
Synchronization of ad hoc Clock Networks

Jaderick P. Pabico
Institute of Computer Science

University of the Philippines Los Baños
College 4031, Laguna

jppabico@uplb.edu.ph

ABSTRACT
We introduce a graph-theoretic approach to synchro-
nizing clocks in an ad hoc network of N timepieces.
Clocks naturally drift away from being synchronized
because of many physical factors. The manual way of
clock synchronization suffers from an inherrent propaga-
tion of the so called “clock drift” due to “word-of-mouth
effect.” The current standard way of automated clock
synchronization is either via radio band transmission
of the global clock or via the software-based Network
Time Protocol (NTP). Synchronization via radio band
transmission suffers from the wave transmission delay,
while the client-server-based NTP does not scale to
increased number of clients as well as to unforeseen
server overload conditions (e.g., flash crowd and time-
of-day effects). Further, the trivial running time of
NTP for synchronizing an N -node network, where each
node is a clock and the NTP server follows a single-port
communication model, is O(N). We introduce in this
paper a O(log N) time for synchronizing the clocks in
exchange for an increase of O(N) in space complexity,
though through creative “tweaking,” we later reduced
the space requirement to O(1). Our graph-theoretic
protocol assumes that the network is KN , while the
subset of clocks are in an embedded circulant graph
C

q
n<N with q jumps and clock information is commu-

nicated through circular shifts within the C
q
n<N . All

N nodes communicate via a single-port duplex channel
model. Theoretically, this synchronization protocol
allows for N(log N)−1 − 1 more synchronizations than
the client-server-based one. Empirically through sta-
tistically replicated multi-agent-based microsimulation
runs, our protocol allows at most 80% of the clocks
synchronized compared to the current protocol which
only allows up to 30% after some steady-state time.

Keywords
time synchronization, Berkeley protocol, circular shift,
circulant graph with jumps

1. INTRODUCTION
The “Juan Time, On Time” is a project of the Depart-
ment of Science and Technology (DOST) launched in
30 September 2011 which aim to campaign for the use
of the Philippine Standard Time (PST). Since 1978,
the PST is legally and officially maintained by DOST’s
Philippine Atmospheric, Geophysical and Astronom-
ical Services Administration (PAGASA) [7]. However,
due to various reasons, the PST has not been utilized
by Filipinos, whether in public or private transactions,
resulting to having timepieces that are not synchronized
with the PST. There are many problems that result
by having non-PST-synchronized timepieces, some pos-
sible (though relatively exaggerated) examples of these
are:

1. Historical and official events being recorded with
conflicting times – e.g., in law enforcement, blot-
ters with conflicting records of when crimes were
committed may cause the criminal justice system
to incarcerate an innocent person or free a guilty
one.

2. Financial transactions, specifically those done
electronically, may cause one investment to lose a
supposedly financial gain – e.g., an online bidder
may submit a bid which might be a second late
because her1 timepiece is not synchronized with
that of the bidding institution’s.

3. In national defense, the order of a military com-
mander may be executed several seconds earlier
or later, instead of on time, which may later prove
fatal to national security concerns – e.g., an air
bomber pilot may release a second early a bomb
payload to a rebel camp holding up hostages that
have not yet been evacuated to a safe zone.

4. In scientific research that rely on the accuracy
and timeliness of the measuring devices – e.g, a
clock-based data monitoring device may provide
a sequence of wrong data array because the clock
ran faster than expected, which if not corrected
may prove crucial to the research conclusion.

1Note: The use of the female gender in this paper is
just a writing style and this could mean either without
being prejudice to the other.

22

1.1 Clock Drift
There are many reasons why timepieces are not synchro-
nized with one another, even though they started accu-
rately synchronized. One of the reasons is the “clock
drift” [16] which happens because of the following phys-
ical reasons:

1. The clock changed its frequency (i.e., frequency
shift).

2. The clock changed its phase (i.e., phase shift).

3. For a limited time (i.e., maybe a burst of sev-
eral milliseconds), the clock experienced an
unstable/interrupted power supply that resulted
in either a frequency shift, a phase shift, or both.

4. During an extended use or because of environ-
mental factors, a clock was heated up that resulted
in a frequency shift, a phase shift, or both.

1.2 Word-of-mouth Propagation of Clock
Drift

In the past, and even until now, timepieces are generally
updated using the following simple process:

1. Query a supposedly trusted and authoritative time
source, which usually is a person, a radio station
announcing a time check, or a TV station showing
time; and

2. Manually reset the timepiece to the exact time
returned by the time source, without considering
the lag time between receiving the information
from the source and the time it took to reset the
clock.

