
Notes on Language Relations among Transition P Systems

Richelle Ann B. Juayong, Henry N. Adorna,
Kelvin C. Buño, Francis George C. Cabarle

Algorithms and Complexity Laboratory
University of the Philippines Diliman

Quezon City, Philippines

{rbjuayong,fccabarle}@up.edu.ph
{hnadorna,kcbuno}@dcs.upd.edu.ph

ABSTRACT
We explore language relations of specific Transition P (TP)
systems without membrane dissolution. The main models
we investigate are TP systems having the following charac-
teristic: for every cooperative rule that needs a multiset u,
each object a (also called a trigger) in the multiset u can
also evolve through a non-cooperative rule defined in the
same region. We call such models as TP systems having in-
dependent triggers only (or TP-ind systems). A TP system
having only non-cooperative rules is a special case of a TP-
ind system. In the case of TP-ind system, triggers are said
to be independent since every rule trigger can also evolve in-
dependently. Otherwise, a (cooperative) rule trigger is said
to be dependent. In this paper, we look at characteristics
of some TP systems ⇧ with dependent triggers (or TP-dep
systems) wherein the language of ⇧ can also be generated
by a TP-ind system ⇧0.
Keywords: Membrane computing, Transition P systems,
String languages

1. INTRODUCTION
Transition P (TP) systems is a well-known cell-like com-
puting model that use multiset-rewriting rules with target
indication. As one of the earliest models introduced in [7],
there is already plenty of literature on the di↵erent aspects
of TP systems, e.g. capability and complexity as a comput-
ing model. These aspects were investigated while also con-
sidering restrictions and additional features, e.g. restricted
forms of rules, rule priorities are employed, or membrane
operations are allowed (e.g. in [1, 3, 8, 7]).

In this study, we contribute to previous studies by explor-
ing language-based relations of some restricted TP systems.
We explore TP systems with cooperative rules restricted as
follows: (a) at least one trigger is independent, and (b) rules
triggered by several copies of only one dependent object (i.e.,
not involved in a cooperative rule). Our goal is to construct

TP-ind systems for TP systems with rules that have cooper-
ative rules of the form (a) and/or (b). The results we obtain
here extend to other cell-like models with similar multiset-
rewriting rules. We note that in our TP systems, we only
consider membranes that are static all throughout the com-
putation. We do not employ dissolution rules i.e. rules that
can dissolve membranes.

This paper is organized as follows: Section 2 provides pre-
liminaries, definitions of TP systems, independent and de-
pendent triggers. Our main work is detailed in Section 3.
Conclusions are given in Section 4.

2. PRELIMINARIES
It is assumed that the readers are familiar with the basics
of membrane computing. A good reference is [8], an in-
troduction can be found in [9], with recent results at http:
//ppage.psystems.eu. Notions and notations in formal lan-
guage theory [5] as presented in [8] are also used. We only
briefly mention some which will be useful throughout the
paper.

Let V be an alphabet, V ⇤ is the free monoid over V with
respect to concatenation and the identity element � (empty
string). The set of all non-empty strings over V is denoted
as V + so V + = V ⇤ � {�}. The length of a string w 2 V ⇤ is
denoted by |w|. For a 2 V , |w|

a

represents the number of a
in string w.

Let U be an arbitrary set. A multiset (over U) is a mapping
M : U ! N. The value M(a), for a 2 U , is the multiplicity
of a in the multiset M. The support of a multiset M is the
set supp(M) = {a 2 U | M(a) > 0}. A multiset M is
empty when its support is empty (it is then denoted by ;).
A multiset M of finite support can also be represented by
a string: w = aM(a1)

1 aM(a2)
2 . . . aM(an)

n

where a
i

2 supp(M),
1 i n. In string w and all its permutation, |w|

ai =
M(a

i

). Thus, string w and all its permutations precisely
identify and refer to the same multiset M .

We denote by Perm(w) all permutations of a string w. We
use the phrase “multiset w” where w is a string to refer to
the multiset represented by the string w. Note that while a
string is ordered, a multiset is unordered.

2.1 Transition P systems (TP systems)

13

We provide a general definition of TP systems, and describe
how they generate a language. We define a TP system with-
out dissolution, similar to [1] as follows:

Definition 1. A Transition P (TP) system without dis-
solution is a construct of the form ⇧ = (O,µ,w1, . . . , wm

,
R1, . . . , Rm

, h
out

) where:

(i) m is the total number of membranes;

(ii) O is the alphabet of objects;

(iii) µ is the membrane structure hierarchy denoted by a
string of matching square brackets with labels. A
membrane h containing a membrane j is a parent mem-
brane if j is immediately contained in h i.e. [

h

. . . [
j

]
j

]
h

.
Consequently, j is a child membrane of membrane h.
A region refers to the area delimited by a membrane.
We say region h is delimited by membrane h.

(iv) w1, . . . , wm

are strings over O⇤ where w
h

, 1 h m,
denotes the multiset of objects present in the region h.

(v) R1, . . . , Rm

are finite sets of multiset-rewriting rules,
each associated with a region in µ. A rule takes the
form u ! v where multiset u 2 O+, v 2 (O ⇥ Tar

h

)⇤

and Tar
h

= {here, out}[{in
j

| j is a child membrane
of h}, 1 h m. A rule with |u| > 1 is said to be
cooperative; rules having |u| = 1 are non-cooperative.
A rule u ! v labelled r is denoted by r : u ! v. We
say that given a rule r, LHS(r) is the multiset u.

A rule r 2 R
h

is applicable if a multiset u is present
in region h. Applying rule r means the multiset u is
removed from region h and a multiset of objects v is
produced in the next time step. Symbols here, out and
in

j

indicate the destination of the objects produced
(target here is typically omitted).

In our illustrations, we use strings in the right-hand
side of rule r. If v contains (v0, tar) where v0 2 O+,
tar 2 Tar

h

, this means that the string v0 is placed in
the region corresponding to tar.

(vi) h
out

2 {0, 1, . . . ,m} is the output membrane. If h
out

=
0, this means that the environment (region outside the
skin) is the placeholder of the output.

