution
method.

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problems]: Pat-
tern matching

General Terms
Algorithms, Theory

Keywords
pattern matching, quantum Fourier transform, quantum com-
putation

1. INTRODUCTION
In this section we briefly introduce the focus problem of

this paper and present current solutions addressing the prob-
lem. We also present a summary of our proposed solution
and its complexity in comparison to that of the current so-
lutions.

∗On-going graduate student under Algorithms and Com-
plexity Laboratory, Department of Computer Science, Uni-
versity of the Philippines Diliman, jaaborot@up.edu.ph

1.1 Patterns on Strings
The string data structure is widely used in modelling com-

putational problems in different areas of application. In
music informatics, a sequence of notes and other musical
symbols can be represented as a string of alphabet symbols
which correspond to specific symbols in music notation. In
bioinformatics, a DNA sequence can be represented as a
string of alphabet symbols A, C, T and G which correspond
to the oligonucleutides adenine, cytosine, thiamine and gua-
nine. For an RNA sequence, the alphabet will be of size 21.
Strings are also used to model contents of packets in net-
work intrusion detection system in which the alphabet may
contain alphanumeric and special characters.

Common to the aforementioned areas of application is the
computational problem of finding patterns. In music infor-
matics a common pattern in various musical compositions
may represent a defining style or characterization unique to
the samples. Such characterization may be the genre of mu-
sic or specific author of musical pieces. Patterns may also
represent key terms when retrieving musical compositions
from a repository [5][3]. In bioinformatics, patterns may
correspond to sections in a DNA or RNA sequence which
may hold biological significance [1][7]. Searching for these
patterns aids in gaining deeper understanding of biological
functions of different sections of biological sequences. In net-
work intrusion detection, patterns correspond to signatures
of attacks maintained in a repository for reference. Packets
of data coming into the protected network are scanned for
detecting malicious contents and are treated according to
defined rules [19][2][10]. The data in these computational
problems of pattern matching can be modelled using string
data structure. Another model used for this kind of compu-
tational problems is the tree data structure and its variants.
In this paper we focus on the string data structure and on
the String Matching model of the computational problem of
pattern matching.

1.2 String Matching
The string matching model abstracts pattern matching

problems as computational problems in which data is mod-
elled simply as strings defined over a finite alphabet of sym-
bols. There are also several variants of the string matching
model which vary on accuracy of representing the actual
computational problems. Among these are the exact and
approximate string matching model.

1.2.1 Exact String Matching
The exact string matching model represents the computa-

1



tional problem of pattern matching in which an exact match
of a sequence of symbols, called the pattern, is sought from
a longer sequence of symbols called the text. Exact match
means a perfect symbol to corresponding symbol match be-
tween the pattern and any same length subsequence of the
text. An illustration of an exact match between a pattern
and a subsequence of a text is shown in Figure . We can for-
mally define the exact string matching problem as follows:

Exact String Matching Problem

Input:

• alphabet Σ where |Σ| = σ

• text T where |T | = N and T ∈ ΣN

• pattern P where |P | = M and P ∈ ΣM

Output: all indices i such that T [i, i +M − 1] = P where
0 ≤ i ≤ N −M + 1

The exact string matching model is a very simple represen-
tation of a pattern matching problem that it lacks accuracy
in representing most of the real application problems. A
much more accurate model for most of real application pat-
tern matching problems is the approximate string matching
model.

1.2.2 Approximate String Matching
Matching between a pattern and a subsequence of a text

can be interpreted as the number of steps necessary to trans-
form the subsequence into an exact copy of the pattern. The
transformation steps may include substitution, deletion and
insertion of symbols. In contrast to exact string matching
model, a match between the pattern and any subsequence of
the text in the approximate string matching model is defined
using a so called distance metric. One specific distance met-
ric is the Hamming distance. In the Hamming distance met-
ric, the distance between the pattern and the subsequence
is defined as the total number of substitutions in the subse-
quence necessary to transform it into an exact copy of the
pattern. Given a defined maximum Hamming distance be-
tween the pattern and any same length subsequence of the
text a match occurs when the required number of substi-
tutions to transform a subsequence into an exact copy of
the pattern is at most the defined Hamming distance. We
denote the Hamming distance between a pattern P and a
subsequence T [i, i+M−1] of the text as d(P, T [i, i+M−1]).

We can then formally define the approximate string match-
ing model of the pattern matching problem as follows:

Approximate String Matching Problem

Input:

• alphabet Σ where |Σ| = σ

• maximum Hamming distance D

• text T where |T | = N and T ∈ ΣN

• pattern P where |P | = M and P ∈ ΣM

Output: all indices i such that d(P, T [i, i + M − 1]) ≤ D
where 0 ≤ i ≤ N −M + 1

The approximate string matching model provides a much
more accurate representation of much of the pattern match-
ing problems in various applications since it allows errors
or mutations in data. Mutations are very common in real
application data such as biological sequences and musical
compositions. Communication channels may also introduce
noise into data being transferred in the context of digital sig-
nal processing. Also, it is easy to see that the exact model
is just an instance of the approximate model in which the
defined Hamming distance is 0.

