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ABSTRACT
The classical viewpoint is that seven shu✏es are needed to
su�ciently randomize a deck of playing cards. On the other
hand, according to information theory, six shu✏es are suf-
ficient. The numerical shu✏ing model used in this paper
excluded the identity as a possible shu✏e, in contrast with
other studies. Using Monte Carlo simulations, permutation
entropies were numerically calculated for 2 to 9 ri✏e shu✏es.
The results show that in the context of entropy, six shu✏es
are su�cient for randomizing a deck of 52 cards, and five
shu✏es are acceptable for casual play.
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1. INTRODUCTION
The ri✏e shu✏e is the most commonly used shu✏ing method
in card rooms, home games and casinos all over, due to its
ease of use. E↵ectively randomizing a deck of cards is nec-
essary for the integrity of the game, and to prevent enter-
prising players from taking advantage of probabilistic infer-
ences on card distribution and patterns. This also applies
to computer and online games that rely on permuting decks
of cards.

According to Diaconis’ work on card shu✏ing [1][3][4], at
least 7 ri✏e shu✏es are needed to su�ciently randomize
a deck of 52 cards, based on the variation distance between
distributions of the shu✏ed deck and the theoretical uniform
distribution. On the other hand, investigations by Trefethen
and Trefethen [6] showed that, in the context of information
theory, 99% of information has been lost after six shu✏es.
In this paper, permutation entropy is used as a criteria for
determining the number of shu✏es needed in order for a
deck of cards to be considered random.
⇤Corresponding author

2. METHODOLOGY
2.1 Binary Representation
Performing Monte Carlo simulations of the ri✏e shu✏e re-
quires a model for representing shu✏es. A ri✏e shu✏e of a
deck of m cards is represented by a binary string of length
m, where the 0’s indicate placement, in the same sequence,
of the first portion of the deck, and the 1’s indicate place-
ment of the cards, also in sequence, from the second portion
of the deck [1]. For example, the binary string of length 8
below represents the permutation via ri✏e shu✏e of a deck
of eight cards, labeled 1 to 8, initially unshu✏ed:

(0 1 0 0 1 0 0 1) : (1 2 3 4 5 6 7 8) ! (1 6 2 3 7 4 5 8) (1)

The identity shu✏es are represented by binary strings start-
ing with k 0’s followed by (m� k) 1’s, where k ranges from
0 to m. For example,

(0 0 0 0 0 1 1 1) : (1 2 3 4 5 6 7 8) ! (1 2 3 4 5 6 7 8) (2)

There are a total of m+ 1 identity strings. The total num-
ber of binary strings is 2m. Each nonidentity shu✏e has a
unique binary correspondence. To see this, note that divid-
ing a deck into two portions with lengths k and m� k and
interleaving the cards of the second portion with the first
portion results in either one or two rising sequences [5]. For
example, the permuted deck in (1) has two rising sequences:
(1 2 3 4 5) and (6 7 8). The only shu✏e resulting in one rising
sequence is the identity shu✏e, as can be seen in (2). Now
consider the deck that has been shu✏ed once. If there are
exactly two rising sequences, then we know exactly the two
portions of the original cut. For example, in the permuted
sequence in (1), it is clear that the two portions are exactly
the rising sequences, i.e. the initial cut occurred after card
5. The number of ways of mixing the two portions of the
deck when the cut is at k (i.e. the two portions of the deck
consist of k and m�k cards) is exactly equal to mCk. From
the Binomial Theorem, the sum of shu✏es from all possible
cuts is 2m, which is exactly the number of possible binary
strings of length m. For each cut k, the number of shu✏es
includes exactly one identity shu✏e. The total number of
possible cuts is m + 1, the same as the number of identity
shu✏es, thus there are 2m �m� 1 unique nonidentity shuf-
fles. Because an identity shu✏e does not occur in practice,
the algorithm used in this study discounts identity permu-
tations. This is addressed by repeating the shu✏e whenever
the outcome is an identity shu✏e.

For a standard 52 card deck, the total number of possible
ri✏e shu✏es is less than 252 or approximately 4.5⇥1015. In
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a 64-bit numerical software such as MatlabR�, the smallest
number, eps = 2.2 ⇥ 10�16. This implies that there is suf-
ficient resolution for a standard random number generator
to produce every shu✏e of a deck of 52 cards. By apply-
ing several shu✏es, every permutation of the deck may be
achieved. In contrast, simply mixing the cards requires 52!
possibilities, a number too large for most random number
generators. As a result, most numerical card shu✏ers only
achieve a subset of all possible shu✏es, or use several ran-
domly generated numbers to mix the cards.

2.2 Permutation Entropy
The permutation entropy of order n is defined as
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where m is the number of cards in the deck and pk is the
number of occurrences of the permutation k, an element of
the permutation group Sn [2].