The system runs by applying rules in the multiset present
in each region. We use the term ‘copy of object a’ to re-
fer to an instance of object a present in a multiset w, (e.g.
multiset a2b contains two copies of a and one copy of b).
Given multisets in all region, applying rules is done in a
non-deterministic and maximally parallel manner. Non-
determinism implies that at a certain step, if there are more
than two rules that can be applied to a copy of an object,
the system non-deterministically chooses the rule to be ap-
plied for each copy of an object. For example, say a region
contains rules r : a ! ba and r0 : ab ! bc and a copy of
objects a and b. For the copy of a, only one of rules r and
r0 can be used to consume a; when r0 is chosen, the copy of
object b is consumed as well. Maximal parallelism implies
that all copies of objects that can evolve must do so. To
illustrate, suppose our example above contains a di↵erent

multiset, say a2b. Using r0, copy of a and copy of b evolves,
however, the remaining copy of a can still evolve through
rule r. Thus, to satisfy maximal parallelism, both rules r
and r0 must be applied once. Due to non-determinism, it is
possible that all copies of a evolve via rule r. In such case,
a copy of b remains unevolved. Two application of rule r
still satisfies maximal parallelism since there’s no rule that
requires only a single copy of b.

A configuration at any time t denoted by C
t

, is the state of
a system: it consists of the multiset of objects within each
region. One way to represent a configuration is by using
a string of matching square brackets with labels, as in the
representation of µ. A multiset w contained inside a pair of
brackets labelled h indicate that the multiset is in region h,
e.g. the notation [

h

w[
g

w0]
g

]
h

represents that multiset w is in
region h while multiset w0 is in region g. (Also, membrane
g is contained in membrane h).

A transition from C
t

to C
t+1 through non-deterministic and

maximally parallel manner of rule application can be de-
noted as C

t

) C
t+1. A series of transitions is said to be a

computation, denoted as C
t

)⇤ C
t

0 for t < t0. Computa-
tion succeeds when the system halts, i.e. when the system
reaches a configuration wherein none of the rules can be ap-
plied. This configuration is called a halting configuration. If
there is no halting configuration, i.e. if the system does not
halt, computation fails because the system did not produce
any output.

We only consider models here that function as string gen-
erators. In this case, we follow [1] wherein the result of a
successful computation is the sequence of objects sent to the
environment, i.e. h

out

= 0. The order of how objects are
sent to the environment dictates their position in the out-
put string. For example, if objects a and b are sent to the
environment at times t and t0, respectively (t < t0), then in
the output string, the position of a is lower than the posi-
tion of b. In the category where multiple objects are sent at
a given time, the output string is formed from any of their
permutations. For example, if objects a and b are sent to the
environment at the same time, the resulting strings s and
s0 have ab and ba as substrings, respectively. The language
generated by ⇧ is denoted by L(⇧).

Example 1. Let ⇧
y

be a TP system where:

⇧
y

= ({a, b, S}, [1[2]2]1, S,�, {r1 : S ! aSb, r2 : S !
(S, in2), r3 : a ! (a2, out), r4 : b ! (b2, out), r5 : ab !

(ab, out)},�, 0)

An example computation of ⇧
y

is given by the sequence:
[1S[2]2]1) [1aSb[2]2]1 through rule r1, [1aSb]1) [1aSb]1
through rules r1, r3 and r4 outputing a2b2 in the environ-
ment, [1aSb]1) [1]1 through rules r2 and r5 outputing
ab in the environment. This computation thus generates
Perm(a2b2)Perm(ab). In particular, this refers to set of
strings {a2b3a, a2b2ab, abab2a, ababab, ba2b2a, ba2bab, bababa,
baba2b, b2a2ba, b2a3b}.

A general description of computations of ⇧
y

proceeds as fol-
lows: Initially, region 1 has a single copy of object S. In the

14

next step, S can continuously evolve through r1 until r2 is
applied. In which case, S is sent to region 2. Since no rule
is triggered by S, S in region 2 will no longer evolve. Each
time S in region 1 evolves through the former rule, a copy
of both a and b are produced. These copies of objects can
either be consumed through rule r5 or are evolved indepen-
dently via rules r3 and r4. Therefore, L(⇧

y

) = (Perm(a2b2)
[Perm(ab))⇤.

Example 2. Shown below is another TP system example:

⇧
z

= ({S, S̄, a, b}, [1]1, S, {r1 : S ! Sb(a, out),
r2 : S ! S̄, r3 : S̄b ! S̄(b, out)}, 0)

An example computation of ⇧
z

is given by the sequence:
[1S]1) [1Sb]1 through rule r1 outputing a copy of a, [1Sb]1)
[1S̄b]1 through rule r2, [1S̄b]1) [1S̄]1 through rule r3 out-
puting a copy of b. This computation generates the string
ab.

A general description of computations of ⇧
z

proceeds as fol-
lows: In the initial configuration, a copy of a is in region 1.
The applicable rules for the copy of S are r1 and r2. Through
repeated use of rule r1, some copies of a are sent out to the
environment while the same copies of b remain in region 1.
Upon use of rule r2, the copy of S evolves to S̄. The b’s
in region 1 are then sent out in the next steps sequentially
through repeated use of rule r3. When no more b’s are sent
out, the system halts since rule r3 can no longer be applied.
Since the system generates the same number of a’s and b’s
but all a’s are sent out before b’s, L(⇧

z

) = {anbn | n � 0}.

Lemma 1. Any language generated by a TP system with
m membranes can be generated by a TP system with only
one membrane.

Proof. We use the known technique for flattening mem-
brane in P systems (given e.g. in [1, 4, 10]). Let TP system
withmmembranes be⇧ = (O,µ, w1, . . . , wm

, R1, . . . , Rm

, 0).
We construct another TP system ⇧0 = (O0, [1]1, w

0
1, R

0
1, 0)

from ⇧. For every a 2 O and every region h, 1 h m,
we define an object a

h

2 O0. For every rule r : u ! v in
region h, we create a rule r0 : u0 ! v0 2 R0

1. For every b in
u, there is a b

h

in u0. For every (b, here) in v, there is a b
h

in v0. For every (b, out) in v, there is a b
k

in v0 where k is
the label of parent membrane of h. For every (b, in

j

) in v,
there is a b

j

in v0. The rule r in ⇧ is simulated by its coun-
terpart rule r0 in ⇧0. For every copy of object a consumed
(produced) in region h of ⇧, a copy of object a

h

in region
1 of ⇧0 is consumed (produced). As can be observed, there
is a unique correspondence between configurations of ⇧ and
⇧0 and the output in the environment is the same.

2.2 TP-ind systems and TP-dep systems
In our study, we divide TP systems based on the role of
so-called rule triggers. Given a TP system, a trigger corre-
sponds to an object that exists on the left-hand side (LHS)
of a rule.