1.3 Complexity of String Matching
In the exact string matching model a match between the

pattern and a subsequence of the text is said to occur if their
corresponding characters exactly match. Given the worst
case that there does not exists a matching subsequence in
the text the total number of comparison will be at most
M(N −M + 1). The upper bound complexity of the exact
string matching model will thus be O(MN).

On the other hand, in the approximate string matching
model a match is said to occur it the number of mismatches
between the sequence and the pattern is less or equal to a
defined distance metric. In the worst case that there doest
not exists a match between the pattern and the text the
total number of comparison will be at most M(N −M +1),
which is the same with that of the exact model. Thus the
upper bound complexity for the approximate model is also
O(MN).

1.4 Approaches to String Matching
Since the string matching model is widely applicable there

has already been several developed approaches to solving
it. These approaches can be divided into classical and un-
conventional approaches. In this paper we identify classical
solutions as those which are intended to execute on our cur-
rent computing machines which makes use of classical bits.
Also, we identify unconventional solutions as those which
are designed to execute on machines which make use of un-
conventional hardware for information storage and physical
effects for computation.

Our proposed algorithm presented in this paper is an un-
conventional solution to the string matching problem since
it make use of quantum bits and some quantum physical
phenomena for computation.

1.4.1 Classical Solutions
Several classes of classical algorithms has been developed

for the string matching problem. Some of these are dynamic
programming algorithms, automata-based algorithms and
filtering algorithms. Among the early dynamic program-
ming algorithms are those by Sellers , Masek and Paterson
and Ukkonen . These algorithms have the flexibility of be-
ing adaptable to different distance metrics i.e. Hamming
distance, edit distance, Episode distance, etc. but are heavy
on the time complexity requirement since dynamic program-
ming algorithms make use of a matrix to represent the text
and pattern. Out of this approach also came forth the short-
est path problem reformulation on a graph built on the text
and pattern.
Some early automata-based algorithms are those by Ukko-

nen [17], Wu and Manber, and Kurtz.
Filtering algorithms on the other hand are two-part algo-

rithms such that they always include algorithms of another

2



class as sub-routine for the actual string matching. These al-
gorithms perform initial computation on the solution space
to trim it down in preparation for the string matching step.
The initial time complexity allotted for filtering is compen-
sated by a fast string matching algorithm. Examples of early
filtering algorithms for string matching are those of Ukko-
nen and Tarhio, Baeza-Yates and Navarro and Navarro and
Raffinot .

1.4.2 Convolution Algorithm
One particular approach to string matching is the use of

a class of algorithms called semi-numerical algorithms as
defined by D. Knuth [11]. Semi-numerical algorithms are
those which perform matching of symbols by using arith-
metic operations on the input data. One such algorithm
is the discrete convolution algorithm. This was first pro-
posed by Fischer and Paterson in [8]. In their paper they
presented a general formula for linear product of vectors of
symbols which results to a vector in which the components
are interpreted as the components of the product of the two
vectors. The product of the two vectors is their convolution.
The convolution of two sequences of N complex numbers
S1 = (α0, . . . ,αN−1) and S2 = (β0, . . . ,βN−1) is defined to
be the sequence S3 = (γ0, . . . , γN−1) given by

γk =
N−1∑

j=0

αjβk−j for k = 0, . . . , N − 1

where subscripts are taken (mod N). They showed that this
general concept of linear product of vectors can be applied to
the problems of polynomial multiplication and string match-
ing. Specific to the string matching problem, given two
strings T and P such that |T | = N, |P | = M and M < N ,
string matching can be be performed by representing both
strings as vectors of integers and taking their convolution.
The components of the resulting vector correspond to the
score of matching P with the subsequences of T. Comput-
ing the convolution directly will require O(N2) time steps
since comparison of each component of the first vector to
each component of the second vector will result to N2 num-
ber of comparisons. One approach to performing the lin-
ear product multiplication of two vectors of size N and M
is to first take the Discrete Fourier Transform (DFT) of
both vectors using N + M − 1 samples and then perform-
ing a component-wise multiplication of the components of
the transformed vectors. Inverse DFT (IDFT) is then ap-
plied to the the resulting vector which will result to a vec-
tor of size N + M − 1 with components corresponding to
match score of comparing P with the subsequences of T.
The only valid elements of the resulting vector are the mid-
dle N −M +1 elements only and this is due to the required
padding of both text. This method will require O(N2) time
steps for applying DFT to both vectors, O(N) for applying
the component-wise multiplication step and another O(N2)
for applying the IDFT step. Thus this method will require
an O(N2) steps overall. Improvement can be introduced
by using the Fast Fourier Transform (FFT) algorithm in-
troduced by Cooley and Tukey in [4]. Using FFT to com-
pute for DFT and IFFT to compute for IDFT, the first and
third steps of the convolution algorithm will require only
O(N logN) time steps. In total, the convolution algorithm
will require only O(N logN) time steps which is an improve-
ment over the direct method. Identifying a match between

pattern P and subsequences of text T will translate to find-
ing all components of output vector which are less or equal
to the defined Hamming distance D in approximate string
matching model and those which are equal to M in the ex-
act string matching model. Searching for these components
in the unstructured output vector will require O(N) time
steps. Thus, using the classical discrete convolution method
for string matching will require O(N logN) + O(N) time
complexity. The DFT-based method for computing the con-
volution of two vectors is outlined as follows:

Classical Discrete Convolution Algorithm

1. Apply DFT into input vector α.

α′ = DFT (α)

2. Apply DFT into input vector β.

β′ = DFT (β)

3. Perform component-wise multiplication between the
two Fourier transformed vectors.

δ = α′ · β′

= DFT (α) ·DFT (β)

4. Apply IDFT into resulting vector δ.

γ = IDFT (δ)

= IDFT (DFT (α) ·DFT (β))

The resulting vector γ is defined such that

γk =
N−1∑

j=0

αjβk−j for k = 0, . . . , N − 1

Using DFT will require O(N2) time steps but using FFT
to compute for the DFT will require O(N logN) time steps
only. Thus, using this method as a sub-routine for a string
matching algorithm will require O(N logN) time steps for
computing the convolution of the vectors representing the
input sequences and O(N) time steps for determining the
component i of the resulting vector with the least value.
This least value represents the distance between the subse-
quence of text which starts at index i and the pattern. If the
value of the i-th component is less than or equal to the input
distance threshold then the subsequence of the text starting
at index i matches the input pattern. A string matching
algorithm which uses the discrete classical convolution algo-
rithm as a sub-routine is outlined as follows:

Classical Convolution-based String Matching
Algorithm

1. Perform convolution algorithm on input sequences T
and P.

2. Find component values γk from the resulting vector in
Step 1 such that

γk ≤ D

where D is the input maximum Hamming distance and
0 ≤ k ≤ N − 1.

3. Return each index k of satisfying component values.

3



1.5 Proposal: A Quantum Convolution Algo-
rithm for String Matching

The presented convolution method is designed to execute
on a classical device and thus is classical computation. In
classical computation and specifically in the aforementioned
classical algorithms, we represent data using the state of
a two-level system called classical bit or cbit. In the con-
ventional implementation which uses electric pulses, a cbit
could either be in a ground state or an excited state and each
can be denoted as 0 and 1 respectively. Given the input data
represented using states of several cbits, computation is per-
formed on the input data by applying a sequence of transfor-
mations on the state of each cbit. The resulting state of the
cbits represent the output data. Computation on devices
which use cbits are governed by classical physics. Thus the
same goes for the previously discussed algorithms which are
designed to execute on classical machines. There are some
computational devices though which utilize a different kind
of physical system for representing data. Data in these kind
of devices are represented using the state of a two-level (or
more) physical system. These are called quantum bits or
qubits. Unlike cbits which could be in a definite state and
thus can be determined deterministically, a qubit’s state is
not predefined and thus cannot be determined unless a per-
turbation is done on the system, which in turn will bring
the system to a definite classical state. Transformations on
qubits’ state are also governed by quantum mechanical laws
of physics in which some physical phenomena are defined
that are not observable in classical devices. Some of these
quantum physical phenomena are used as resource for im-
provement in efficiency of computation. Among these are
linear superposition of states, quantum entanglement and
quantum interference.
In this paper we look into a quantum version of the con-

volution algorithm and propose an application to the string
matching problem. The proposed algorithm will require
O(log2 N) + O(

√
N) quantum time complexity which is an

improvement over the classical algorithm’s O(N logN) +
O(N) time complexity. We discuss a quantum implemen-
tation of the DFT and its inverse and assess its complexity.
We then discuss its application to the convolution algorithm
and assess the resulting complexity. We also compare it to
the complexity of the classical convolution algorithm.

2. A QUANTUM ALGORITHM FOR STRING
MATCHING

In this section we explore the possibility of a quantum ver-
sion of the convolution method and propose a string match-
ing algorithm which uses this quantum version. First we
present some fundamental ideas about quantum computa-
tion so the reader may understand well the details of the
proposed quantum algorithm. We then present a quantum
version of the DFT and its inverse which are vital opera-
tions in the classical convolution algorithm. We then present
a proposed quantum algorithm for string matching which
makes use of the convolution method.

2.1 Quantum Computation
Physical devices which are composed of just a few atomic-

scale components are observed to exhibit some phenomena
which are not observable on their larger counterparts. These
phenomena affects computation such that computing using

such kind of devices may seem impractical as compared to
how our regular computers perform computation. However,
there has been efforts made on realizing ways on how to take
advantage of these so called quantum phenomena for more
efficient computation. As mentioned in the previous section,
among these are linear superposition of quantum states, en-
tanglement of quantum states and quantum interference.

First, we may model the state of a qubit to be a linear com-
bination of states with corresponding complex amplitudes as
follows,

|δ⟩ = α0|0⟩+ α1|1⟩

These amplitudes αi represent the probability of a classical
value represented by a corresponding quantum state |i⟩ oc-
curring as a result of disturbance of the quantum system.
The probability of a classical value occurring as a result of
disturbance of a quantum system is defined as the modulo
square of its corresponding amplitude.