The maximum of the permutation entropy of order n is
maxH(n) = log2(n!). However, for a finite deck of cards,
the theoretical maximum is usually not achieved. In order
to compare entropies of various orders, we calculate the per-
centage of entropy from the maximum as

R(n) =
H(n)
log2 n!

. (4)

As an illustration, two successive random ri✏e shu✏es of a
deck of m = 12 cards produce the permutation

(5 9 10 1 2 3 6 4 11 7 8 12) (5)

The total number of strings of length 2 is m�1 = 11. There
are 8 strings of length 2 which are increasing, i.e. of (01)-
type, and 3 strings of length 2 that are decreasing, i.e. of
(10)-type. Thus for this example, the permutation entropy
of order 2 is

H(2) = �
✓

8
11

◆
log2

✓
8

11

◆
�

✓
3
11

◆
log2

✓
3

11

◆
= 0.8454

(6)
Note that log2 2! = 1, thus the percentage of entropy is
R(2) = 0.8454. Similarly, to compute H(3), we count the
strings of length 3 of type (012), (021), (102), (120), (201)
and (210). The calculated value of H(3) is 2.1219. Since
log2 3! = 2.5850, then R(3) = 0.8209. For a deck of 52 cards,
the permutation entropy up to order 4 is calculated. The
permutation entropy of order 5 has 5! = 120 possible strings
of length 5, but only 48 of such strings can be counted from
52 cards, hence permutation entropies of order 5 and higher
are not considered.

3. RESULTS AND DISCUSSION
Monte Carlo method is used to calculate permutation en-
tropy by numerically shu✏ing a 52 card deck 2 to 9 times,
and repeating over 100,000 simulations. To reduce correla-
tion between the entropy results, only one entropy value is
calculated per run, with 100,000 simulations per run. The
shu✏e entropies of orders 2, 3 and 4 as a percentage of the
maximum plotted against the number of shu✏es are pre-
sented in Figure 1.

Figure 1: R(n) or percentage of permutation entropy

vs. the number of shu✏es, obtained by Monte Carlo

method with 100,000 simulations per entropy calcu-

lation.

The percentages of entropy after 5 shu✏es are approximately
R(2) = 99.4%, R(3) = 97.9% and R(4) = 92.3%. From 6 to
9 shu✏es, the changes in entropy are very small, less than
our tolerance of 0.001%. The approximate permutation en-
tropies are R(2) = 99.5%, R(3) = 98.0% and R(4) = 92.4%.
In other words, shu✏ing more than 6 times will not cause
any noticeable increase in entropy or randomness. Hence,
using entropy as the criteria, 6 shu✏es are su�cient for ran-
domizing a deck of 52 cards.

Note that the change in entropy from 5 to 6 shu✏es is 0.01%,
which is almost negligible. It may be argued that 5 shu✏es
are su�cient for general purposes. In other words, for most
games where the participants will not be able to draw prob-
abilistic inferences based on available information, then 5
shu✏es may su�ce. However, when erring on the side of
caution, at least 6 shu✏es are recommended. The results
also show that there is very strong correlation between the
permutation entropies of order 2, 3 and 4. This is evident
from Figure 1, which shows similar slopes for the di↵erent
orders of entropies when the number of shu✏es is the same.
However, calculating all three orders of entropy is still nec-
essary. For example, a large permutation entropy of order 2
may be obtained after one perfect shu✏e [4], which is clearly
not well shu✏ed.

4. CONCLUSIONS
Numerical results showed that in the context of entropy, 6
ri✏e shu✏es are su�cient to randomize a deck of 52 cards.
This agrees with results from information theory [6], and
suggests that the classic rule of using 7 shu✏es [1][3][4] may
be a little conservative. Note that other models included the
identity shu✏e (i.e. no shu✏e) when counting all possible
ri✏e shu✏es, whereas in this study, the identity shu✏e was
not counted.

If time is not a factor, then shu✏ing more times than recom-
mended cannot hurt. For numerical shu✏ers used in com-
puters and online games, additional shu✏es will hardly add
computational time. For example, the numerical algorithm
used in this paper took 0.0034 seconds to shu✏e 10 times.
However, when time is critical such as in casinos and card
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rooms, the negligible change in randomness after the 6th
shu✏e does not justify additional shu✏es. In fact, for most
play purposes, 5 shu✏es may be su�cient because additional
shu✏es would only increase entropy by less than 0.01%. Di-
aconis himself stated that 5 shu✏es are su�cient for ’casual
play randomization’ [4]. One common argument against 5
shu✏es is that not every permutation of the deck is repre-
sented. For example, it can be shown using rising sequences
that at least 6 shu✏es are needed to reverse the order of
the deck. Rigorous requirements are not essential for most
games where casual players are unable to take advantage of
flaws in the shu✏ing method. Note that most of the time,
the starting state of the deck is already somewhat random
from previous play. Thus a dealer may opt to shu✏e 6 or
more times when using a new (unshu✏ed) deck of cards, and
less for subsequent shu✏es.
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