Definition 2. (Trigger, Independent Trigger, De-

pendent Trigger) Given TP system ⇧, an object o 2 O is

a trigger in a region h if there exists a rule r 2 R
h

and object
o is in the LHS of rule r. If r : u ! v, then object o is in
multiset u. Object o is an independent trigger in region

h if there exists a rule r0 2 R
h

that is a non-cooperative rule
(r0 : o ! v0). Otherwise, object o is said to be a dependent

trigger in region h. When the region is clear, we say that
either a trigger is dependent or independent.

Definition 3. (coop-ind rule, coop-dep rule) Let ⇧
be a TP system. A cooperative rule having independent trig-
gers only (or coop-ind rule) is a cooperative rule r : u ! v
defined in ⇧ where all object o in multiset u are independent
triggers. If at least one object o0 in multiset u is a depen-
dent trigger, then we say that r is a cooperative rule with
dependent triggers (or coop-dep rule).

Definition 4. (TP-ind system, TP-dep system) A
TP system having independent triggers only (or TP-ind sys-
tem) is a TP system ⇧ where all triggers in all regions are
independent triggers. This implies that if ⇧ contains coop-
erative rules, then these rules are all coop-ind rules. A TP
system with dependent triggers (or TP-dep system) is a TP
system that contains at least one coop-dep rule.

We now examine the TP system given in Examples 1 and 2.
In TP system ⇧

y

, all rules are non-cooperative except for
rule r5. The triggers for this rule are objects a and b. For
triggers a and b, there exist non-cooperative rules r3 and r4,
respectively. Thus, r5 is a coop-ind rule and ⇧

y

is a TP-ind
system. In contrast, ⇧

z

is a TP-dep system; rule r3 of ⇧
y

is a coop-dep rule.

TP-ind systems require that all cooperative rules are coop-
ind rules. Note however that coop-ind rules can also occur
in TP-dep systems. Notice that independent triggers are
always consumed when some copies occur in a configura-
tion; this means, TP-ind system continues evolving as long
as a trigger exists since all triggers are independent. On
the other hand, dependent triggers can either be consumed
or can be carried over (when the other triggers of the in-
volved cooperative rule is not available). This implies that
the halting configuration of a TP-ind system doesn’t have
triggers whereas some dependent triggers may occur in the
halting configuration of a TP-dep system. Further details
are provided in the next section.

3. TP-IND SYSTEMS VS. TP-DEP SYSTEMS
In this section, we show that the language of some TP-dep
systems can be generated by a TP-ind system. First, we
provide an analysis of coop-dep rules in the former model.

Definition 5. (Categories for coop-dep rules) Given
a TP-dep system ⇧, a coop-dep rule in a region h can be
classified as one of the following:

cat 1: A cooperative rule u ! v 2 R
h

must have some
dependent trigger in multiset u but at least one object
o in u is an independent trigger.

cat 2: A cooperative rule ok ! v 2 R
h

(k � 2) has object o
not an independent trigger.

15

cat 3: A cooperative rule u ! v 2 R
h

has at least two
distinct objects involved in multiset u and no object in
u is an independent trigger.

Use of any of these categories imply that a TP system is
a TP-dep system. We denote by LTP (ind) the family of
languages generated using TP-ind systems. We denote by
LTP (dep) the family of languages generated using TP-dep
systems. If all coop-dep rules are of cat x (x 2 {1, 2, 3}),
we use the notation LTP (dep, C

x

). If two of the three
cases are used for cooperative rules, we use the notation
LTP (dep, C

xy

) where x, y 2 {1, 2, 3}, x 6= y.

In what follows, we distinguish TP-dep systems from TP-
ind systems by appending an apostrophe (0) in the definition
of the latter. We also use apostrophe to distinguish between
configurations and rules in the two systems. For example,
⇧ refers to a TP-dep system while ⇧0 pertains to a TP-ind
system. The next three examples are TP-dep systems that
will be used in the next subsections.

Example 3. ⇧
x1 = ({a, b, c}, [1]1, abc, {r1 : ab ! (b3, out),

r2 : a ! (a, out), r3 : ac ! (b2, out), r4 : c ! (a2, out)}, 0)

TP-dep system ⇧
x1 contains two cooperative rules r1 and

r3. While rule r3 is a coop-ind rule, rule r1 is a coop-dep
rule. This rule is triggered by a copy of object a and b. The
former is an independent trigger (due to rule r2) while the
latter is a dependent trigger. The TP system ⇧

x1 generates
Perm(b3a2) using rules r1 and r4, a

3 using rules r2 and r4,
and b2 using rule r3.

Example 4. ⇧
x2 = ({a, b, c}, [1]1, ab2, {r1 : b2 ! (b, out),

r2 : a ! c(a2, out), r3 : c ! (a, out)}, 0)

TP-dep system ⇧
x2 contains only one cooperative rule r1.

Rule r1 is cat 2 coop-dep rule since it requires only one de-
pendent trigger b. Note that in order to apply rule r1, two
copies of b must be present in region 1. The TP system
⇧

x2 outputs to the environment the multiset ba2 via rules r1
and r2 at the first transition and multiset a via rule r3 in
the next transition. Thus, the system generates Perm(ba2)a
(L(⇧

x2) = {ba3, a2ba, aba2}).

Example 5. ⇧
x12 = ({a, b, c, d, e, f}, [1]1, a2bcef, {r1 : cb

! b(a, out), r2 : a2 ! d(b, out), r3 : ab ! (c, out), r4 :
d ! (d, out), r5 : b ! (e, out), r6 : c ! (f, out), r7 : ef !
(a, out), r8 : e ! (c, out), }, 0)

TP-dep system ⇧
x12 contains only four cooperative rules.

Rule r1 is a coop-ind rule; rules r3 and r7 are cat 1 coop-
dep rules; rule r2 is a cat 2 coop-dep rule. We leave it to the
readers to verify that TP system ⇧

x12 generates strings in
Perm(aba)Perm(de), Perm(befa)d, Perm(abc)Perm(de),
Perm(cfa), Perm(befc)d and Perm(cfc).