Pi = |αi|2

The state of a quantum system is required to be normalized
to model the reversibility of a quantum operation as defined
in quantum mechanics. Thus, the total sum of the prob-
abilities of occurrence of each possible classical value of a
property of a quantum system must always equate to 1.

∑

i

Pi = 1

Operations on a quantum system which will result to a non-
normalized quantum state will require a succeeding normal-
ization step.

Given a qubit q0 initially set to be in state |0⟩, we may
put it into a linear superposition of quantum states |0⟩ and
|1⟩ by applying to it a Walsh-Hadamard operator which we
denote as H. Doing so will result to the quantum state

|δ⟩ = H|0⟩

=
1√
2
|0⟩+ 1√

2
|1⟩

in which the classical states 0 and 1 have equal probabili-
ties of occurring (| 1√

2
|2 = 1

2 ) once the state of q0 is measured.
We borrow notation from quantum mechanics for our com-
putation, called Dirac notation. We call the notation | ⟩
as ket and ⟨ | as bra. We read |0⟩ as ”ket 0”, |1⟩ as ”ket
1”, ⟨0| as ”bra 0” and ⟨1| as ”bra 1”. Also, due to linearity
of quantum operations we can evaluate a function F on all
values represented by all of the possible quantum states of a
qubit. Again, given the quantum operator H as the function
and the quantum state |δ⟩ of qubit q0, applying H to q0 will

4



result to the state

|δ′⟩ = H|δ⟩

= H

(
1√
2
|0⟩+ 1√

2
|1⟩
)

= H

(
1√
2
|0⟩
)
+H

(
1√
2
|1⟩
)

=
1√
2
H|0⟩+ 1√

2
H|1⟩

=
1√
2

(
1√
2
|0⟩+ 1√

2
|1⟩
)
+

1√
2

(
1√
2
|0⟩ − 1√

2
|1⟩
)

=
1
2
|0⟩+ 1

2
|1⟩+ 1

2
|0⟩ − 1

2
|1⟩

= |0⟩

Notice how the operator H is distributed to the linear su-
perpositioned states |0⟩ and |1⟩. This is one of the most used
technique for quantum computation. It is somehow related
to the classical concept of parallelizing the task of evaluating
a function against all possible values. The correspondence
is not exact though. In classical computation we get all the
result of all the function evaluation at the end of the compu-
tation. In quantum computation, we will only get a single
classical value upon intentional disturbance of the quantum
system.
Quantum interference is also one phenomena which distin-

guishes quantum computation from classical computation.
It may seem that quantum computation is just plain clas-
sical probabilistic computation. The distinguishing factor
is the positive or negative interference of the linear super-
positioned states of a quantum system. Note in the above
quantum computation of the state |δ′⟩. The state |0⟩ was
subjected to positive interference which resulted to a prob-
ability of 1 of occurrence. On the other hand, the state |1⟩
has undergone negative interference which resulted to a 0
probability of its occurrence. Quantum interference is used
in quantum computation for eliminating non-solutions to a
given computational problem so that measurement of state
of the quantum system will result to the desired solution.
Quantum entanglement in a quantum system is another

phenomena which is not observable in classical systems. Ein-
stein even described it as a spooky action at a distance.
When two qubits in a quantum system is entangled with
each other they are considered as linked such that operations
on one of them has an effect on the value of the same prop-
erty of the other. This applies even when the two qubits are
far apart from each other. The state of entangled qubits is
defined such that their composite state cannot be described
as just a product of each qubit’s state. The description
of each component quantum system should be made with
reference to the state of the other system. Quantum entan-
glement is found to be useful in applications such as secure
data exchange and super dense coding. An example of an
entangled state of a composite quantum system is the Bell
state |β01⟩ defined as

|β01⟩ =
|01⟩+ |10⟩√

2

A measurement on the state of the first qubit which will
result to a classical value of 0 (1) will have its effect on the
state of the second qubit such that upon measurement we
will get a classical value of 1 (0).

2.2 Quantum States and Operators in Matrix
Representation

Quantum states are modelled in quantum mechanics as
vectors in a unit complex vector space of some dimension
n in which scalar multiplication and vector addition opera-
tions are defined. Given the quantum state of a single qubit
denoted as |0⟩ we may represent such state as the vector(
1
0

)
and the state |1⟩ as the vector

(
0
1

)
. These vectors

are orthogonal with each other and are unitary. These vec-
tors are usually referred to as the computational basis for
the 2-dimensional complex vector space in which we per-
form computation. Using these vectors we can represent all
the other vectors in the 2-dimensional complex vector space.
A linear superposition quantum state can be represented in
column vector notation as

|δ⟩ = α0|0⟩+ α1|1⟩

= α0

(
1
0

)
+ α1

(
0
1

)

=

(
α0

0

)
+

(
0
α1

)