3.1 From TP-dep to TP-ind system: An Initial
Approach

We are interested in determining if the language generated
by TP-dep systems can also be generated by TP-ind sys-
tems. Given a TP-dep system ⇧, an initial approach to

accomplish this is to include a rule o ! o in a region h
(1 h m) for each object o 2 O that is a dependent trig-
ger in the region. This rule can be used to consume depen-
dent triggers that may remain unevolved. Since the added
rule simply produces the same object as the consumed, it
o↵ers the same e↵ect as carrying over a dependent trigger to
the next configuration. The resulting TP-ind system when
the initial approach is aplied to TP-dep system ⇧

x1 in Ex-
ample 3 is as follows: ⇧0

init1 = ({a, b, c}, [1]1, abc, {r01 : ab !
(b3, out), r02 : a ! (a, out), r03 : ac ! (b2, out), r04 : c !
(a2, out), r0

dep1 : b ! b}, 0).

In ⇧0
init1, the strings in Perm(b3a2) can still be generated

via rules r01 and r04. The weakness of this approach is when
considering strings a3 and b2. The system ⇧0

init1 fails to gen-
erate strings a3 and b2 because the halting configurations for
producing these strings involve a copy of object b. This copy
of b will then continuously evolve through the additional rule
r0
dep1 leading the system to a non-halting configuration.

The resulting TP-ind system by adding o ! o for dependent
triggers in TP-dep system ⇧

x2 in Example 4 is

⇧0
init2 = ({a, b, c}, [1]1, ab2, {r01 : b2 ! (b, out), r02 : a !

c(a2, out), r03 : c ! (a, out), r0
dep1 : b ! b}, 0).

In ⇧0
init2, all strings in L(⇧

x2) are produced in ⇧0
init2. How-

ever, an additional string aaab is also produced. This hap-
pens when rule r02 followed by rule r03 is applied first before
applying rule r01. This means, during the application of rules
r02 and r03, instead of using r01, both copies of b are consumed
through the additional rule r0

add1.

The initial construction of a ⇧0 from a given ⇧ is ine↵ective
due to issues with handling dependent triggers. In the next
subsections, we try to improve this initial approach for TP-
dep systems having cat 1 and/or cat 2 coop-dep rules.

3.2 TP-dep systems with Cat 1 coop-dep rules
Recall that if a rule r : u ! v is a cat 1 coop-dep rule in a
certain region, at least one object o in multiset u is used in
a non-cooperative rule r0 : o ! v0. This is in contrast with
a TP-ind rule which requires that all objects in the LHS
are independent triggers. As a consequence, in the presence
of multiset u, two non-deterministic choice exists. Either a
multiset u is consumed via rule r or copies of object o in u
is consumed via rule r0. In the latter case, some dependent
triggers in u will be carried over to the next configuration.

Referring to our initial approach to constructing a TP-ind
system, for TP systems with cat 1 cooperative rule, we add
two additional rules r01 : o ! o and r02 : o ! ō for every
dependent trigger o in a region. Rule r01 is used to imitate the
event (in the input TP system) of passing dependent triggers
unevolved from current to next configuration whereas rule
r02 is used to imitate the event where o is no longer used in
the next transitions and therefore, will already be part of a
halting configuration.

Formally, given a TP-dep system ⇧1 = (O,µ,w1, R1, 0)
where coop-dep rules are classified as cat 1, we construct
a ⇧0

1 = (O0, µ, w1, R
0
1, 0) where O0 = O [{ō | o 2 O, o is a

dependent trigger in region 1. Every rule set R0
1 = R1[{o !

16

o, o ! ō | o 2 O, object o is a dependent trigger in region
1. For easier reference to rules in R0

1, we let R0
dep

= {r 2
R0

1 | r : o ! o /2 R1}, and R0
dep

= {r 2 R0
1 | r : o ! ō /2 R1}.

Example 6. For the TP-dep system ⇧
x1 in Example 3,

the resulting TP-ind system following the construction of
⇧0

1 is shown below: ⇧0
x1 = ({a, b, c, b̄}, [1]1, abc, {r01 : ab !

(b3, out), r02 : a ! (a, out), r03 : ac ! (b2, out), r04 : c !
(a2, out), r0

dep1 : b ! b, r0
dep1 : b ! b̄}, 0).

Lemma 2. L(⇧1) ✓ L(⇧0
1).

Proof. Suppose s 2 L(⇧1). Then, there exists a halting
computation path C0)⇤ C

halt

that generates s. Our goal is
to establish a halting computation C0

0)⇤ C 0
halt

0 generating
s in ⇧0

1.

By definition, C 0
0 is the same as C0. LetGt

be the set of rules
used in a transition C

t

) C
t+1 (0 t < halt). Also, let H

t

be the set of unconsumed dependent triggers in C
t

) C
t+1.

We can derive a transition C0
t

) C 0
t+1 in ⇧0

1 (where C
t

is
the same as C0

t

and C
t+1 is the same as C 0

t+1) by applying
(R0

1 \ G
t

) [{o ! o | o 2 H
t

}. Each rule in (R0
1 \ G

t

) is
applied the same number of times as its equivalent rule in
C

t

) C
t+1. The number of times each rule in o ! o 2 R0

dep

is applied is equal to the number of unconsumed copies of o
from C

t

) C
t+1.

LetK be the set of dependent triggers in configuration C
halt

.
IfK = ;, C0

halt

is already a halting configuration (i.e. halt =
halt0). Otherwise, C 0

halt

) C 0
halt+1 by applying o ! ō 2

R0
dep

for all o 2 K (i.e. halt0 = halt+ 1).

To illustrate Lemma 2, we simulate the production of some
strings in L(⇧

x1). Generating strings in Perm(b3a2) are
generated in ⇧0

x1 through the use of rules r01 and r04 (the
corresponding rules for r1 and r4 in ⇧

x1). Generating string
a3 are produced in ⇧0

x1 via rules r02, r
0
4 and r0

dep1. Afterward,
rules r0

dep1
can evolve b to b̄ so that the next configuration

becomes halting.

Lemma 3. L(⇧1) ◆ L(⇧0
1).

Proof. A string s 2 L(⇧0
1) is generated by a halting

computation C0
0)⇤ C 0

halt

. As in Lemma 2, C0 is the same
as C0

0. To show that there exists a computation C0)⇤

C
halt

0 generating s in ⇧1, we describe how a transition in
⇧0

1 corresponds to a valid transition in ⇧1.

While any multiset involving non-triggers and independent
triggers in ⇧1 is uniquely represented in ⇧0

1, every dependent
trigger o in ⇧1 is represented by any of o or ō in ⇧0

1; an
occurrence of o in ⇧0

1 triggers rules in R0
dep

and R0
dep

.

Let G0
t

be the set of rules used in a transition C 0
t

) C0
t+1 in

⇧0
1. Transition C0

t

) C0
t+1 (1 t halt) is represented in

⇧1 by a transition C
t

) C
t+1 that uses the setG

0
t

\R1. Each
rule in (R1 \G

t

) is applied the same number of times as its
equivalent rule in C 0

t

) C 0
t+1. Note that if configuration C 0

t

contains ō, the counterpart o in C
t

cannot be evolved by any
coop-dep rule r triggered by o in the transition C

t

) C
t+1.

However, even in this case, any transition C 0
t

) C 0
t+1 is still

mapped to a valid transition C
t

) C
t+1. This is because if a

coop-dep rule can be applied in C
t

(and it cannot be applied
in C 0

t

due to the occurrence of ō instead of o), some non-
cooperative rules will be used in C

t

) C
t+1 since cat 1 coop-

dep rules need independent triggers (as stated in Definition
5). In this case, the resulting halting computation in ⇧0

1

from transition C 0
t

) C 0
t+1 will correspond to a computation

in ⇧1 with a dependent trigger o in its halting configuration.

From this, it can be concluded that there is a computation
C0)⇤ C

halt

0 in ⇧1 which generates the same string as in
a given computation C 0

0)⇤ C 0
halt

. The value halt0 halt
since a dependent trigger o can continuously evolve via rule
o ! o even when no other rules are applied in the system.
Eventually however, o becomes ō through o ! ō.

To illustrate Lemma 3, we continue examining TP system
⇧0

x1. In ⇧0
x1, there are several ways to generate a3. Note

that in ⇧
x1, production of string a3 leaves a copy of b in

region 1 of the halting configuration of ⇧
x1. In ⇧0

x1, it can
be produced by rules r02, r

0
4 and r0

dep1
. Other ways to produce

it includes initial use of rules r02, r
0
4 and r0

dep1, afterwards,
we continuously use r0

dep1 for the single copy of b until use
of rule r0

dep1
.

Theorem 1. For every TP-dep system ⇧1 = (O, [1]1, w1,
R1, 0) where coop-dep rules are cat 1, there exists a TP-ind
system ⇧0

1 such that L(⇧1) = L(⇧0
1).

Proof. The construction of ⇧0
1 from a given ⇧1 is as

given right before Lemma 2. The theorem follows from Lem-
mas 2 and 3.

Corollary 1. LTP (dep, C1) ✓ LTP (ind).

Proof. Given a TP-dep system ⇧ where coop-dep rules
are cat 1, based on Lemma 1, we can construct a single mem-
brane TP system ⇧2 where the original and the constructed
TP system has the same language. In the resulting TP sys-
tem, the role of an object in triggering rules is preserved.
Thus, the coop-dep rules in ⇧2 remain cat 1. We can now
use Theorem 1 to show that we can construct a ⇧0

2 from ⇧2

such that L(⇧2) = L(⇧0
2).

3.3 TP-dep systems with Cat 2 coop-dep rules
To provide us a hint on the approach used for this type
of TP-dep system, we first examine an example of cat 2
coop-dep rule. Suppose a region has a rule r : a4 ! v.
If the multiset in the given region is one of: a, a2 and a3,
then no dependent triggers will be consumed in this region.
Now suppose the region has a multiset a10. Due to maximal
parallelism, only eight copies of a can be consumed and only
two copies of object a will be unconsumed. If we add some
more rules in the region, say a rule r0 : a3 ! v0, then the
number of possible multiset that leaves a unconsumed will
be decreased. The only multiset of object a carried over from

17

a current to next configuration will be multisets a and a2.
In the presence of an added rule r

00
: b2 ! v00, the number

of multisets involving unconsumed dependent triggers will
be increased. These are a, a2, a3, b, ab, a2b and a3b.

From the analysis provided above, the major di↵erence be-
tween cat 2 and cat 1 coop-dep rules will be the number
of multisets of possible unconsumed dependent triggers in
a given region. While in the latter, this number can be
unbounded (e.g. there can be unbounded copies of b of un-
consumed in a region with a rules ab ! v and a ! v0), in the
former, this number is only a finite number. We capitalize
on this notion of finiteness to construct a TP-ind system for
a TP-dep system with cat 2 coop-dep rules. At this point,
we formally define a set of multisets fin containing multisets
that can possibly be left unconsumed due to cat 2 coop-dep
rules.

We use the notation⇧2 for a TP-dep system⇧2 = (O, [1]1, w1,
R1, 0) where all coop-dep rules are classified as cat 2.

Definition 6. (Finite Set fin) Let D be the set of all
dependent triggers in region 1 of ⇧2. For each subset Y =
{y1, y2, . . . , y|Y |} ✓ D, Y 6= ;,

p1p2 . . . p|Y | 2 fin

where each p
j

2 {yf

j

| for all f: 1 f q
j

� 1} for all f :

1 j |Y |. We obtain q
j

by finding a rule r : y
qj
j

! v and
rule r uses the least number of copies of y

j

in its LHS.

From Definition 6, in the construction of fin, the set of
dependent triggers in region 1 is first identified as D. Af-
terwards, all possible subsets Y of D (except for the empty
set) is determined. A multiset in fin is defined by examin-
ing each Y . For each element y

j

(1 j |Y |) of Y , we can
associate a rule r : y

qj
j

! v that requires the least number
of y

j

. For each subset Y , a multiset in fin is represented
as a sequence p1p2 . . . p|Y | where every p

j

is an element in

{yf
j

| for all f: 1 f q
j

� 1}.

Example 7. Suppose a TP-dep system following ⇧2 has
R1 = {b3 ! b(b, out), b4 ! b2(b2, out), c2 ! c}. The set
of dependent triggers in region 1 will be D = {b, c}. The
rule that requires the least number of c is c2 ! c whereas
rule b3 ! b(b, out) requires the least number of b. The
set fin is thus achieved by combining elements in the set
B = {b, b2} and C = {c}. Since Y is a subset of D,
Y 2 {{b}, {c}, {b, c}}. For Y = {b}, multisets b and b2 is
added to fin. For Y = {c}, multiset c is added to fin. For
Y = {b, c}, multisets bc and b2c is added to fin. Specifically,
the set fin = {b, b2, c, bc, b2c}.

Lemma 4. In a TP-dep system ⇧2, any possible multiset
of dependent triggers that will remain unconsumed in any
transition of ⇧2 is in fin.