=

(
α0

α1

)

where α0 and α1 are complex values. On the other hand, the
states of qubits of a composite quantum system composed of
an n-dimensional and m-dimensional component systems is
defined on an mn-dimensional complex vector space. Given
a 2-qubit quantum system, it is defined on a 4-dimensional
complex vector space in which its element vectors are made
up of four complex valued elements. The quantum state |00⟩
of a composite quantum system made up of two qubits may
thus be defined by a complex vector

|00⟩ = |0⟩ ⊗ |0⟩

=

(
1
0

)
⊗
(
1
0

)

=

⎛

⎜⎜⎝

1
0
0
0

⎞

⎟⎟⎠

Quantum operators on the other hand can be represented
as matrices and are required to be unitary (and therefore
invertible) to model the reversibility of a quantum transfor-
mation in a closed quantum system. For example, given the
Pauli-X operator for a single qubit which is defined by the
transformation on the states |0⟩ and |1⟩

X|0⟩ = |1⟩ and X|1⟩ = |0⟩

its counterpart matrix operator is defined as the 2× 2 matrix

(
0 1
1 0

)

Applying this matrix to the vector representations of the

5



states |0⟩ and |1⟩ will result to

X|0⟩ =
(
0 1
1 0

)(
1
0

)

=

(
0
1

)

= |1⟩

and

X|1⟩ =
(
0 1
1 0

)(
0
1

)

=

(
1
0

)

= |0⟩

Thus, a quantum operator for an n-dimensional quantum
system can be represented by an n × n dimensional ma-
trix which carries out the transformation on the state of the
system.
There are much more basic concepts in quantum compu-

tation but we will not discuss them furthermore in this paper
to keep us focused on the topic. The reader is encouraged to
read more on these concepts to have a deeper appreciation
of the computing model. Valuable exposition of these topics
can be found in [14], [15] and [18].

2.3 Quantum Fourier Transform
One important operation in quantum computation is the

Quantum Fourier Transform (QFT). This is the quantum
version of the classical DFT for Fourier analysis of any data
which are temporal in nature. Given a set of sample points in
the time domain, applying DFT will represent the samples in
the frequency domain. If we represent someN sample points
as elements f(i) of a N -dimensional vector and DFT as an
N ×N matrix operator acting on the vector, application of
the DFT is defined as

⎛

⎜⎜⎜⎜⎜⎝

1 1 1 . . . 1
1 w w2 . . . wN−1

1 w2 w4 . . . w2(N−1)

...
1 wN−1 w2(N−1) . . . w(N−1)(N−1)

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

f(0)
f(1)
f(2)
...

f(N − 1)

⎞

⎟⎟⎟⎟⎟⎠

where w = e
2πi
N and will result to another N -dimensional

vector with elements defined as

F (i) =
N−1∑

j=0

f(j)wij

for 0 ≤ i ≤ N − 1.
QFT also has the same effect as DFT. Only, it includes

a normalizing scalar factor to keep the resulting quantum
state normalized. Given a computational base state |i⟩, ap-
plication of QFT to it has the effect

QFT |i⟩ = 1√
N

N−1∑

j=0

wij |j⟩

Thus, given a quantum system in a linear superposition state

|δ⟩ =
∑N−1

i=0 αi|i⟩, applying QFT to it will result to

QFT |δ⟩ = 1√
N

N−1∑

i=0

αi

(
N−1∑

j=0

wij |j⟩
)

=
1√
N

N−1∑

j=0

(
N−1∑

i=0

αiw
ij

)
|j⟩

A fast classical algorithm for computing DFT on N ele-
ments is the Fast Fourier Transform (FFT), which computes
DFT using Θ(N logN) classical logic gates. On the other
hand, QFT will only require Θ(log2 N) quantum logic gates
for the same number of elements. The QFT can also be
represented as a matrix operator defined as

1√
N

⎛

⎜⎜⎜⎜⎜⎝

1 1 1 . . . 1
1 w w2 . . . wN−1

1 w2 w4 . . . w2(N−1)

...

1 wN−1 w2(N−1) . . . w(N−1)2

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

α0

α1

α2

...
αN−1

⎞

⎟⎟⎟⎟⎟⎠

where w = e
2πi
N .

One non-trivial computational problem to which QFT
finds good application is the phase estimation problem. Given
a unitary operator U which has an eigenvector |u⟩ with cor-
responding eigenvalue e2πiγ where γ is unknown, the phase
estimation problem requires an estimate of γ as an out-
put. QFT can be used to get a good estimate of γ with
a high probability. This quantum phase algorithm can then
be used to solve computational problems which are reducible
to phase estimation problem. Peter Shor used the quantum
phase estimation algorithm for the order-finding sub-routine
of his well known quantum algorithm for prime factorization
which will have a huge impact to cryptography once a quan-
tum computer is realized and his algorithm be programmed
to execute on it.
As we saw in QFT it is so much the same as the classical

DFT with just some subtle differences. The distinguishing
factor of QFT is its use of qubits instead of cbits and with it
comes properties not present in cbits. As mentioned in the
previous sections, qubits behave differently as compared to
cbits such that they can be put into a linear superposition of
states. The number of qubits needed to represent N sample
points is ⌈logN⌉ and we can put these qubits into a linear
superposition of all the N sample points. Also, there is a
normalizing factor in QFT to keep the transform unitary.
The encoding of sample points is not as direct though as we
thought it to be just like in the classical DFT. In classical
DFT, the transformation is directly applied to the sample
points represented by the cbit states. In QFT, transfor-
mation is applied to the amplitudes of the quantum states.
There is no way of accessing the transformed amplitudes of
the states through measurement thus we cannot determine
the transformed value represented in the amplitude of the
states. There is a method though called as phase kickback
which we could use to encode the sample points into the
amplitudes and later get an estimate of the resulting trans-
formed value.