Proof. In ⇧2, all coop-dep rules are cat 2. Thus, for
every dependent trigger y, any rule having y in its LHS has
the form r : yk ! v. From Definition 6, all multiset w in fin

has |w|
y

> q (q is the number of copies of y for the rule that
least requires q). Thus, no rule r triggered by y is enabled
by multiset w.

To show that every multiset unconsumed is in fin, we first
determine what needs to be considered in finding all desired
multisets: any such multiset is obtained by (1) combining
possible unconsumed multiset (2) per dependent trigger and
(3) considering that in some configurations, some dependent
triggers may not appear. From Definition 6, the range of
f for every dependent trigger involved in fin ensures (1),
construction of D ensures (2) while considering all possible
subsets Y of D (except Y = ;) ensures (3).

We now construct a TP-ind system ⇧0
2 from ⇧2. We shall

use fin (and the notations in Definition 6) in construct-
ing the rules of the system. Given TP-dep system ⇧2 =
(O,µ,w1, R1, 0) where all coop-dep rules are cat 2, we now
construct a TP-ind system ⇧0

2 = (O0, µ, w0
1, R

0
1, 0) where

O0 = O [{ȳ | y 2 D} [{↵,#}. The initial multiset w0
1

includes multiset w1 and a copy of an additional object ↵.
The set R0

1 = R1 [{↵ ! ↵,↵ ! �,# ! #} [{y !
| y 2 D}[{↵p ! ↵p,↵p ! p̄ | p is in fin(h) and for each
object y in p, ȳ is in p̄}.

Notice that in Section 3.2, rules of the form o ! o and o ! ō
are added in the constructed TP-ind system to imitate the
event (in the original model) where dependent triggers can
still be consumed in future transitions, and the event where
these triggers will no longer be consumed, respectively. In
the latter, these triggers will be part of the halting config-
uration of a certain computation. Our approach in finding
a desired TP-ind system for TP systems with cat 2 coop-
dep rule also employs such technique. However, aside from
such restriction, there is also a need to monitor the possible
multiset of dependent triggers that will be carried over in a
transition. Lemma 4 shows that the number of such possi-
ble multisets is finite and can be enumerated. Thus, rules
of the form ↵p ! ↵p and ↵p ! p̄ is created. If the mul-
tiset of unconsumed (or carry over) dependent triggers in a
transition is not in fin, then some dependent triggers will
evolve to the trap symbol # and thus, induces a non-halting
computation. The role of ↵ is further explained in Lemmas
5 and 6.

For easier reference to rules inR0
1, we let R

0
fin

= {r 2 R0
1 | r :

↵p ! ↵p /2 R1, p is in fin}, R0
fin

= {r 2 R0
1 | r : ↵p !

p̄ /2 R1, p is in fin and for each y in p, ȳ is in p̄}, R0
trap

=
{y ! # | y 2 D} and R0

add

= {↵ ! ↵,↵ ! �,# ! #}.

Example 8. For the TP-dep system ⇧
x2 in Example 4,

the resulting TP-ind system following the construction of
⇧0

2 is shown below: ⇧
x20 = ({a, b, c, b̄,↵,#}, [1]1,↵ab2, {r01 :

b2 ! (b, out), r02 : a ! c(a2, out), r03 : c ! (a, out), r0
fin1 :

↵b ! ↵b, r0
fin1

: ↵b ! b̄, r0
trap1 : b ! #, r0

add1 : ↵ !
↵, r0

add2 : ↵ ! �, r0
add3 : # ! #, }, 0)

Lemma 5. L(⇧2) ✓ L(⇧0
2).

Proof. Suppose s 2 L(⇧2) is generated through a halt-
ing computation path C0)⇤ C

halt

. Our goal is to show

18

that there is a halting computation C 0
0)⇤ C 0

halt

0 in ⇧0
x2

that generates s.

Let the set G
t

(G0
t

) be the set of rules used at a transition
C

t

) C
t+1 (C 0

t

) C 0
t+1), t � 0. From their definition, C0

0

contains the same multiset as in C0 with an additional copy
of an object ↵. The set G0

t

contains rules in (R0
1\G

t

). Each
rule in (R0

1 \G
t

) is applied the same number of times as its
equivalent rule in C

t

) C
t+1. Application of other rules in

R0
1 is dependent whether: (i) some dependent triggers are

carried over from C
t

to C
t+1, or (ii) all triggers present in

region h at C
t

are consumed in the transition.

For case (i), suppose the multiset p is the multiset of de-
pendent triggers left unconsumed in C0

t

) C 0
t+1. Then rule

↵p ! ↵r 2 R0
fin

is also added in G0
t

. The existence of
↵p ! ↵p is guaranteed because of Lemma 4. Through rule
↵p ! ↵p, no more dependent triggers are left unconsumed
in region 1. Therefore, C 0

t

) C 0
t+1 is applied in a maximally

parallel manner.

For case (ii), when all triggers are consumed, the ↵ in C
t

is
evolved through rule ↵ ! ↵ 2 R0

add

. This move allows the
possibility that some multiset of dependent triggers remain
in consideration for evolution in future transitions.

For the halting computation C
halt

, if no dependent trigger
occurs, the last transition in ⇧0

2 applies rule ↵ ! � 2 R0
add

(i.e. halt0 = halt). Otherwise, a rule ↵p ! p̄ 2 R0
fin

is applied in the next step; thus, halting configuration is
achieved in ⇧0

2 in halt0 = halt+ 1.

To illustrate Lemma 5, we simulate the production of some
strings in L(⇧

x2). Generating strings in Perm(ba2)a are
generated in ⇧0

x2 through in the initial transition, using rules
r01, r

0
2 (the corresponding rules for r1 and r2 in ⇧

x2) and rule
r0
add1 outputing multiset ba2 in the environment. In the next
transition, rule r03 (the corresponding rule for r3 in ⇧

x2) and
rule r0

add1 is used outputing multiset a in the environment.
The last transition uses rule r0

add2 to remove ↵ and halt.

Lemma 6. L(⇧2) ◆ L(⇧0
2).

Proof. Let s 2 L(⇧0
2) be generated via a halting com-

putation, C0
0)⇤ C0

halt

. We need to show that s can also be
generated via a halting computation in C0) C 0

halt

0 in ⇧2.