2.4 Phase Kickback
As mentioned in the previous section QFT affects the am-

plitude of states of a quantum system and not the states

6



themselves. The phase kickback method encodes the value
of sample points in the amplitude of the states so that QFT
effectively transforms the sample points just like DFT does.
Given a quantum system prepared in the state

|x⟩|y⟩

the phase kickback method effects the following transforma-
tion

|x⟩|y⟩ → |x⟩|y ⊕ f(x)⟩

from the initial composite state, where ⊕ is the exclusive-
OR operation. This transformation can be interpreted as
the transformation

|x⟩|y⟩ → (−1)f(x)|x⟩|y⟩

For this simple case in which f(x) = 0 or f(x) = 1, the
value of f(x) is encoded into the phase factor of the state.
Thus the phase kickback method can be viewed as moving
the values f(x) from the kets into the phase factors of the
quantum system’s linear superposition state. Given such a
linear superposition state with encoded phase factors, appli-
cation of QFT will effectively transform the sample points
f(x).
In the succeeding sections we discuss the application of

QFT and phase kickback method as sub-routines for the
convolution algorithm. We then discuss how we can use
this quantum convolution algorithm for performing string
matching.

2.5 Quantum Convolution Algorithm
Not all classical algorithms have a direct quantum version.

This can be attributed to the unique properties of quantum
systems and quantum operators which are not present in
classical systems. It would then be just right to ask first if
a quantum convolution algorithm is even feasible.

2.5.1 Is an Exact Quantum Convolution Algorithm
Even Possible?

In [13] it was shown that an exact quantum analogue of
the convolution algorithm is not physically realizable in a
quantum computer. Specifically, Lomont was able to show
that in the quantum analogue of the convolution problem,
given two quantum states

|α⟩ =
N−1∑

i=0

αi|i⟩

and

|β⟩ =
N−1∑

j=0

βj |j⟩

representing the input sequences there is no sequence of uni-
tary transformations and measurement operations applied
to the input quantum states and an ancilla quantm state |ρ⟩
that will lead to computation of the state

|γ⟩ =
N−1∑

k=0

γk|k⟩

where |γ⟩ represents the normalized sequence defined as

ck =
N−1∑

j=0

αjβk−j for k = 0, . . . , N − 1

and where subscripts are taken (mod N).
In their paper it was proven that the step in the classical

convolution algorithm called component-wise multiplication
has no quantum version. There does not exist a unitary
transformation which can perform component-wise multipli-
cation of two vectors. They have also shown the same result
for the quantum correlation algorithm which make use of
the same component-wise multiplication step.

2.5.2 How About We Approximate?
Though the exact quantum version of the convolution and

correlation algorithm are physically impossible, an approx-
imate component-wise multiplication step was suggested by
Curtis and Meyer in [6]. In their paper they investigated the
problem of finding from a larger graphical image the coor-
dinates of a smaller sub-image whose pixel values matches
that of a so called template image.

A classical solution to the problem which they considered
is the classical correlation algorithm. In application to their
problem, the correlation between the pixel values of sub-
images and those of the template are computed in which a
maxima is identified with the offset a being searched for.
To improve the efficiency of the correlation algorithm for
image processing they intended to come up with a quantum
analogue of the algorithm. Their hope for a more efficient
quantum image processing algorithm is based on the expo-
nential speed-up introduced by the use of QFT in Shor’s
quantum algorithm for factoring large integers.

As expected and in agreement with the result in [12], they
recognized the impossibility of performing the component-
wise multiplication step of the classical correlation algorithm
in the quantum setting. Thus, they suggested an approxi-
mation of the quantum analogue of the component-wise mul-
tiplication step. As they have shown in their paper, the only
difference between the exact and the approximate quantum
version of the multiplication step is the normalizing multi-
plicative factor for the Fourier transform of one of the se-
quences. This factor is necessary to qualify the approximate
component-wise multiplication operation as a unitary trans-
formation.