Based on the construction of ⇧0
2, C0 is of the same multiset

as in C0
0 without the copy of ↵. Let G0

t

be the set of rules
in region 1 used in configuration C0

t

(1 t halt � 1).
The rules used to consume object ↵ in region 1 is one of
the following: (a) ↵ ! ↵ (b) ↵p ! ↵p where p 2 fin, (c)
↵ ! �, (d) ↵p ! p̄ where p 2 fin, ȳ 2 p̄ if y 2 p. In the
first two items, ↵ is retained in C 0

1; in the last two items, ↵
is removed.

Suppose one of rule (a) and (c) is used in G0
0. The only other

possible rules that will consume the remaining multiset in re-
gion 1 of C0

0 will be rules in R1. (Although it is also possible
to use a rule of the form y ! # 2 R0

trap

for some dependent
trigger y, it will result to a non-halting computation due to

rule # ! # 2 R0
add

.) This means, C0) C1 uses rules in
G0

0 \R1 wherein the number of application of rules in G0 is
the same as the number of applications of their equivalent
rule in G0

0. Note that upon use of (a) or (c), no dependent
trigger is left unconsumed in transition C 0

0) C0
1, thus, the

rules used for transition C0) C1 is maximally parallel.

In the case where one of rules (b) and (d) is used in G0
0,

again, the only other possible rules that can be applied to
the remaining multiset will be rules in R1. If we let G0 be
rules in G0

0 without the rule ↵p ! ↵p (when (b) is used)
or ↵p ! p̄ (when (d) is used), then applying G0 for tran-
sition C0) C1 means dependent triggers in multiset p are
unconsumed. However, since Lemma 4 established that any
multiset p 2 fin doesn’t enable any rule in R1, the rules
used in region 1 for the transition C0) C1 is also maxi-
mally parallel. Observe that in applying rules (a),(b) or (c),
as in the relation of C0 and C 0

0, multiset per region in C1

is just the same as C 0
1 without object ↵. Additionally, in

applying rule (d), objects ō in C 0
1 becomes object o in C1.

Using the reasoning above, it can be observed that so long
as region 1 initially containing an object ↵ retains ↵ in con-
figuration C 0

t

, then for every transition C0
t

) C 0
t+1, there is

a transition C
t

) C
t+1 that satisfies maximal parallelism.

We now look at the event wherein a configuration C
t

doesn’t
contain an ↵. This means, in previous transitions, a rule has
already been used to remove ↵. In such case, G0

t

is only com-
posed of rules in R1. From here, transition C

t

) C
t+1 can

be derived by using G
t

= G0
t

. If no object ȳ is present in
C 0

t

, then this means no dependent triggers are left uncon-
sumed in C

t

) C
t+1, thus making rules in G

t

maximally
parallel with respect to region 1’s multiset in C

t

. If some
multiset of dependent triggers ȳ is present, then this means,
some dependent triggers are left unconsumed in C

t

) C
t+1,

however, since rule ↵p ! p̄ can only be applied once in a
region 1, the only possible multiset of dependent triggers in
ȳ in region 1 is p 2 fin. Thus, no rule can be applied to the
unconsumed multiset of dependent triggers making rules G

t

maximally parallel when applied to transition C
t

) C
t+1.

The analysis above shows that given a halting computation
C0

0)⇤ C0
halt

, there is a halting computation C0)⇤ C
halt

0

that satisfies maximal parallelism and with applied rules
having the same collective e↵ect as the former. Thus, if
string s is generated in the former, then it can also be gen-
erated in the latter. The value of halt0 = halt if at least one
region retains object ↵ until C 0

halt�1 and only eliminates it
at transition C0

halt�1) C
halt

. Otherwise, halt0 < halt.

To illustrate Lemma 6, we continue examining TP system
⇧0

x2. In ⇧0
x2, there are several ways to generate Perm(ab2)a.

However, all these ways involve using rule r01 and r02 in the
initial configuration and rule r03 in the next configuration. In
generating Perm(ab2)a, handling the copy of ↵ involves zero
or more applications of rule r0

add1 until use of rule r0
add2. The

copies of b and ↵ also enables rules r0
fin1, r

fin1’ and r0
trap1.

Upon use of any of these rules, rule r0
add3 is applied leading

to a non-halting computation. Note that rules r0
fin1 and

r0
fin1

lead to the use of r0
trap1 since both rules need only one

b to accompany ↵ and there are two copies of b in the initial
configuration.

19

Theorem 2. For every TP-dep system ⇧2 = (O, [1]1, w1,
R1, 0) where coop-dep rules are cat 2, there exists a TP-ind
system ⇧0

2 such that L(⇧2) = L(⇧0
2).

Proof. The construction of ⇧0
2 from a given ⇧2 is as

given right before Lemma 5. The theorem follows from
Lemma 5 and Lemma 6.

As in Corollary 1, we have the following corollary.

Corollary 2. LTP (dep, C2) ✓ LTP (ind)

Proof. This follows from Lemma 1 and Theorem 2.

3.4 TP-dep systems with Cat 1 and Cat 2 coop-
dep rules

From the previous subsections, TP-dep systems with cat
1 and cat 2 coop-dep rules can both occur in a given TP
system. To construct a TP-ind system for such model, there
is a need to handle dependent triggers that are both in the
LHS of a cat 1 and cat 2 cooperative rule. We first examine
an instance. Suppose rules r1 : ab ! v, r2 : a ! v0 is
defined in region 1. Given these rules, so long as no copy of
a is used to consume a b, there can be unbounded copies of
trigger b unconsumed in region h. However, if an additional
rule, r3 : b2 ! v00 occurs in region 1, then, the possible
multiset that can be consumed will be limited to multiset b.
Thus, handling dependent trigger b as a trigger for a cat 2
coop-dep rule prevails over handling it as a trigger for a cat
1 coop-dep rule.

Given a TP-dep system ⇧12 = (O,µ,w1, R1, 0) where all
coop-dep rules are either cat 1 or cat 2, a TP-ind system⇧0

121

can be constructed by first constructing a TP-dep system
⇧121 achieved by removing all cat 2 coop-dep rule. Let D12

be the set of all dependent triggers in region 1 involved in a
cat 2 coop-dep rule. Given TP-dep system ⇧121 where coop-
dep rule are cat 1, a TP-ind system ⇧121

0 can be constructed
following Section 3.2. From ⇧0

121, a TP-dep system with cat
2 coop-dep rule ⇧122 can be constructed by putting back
all cat 2 coop-dep rule removed previously and removing all
additional rules o ! o and o ! ō where o 2 D12. Following
Section 3.3, a TP-ind system ⇧0

12 can be constructed from
⇧122.