Given quantum state |β⟩ =
∑N−1

j=0 βj |j⟩, we denote its

Fourier transform in the quantum setting as |β′⟩ and is de-
fined as follows

|β′⟩ = QFT |β⟩

= QFT

(
N−1∑

j=0

βj |j⟩
)

=
N−1∑

j=0

βj QFT |j⟩

=
N−1∑

j=0

βj

(
1√
N

N−1∑

k=0

e
2πi
N jk

)
|k⟩

=
N−1∑

j=0

(
1√
N

N−1∑

k=0

βjw
jk

)
|k⟩

where w = e
2πi
N . Likewise, the quantum Fourier transform

7



for a quantum state |α⟩ =
∑N−1

j=0 αj |j⟩ will be

|α′⟩ =
N−1∑

j=0

(
1√
N

N−1∑

k=0

αjw
jk

)
|k⟩

A quantum operator Vα can be defined to approximateQFT |α⟩
instead. Vα can be defined as the unitary and diagonalN×N
matrix whose diagonal elements Vi,i is defined as

Vi,i =
⟨i|QFT |α⟩
|⟨i|QFT |α⟩|

for 0 ≤ i ≤ N − 1. Denoting Vα|β′⟩ as the quantum su-
perposition state |γ⟩ and |γi⟩ as the i-th basis state in |γ⟩,
applying Vα to |β′⟩ will have the following effect

|γi⟩ =
⟨i|QFT |α⟩
|⟨i|QFT |α⟩| ⟨i|QFT |β⟩

for 0 ≤ i ≤ N − 1. The effect is an approximation of the
component-wise multiplication step

QFT |α⟩ ·QFT |β⟩

The only difference between the approximate quantum ver-
sion and the impossible exact quantum version are the ad-
ditional normalizing multiplicative factor of |⟨i|QFT |α⟩| in
the approximate version.
Given the above approximate quantum version of the com-

ponent wise multiplication step, we can define an approxi-
mation of the quantum analogue of the classical convolution
algorithm as follows:

Approximate Quantum Convolution Algorithm

1. Apply QFT to input state |β⟩.

|β′⟩ = QFT |β⟩

2. Perform approximate component-wise multiplication
step on |β′⟩.

|γ⟩ = Vα|β′⟩
≈ QFT |α⟩ ·QFT |β⟩

3. Apply IQFT to state |γ⟩.

|γ′⟩ = IQFT |γ⟩
≈ IQFT (QFT |α⟩ ·QFT |β⟩)

Both the QFT and IQFT can be implemented in a quan-
tum circuit using O(log2 N) gates while the approximate
component-wise multiplication step can be executed using
the Vα operator in O(1) time step by linearity. In total, the
approximate quantum version of the convolution algorithm
will require O(log2 N) quantum time complexity.

2.6 String Matching Using Approximate Quan-
tum Convolution Algorithm

The classical convolution algorithm is able to improve the
performance of the naive algorithm for pattern matching
up to a logarithmic factor by using FFT for computing the
DFT of the two input sequences. From the O(MN) time
complexity of the naive algorithm the classical convolution
algorithm is able to improve it to O(N logN)+O(N) when-
ever logN < M . In this section we present a proposed
quantum algorithm for pattern matching on strings using

the approximation of the quantum analogue of the classical
convolution algorithm.

We define the proposed quantum algorithm as follows:

A Quantum Algorithm for String Matching

1. Prepare a quantum state vector |β⟩ to represent text
T using phase kickback.

2. Apply QFT to state |β⟩ to obtain state

|β′⟩ = QFT |β⟩

3. Perform approximate quantum component-wise multi-
plication by applying unitary transform Vα to |β′⟩ to
obtain state

|δ⟩ = Vα|β′⟩

4. Apply IQFT to state |δ⟩ to obtain state

|γ⟩ = IQFT (|δ⟩)

5. Perform measurement on the linear superposition state
|γ⟩ to obtain a classical value i corresponding to an
index in text T.

i = M |γ⟩

6. Verify correctness of resulting classical value i by de-
termining corresponding index j in text T. If

d(P, T [j, j +M − 1]) ≤ D

return j. Else, re-run the algorithm.

In a binary alphabet setting of Σ = {0, 1} and single ex-
istence of an exact match of P in T, the author’s initial in-
vestigation of the need for an amplitude amplification step
prior to measurement of the state of the qubits resulted to
the knowledge that state |γ⟩ is the basis state |i⟩ which cor-
responds to the matching index in T. The amplitude of the
other bases states in the linear superposition state |δ⟩ col-
lapses to 0 upon application of IQFT while that of the so-
lution basis state |i⟩ results to 1. Thus, measurement of the
state |γ⟩ will result to the classical value i. This implies that
in the investigated alphabet and solution existence setting
there is no need for an amplitude amplification step.

The initial result has a positive implication of saving the
quantum algorithm O(

√
N) time steps for the amplitude

amplification. On the other hand, it also has the negative
implication on what variants of the string matching problem
the algorithm can solve. In the initially investigated setting,
the algorithm tells us about the index in T in which an exact
match of P occurs. It does not give us data on indices in T
in which P approximately occurs though. Also, the design
of the algorithm implies that a unique unitary operator Vα

and unique unitary operators for encoding T and P during
initialization phase has to be realized. This requirement is
inherent in the convolution algorithm.

Next in line for investigation is the setting of binary al-
phabet Σ = {0, 1} and multiple existence of an exact match
of P in T. Time complexity of the initialization phase will
also be investigated to have a more detailed assessment of
the complexity of the proposed algorithm. The authors also
aim to attain a conclusion on whether the algorithm can in-
deed solve the approximate variant of the string matching
problem.