Example 9. For the TP-dep system ⇧
x12 in Example 5,

it can be observed that objects b, d, c, and e are indepen-
dent triggers, object f is a cat 1 dependent trigger, and
object a both a cat 1 and cat 2 dependent trigger. The
resulting TP-ind system following the construction of ⇧0

12

is shown below: ⇧0
x12 = ({a, b, c, d, e, f, ā, f̄ ,↵,#}, [1]1,

↵a2bcef, {r01 : cb ! b(a, out), r02 : a2 ! d(b, out), r03 : ab !
(c, out), r04 : d ! (d, out), r05 : b ! (e, out), r06 : c ! (f, out),
r07 : ef ! (a, out), r08 : e ! (c, out), r0

dep1 : f ! f, r0
dep1

:

f ! f̄ , r0
fin1 : ↵a ! ↵a, r0

fin1
: ↵a ! ā, r

trap1 : b !
#, r0

add1 : ↵ ! ↵, r0
add2 : ↵ ! �, r0

add3 : # ! #}, 0)

Theorem 3. For every TP-dep system ⇧12 = (O,µ,w1,
R1, 0) where all coop-dep rules are either cat 1 or cat 2, there
exists a TP-ind system ⇧0

12 such that L(⇧12) = L(⇧0
12).

Proof. The construction of ⇧0
12 is as given right before

Theorem 3. If every dependent trigger in ⇧12 can be associ-
ated with only one of the two cases: cat 1 or cat 2 coop-dep
rule, then no object that is in the LHS of both cat 1 and
cat 2 coop-dep rule exists in ⇧. Every dependent trigger
can then be handled depending on whether it is a trigger
for a cat 1 coop-dep rule, in which case, it will be handled
using rules in Section 3.2, or cat 2, thus it will be handled
using rules in Section 3.3. This implies that discussion in
Section 3.2 and Section 3.3 can be employed to show that
every set of rules G

t

applied in a transition C
t

) C
t+1 has

a corresponding set of rules G0
t

in transition C 0
t

) C 0
t+1 that

has the same e↵ect as in the former and satisfies maximal
parallelism. The other direction also holds. Hence, for each
computation C0)⇤ C

halt

that generates s 2 L(⇧12), there
is a computation C 0

0)⇤ C 0
halt

0 that also generates s and
vice versa.

In the case where a dependent object o functions as a depen-
dent trigger for cat 1 and cat 2 coop-dep rule, such object
will be handled as a trigger for cat 2 rule. Notice that if
object o is treated as a cat 1 dependent trigger, then avail-
able rules handling unconsumed object o will be of the form
o ! o and o ! ō. The former rule implies that some objects
can continue being unconsumed until it can be consumed by
some rule in future transitions. On the contrary, the latter
implies an object o will no longer be used in any rule at any
future transition and will certainly be part of the halting
configuration (since ō are non-triggers in ⇧0). If object o is
treated as a cat 2 dependent trigger, then it is part of any
multiset p such that rules ↵p ! ↵p and ↵p ! p̄ are applica-
ble. The multiset p guarantees that the number of object o
unconsumed in region 1 doesn’t exceed that which can trig-
ger a cat 2 coop-dep rule. However, the e↵ect of rules o ! o
and o ! ō for object o are preserved in rules ↵p ! ↵p and
↵p ! p̄ since object o is in p.

Corollary 3. LTP (dep, C12) ✓ LTP (ind)

Proof. This follows from Lemma 1 and Theorem 3.

4. CONCLUSIONS
In this work we established the constructions necessary for
certain TP systems to produce the same language. The
constructions are based on the type of rules that exist in
the TP systems: a TP-ind system ⇧0 is constructed with
respect to a TP system with some dependent triggers ⇧,
where their generated language are equal. The rules of ⇧
can be of (or a combination of) 3 categories from section 3:
case 1 to case 3. This work only considers combinations of
case 1 and case 2. Considering case 3 for TP systems, as
well as for other cell-like P systems with similar multi-set
rewriting rules, is of theoretical as well as practical interest.
We end the paper by recalling that considering case 3 implies
answering the question: can a ⇧0 be constructed from a ⇧
with case 3 cooperative rules where L(⇧0) = L(⇧)?

Acknowledgements
Juayong and Cabarle are supported by DOST-ERDT schol-
arships. Buño is supported by the DMCI teaching research
grant. Adorna is funded by a DOST-ERDT grant and the
Semirara Mining Corporation Professorial Chair.

20

5. REFERENCES
[1] Alhazov, A., Ciubotaru, C., Ivanov, S., Rogozhin,

Y.: The Family of Languages Generated by
Non-cooperative Membrane Systems. LNCS 6501,
pp. 65-80 (2011)

[2] Adorna, H., Păun, G., Pérez-Jiménez, M.J.: On
Communication Complexity in
Evolution-Communication P systems. ROMJIST
vol 13(2) pp. 113-130 (2010)

[3] Ciobanu, G., Resios, A.: Computational Complexity
of Simple P systems. Fundamenta Informaticae vol
87(1) (2008)

[4] Freund, R., Verlan, S.: A Formal Framework for
Static (Tissue) P systems. In: Eleftherakis, G.,
Kefalas, P., Păun, G., Rozenberg, G., Salomaa, A.
(eds.) WMC 2007. LNCS, vol. 4860, pp. 271–284.
Springer, Heidelberg (2007)

[5] Hopcroft, J.E., Ullman, J.D.: Introduction to
Automata Theory, Languages, and Computation.
Addison-Wesley (1979)

[6] Juayong, R., Adorna, H.: On the Language
Relation of TP systems and ECPe Systems
[Accepted] 9th BIC-TA, Wuhan, China (2014)

[7] Păun, G.: Computing with membranes. J.
Computer and System Sciences vol 61, pp. 108-143
(2000)

[8] Păun, G.: Membrane Computing. Springer-Verlag
Berlin Heidelberg (2002)

[9] Păun, G.: Introduction to Membrane Computing.
Ciobanu, Pérez-Jiménez, Păun (eds): Applications
of Membrane Computing. Springer, pp.1-42 (2006)

[10] Qi, Z., You, J., Mao, H.: P systems and Petri Nets.
In: Mart́ın-Vide, C. et. al (eds.) WMC 2003. LNCS, vol.
2933, pp. 286–303. Springer, Heidelberg (2004)

21