8



2.7 Complexity of Proposed Solution
Computing naively the DFT with matrix dimensionN×N

requires O(N2) time complexity. Using the FFT algorithm
by Cooley and Tukey [4] to compute for the DFT of same
dimension provides improvement in complexity and requires
only O(N logN) time steps. On the other hand, the quan-
tum analogue of DFT applies the same dimension trans-
formation by requiring O(log2 N) quantum time complexity
which is a huge improvement over the classical naive DFT
and FFT algorithm. Thus, steps 1 to 4 of the algorithm
will require O(log2 N) time steps while step 5 will require
O(1) time steps. Step 7 will require O(M) sequential time
steps and can be classically parallelized to improve it to O(1)
time steps instead. Thus, in total, the proposed algorithm
will require O(log2 N) +O(1) time complexity. This is also
an improvement over the quantum algorithm of Ramesh and
Vinay [16] which aims to solve the same problem through
random sampling techniques.

3. CONCLUSION
In this paper an approximation of a quantum version of

the classical convolution algorithm is presented. The ap-
proximate quantum convolution algorithm is presented as a
sub-routine for a proposed quantum algorithm for pattern
matching on strings. The complexity of the proposed quan-
tum string matching algorithm is O(log2 N) quantum time
and is an improvement compared to the classical convolution
algorithm when used for string matching. Initial investiga-
tion on setting for binary alphabet and single existence of
pattern in the text shows that the algorithm provides the in-
dex of the exact match in the text. This eliminates the need
for an amplitude amplification step in the final phase of the
algorithm but restricts the algorithm to the exact variant
of the string matching. Further investigation is needed to
understand the limits of the proposed algorithm and further
results will be published in succeeding papers.

4. REFERENCES
[1] Lok-Lam Cheng, D.W. Cheung, and Siu-Ming Yiu.

Approximate string matching in DNA sequences. In
Eighth Int. Conf. Database Syst. Adv. Appl. 2003.
(DASFAA 2003). Proceedings., pages 303–310. IEEE,
2003.

[2] Yoon-ho Choi, Moon-young Jung, and Seung-woo Seo.
A fast pattern matching algorithm with multi-byte
search unit for high-speed network security q. Comput.
Commun., 34(14):1750–1763, 2011.

[3] R. Clifford and C. Iliopoulos. Approximate string
matching for music analysis. Soft Comput.,
8(9):597–603, July 2004.

[4] James W. Cooley and John W. Tukey. An Algorithm
for the Machine Calculation of Complex Fourier
Series. Math. Comput., 19(90):297–301, 1965.

[5] Maxime Crochemore, Costas S. Iliopoulos, Thierry
Lecroq, and Y. J. Pinzon. Approximate String
Matching in Musical Sequences. In Miroslva Balik and
Milan Simanek, editors, Proc. Prague Stringology
Conf. 2001, number September, pages 26–36, 2001.

[6] Daniel Curtis and David A Meyer. Towards Quantum
Template Matching. In Ronald E. Meyers and Yanhua
Shih, editors, Proc. SPIE 5161, Quantum Commun.
Quantum Imaging, pages 134–141, February 2004.

[7] Carla Correa Tavares dos Reis. Approximate String
Matching Algorithm Using Parallel Methods for
Molecular Sequence Camparisons. In 2005 Purtuguese
Conf. Artif. Intell., pages 140–143. IEEE, December
2005.

[8] Michael J. Fischer and Michael S. Paterson. String
Matching and other Products. Technical report,
Massachusetts Institute of Technology, Cambridge,
1974.

[9] LK Grover. A fast quantum mechanical algorithm for
database search. Proc. twenty-eighth Annu. ACM . . . ,
pages 212–219, 1996.

[10] Y U Jianming, X U E Yibo, and L I Jun. Memory
Efficient String Matching Algorithm for Network
Intrusion Management System *. TSINGHUA Sci.
Technol., 12(5):585–593, 2007.

[11] Donald E Knuth. The Art of Computer Programming,
volume 3, chapter Sorting an, page 704.
Addison-Wesley, second edition, 1981.

[12] Chris Lomont. Quantum Convolution and Quantum
Correlation Algorithms are Physically Impossible.
pages 1–10, 2003.

[13] Chris Lomont. Robust String Matching in O (\ sqrt
{N}+ M) Quantum Queries. pages 1–10, 2003.

[14] David McMahon. Quantum Computing Explained.
John Wiley & Sons, Inc., 2008.

[15] Michael A Nielsen and Isaac Chuang. Quantum
Computation and Quantum Information. Cambridge
University Press, illustrate edition, 2000.

[16] H Ramesh and V Vinay. String matching in
O(sqrt(n)+sqrt(m)) quantum time. J. Discret.
Algorithms, 1:103–110, 2003.

[17] Esko Ukkonen. Algorithms for approximate string
matching. Inf. Control, 64(1-3):100–118, January 1985.

[18] Colin P Williams. Explorations in Quantum
Computing. Springer-Verlag London Limited, second
edition, 2011.

[19] Wu Yang, Bin-xing Fang, Bo Liu, and Hong-li Zhang.
Intrusion detection system for high-speed network.
Comput. Commun., 27:1288–1294, 2004.

9