Because of this process, the recipient of the query
answer would have reset her timepiece with an inherent
“clock drift” due to “word-of-mouth” effect illustrated
as follows: Given N persons p1, p2, . . . , pN , where p1 is
an official authoritative source of time. If p2 updates
her timepiece by querying p1, and then p3 updates her
timepiece by querying p2, and then so on in a linear
fashion up to pN updating her timepiece by querying
pN−1, at the (N − 1)th step, pN would have a clock
drift with an optimistic factor of at most 2N . This
factor is due to the “word-of-mouth” propagation of the
time lag.

1.3 Clock Synchronization via Radio Trans-
mission

In advanced countries where timeliness is of utmost
importance, like the United States and Japan, time-
pieces are equipped with (usually an amplitude modu-
lation or AM) radio band receiver [22] and are updated
or synchronized at specified frequency by a signal from
a dedicated (usually government-run AM) radio trans-
mitter. The transmitter is connected to a time standard
device, such as an atomic clock. Timepieces in these
areas automatically adjust to differences in time zones,
as well as to changes in daylight saving times (DST).

However, timepieces are only adjusted up to a resolu-
tion of a second, because the respective AM receivers
are not equipped to detect for the propagation delay of
the radio signal from the transmitters. On the average,
the propagation delay is approximately 1 s for every
300 Km distance the receiver is from the transmitter.
Thus, this type of clock synchronization system is effec-
tive only to timepieces that only require a resolution of
up to a second, which currently are useful for general
human use.

1.4 Internet-based Clock Synchronization
via the Network Time Protocol

The Network Time Protocol (NTP) is a time syn-
chronization protocol implemented in software for the
purpose of synchronizing computer clocks over packet-
switched, variable latency data networks, such as the
Internet. The NTP uses a revised version [9] of the
Agreement Algorithm, also known as the Marzullo’s
Algorithm [14], to select time sources for estimating the
accurate time from a poll of noisy sources. Time sources
become noisy because of the effects of variable network
latency, which the algorithm corrects by using a jitter
buffer. The jitter buffer is computed earlier by profiling
the round-trip times (RTT) of several zero-payload
packets from a source node to a target node in the
network. The time is synchronized via a hierarchical,
semi-layered system of clock sources, starting from what
is termed as Stratum 0, a device that is connected to
an atomic clock. Stratum 1 devices are computers that
are connected to Stratum 0 devices and normally act
as servers for timing requests from Stratum 2 servers.
In general, Stratum n devices connect to Stratum n− 1
devices to synchronize time in a hierarchical client-
server, master-slave fashion, where the masters are the
devices in Stratum n − 1 and the slaves are the devices
in Stratum n. In the Philippines, no Stratum 0 device
has been officially established, even with the launching
of DOST’s “Juan Time, On Time” campaign, which
only uses the word-of-mouth propagation of the correct
time with up to 1 minute resolution. Despite of this,
most computer servers are potential Stratum 1 devices
if they connect to known Stratum 0 devices abroad.

1.5 Potential of Institutions as Statum 1
Service Providers

Nowadays, various local government and private institu-
tions, particularly those in the highly urbanized areas,
run several computer servers for providing ICT services
to their constituents [12]. Some of these servers might
be converted to run in dual-server modes with NTP. A
dedicated cluster of NTP servers to act as a publicly-
available Stratum 1 devices could be setup but may
prove cost ineffective as more client computers connect
and query the cluster for correct time at a higher res-
olution and to synchronize clocks. With the expected
improvement of telephone and communication services
in the country [1], particularly due to a healthier busi-
ness competition that the ASEAN integration in 2015
will bring [3, 11], it is expected that the use of mobile
computers among constituents will double every year.
For a relatively small central business district with a
pessimistic maximum estimate of 10,000 constituents,

23

each owning at least one mobile computer that query the
cluster for correct time, the cluster will be overwhelmed
with answering queries for RTTs than for answering
queries about the correct time. Thus, it is seen that the
NTP is not an efficient protocol for synchronizing the
devices beyond Stratum 1 for a very, very large client
base.

1.6 The Solution: Peer-to-peer Protocol
for Synchronizing Clocks Beyond
Stratum 1

The problem with using NTP beyond Stratum 1 is that
it uses a master-slave type of communication, where the
master could be overwhelmed by slaves that number in
tens of thousands, especially if the bandwidth does not
scale with the increase of estimated users. With a con-
stant bandwidth towards the master, it is necessary that
the bandwidth used for answering RTTs and queries be
distributed among the participating slaves via what is
called a peer-to-peer (P2P) communication approach,
similar to the strategy employed by the famous BitTor-
rent protocol [8, 23]. Thus, a new protocol is needed to
query time and synchronize clocks for devices beyond
the Stratum 1 device.

We present in this paper an integrated knowledge in
Process Theory and Graph Theory, particularly that of
circular-shift process over circulant graphs C [27], to
design a protocol for synchronizing N clocks in a com-
plete network KN and to show that the (log N)-step
protocol is correct and achievable. We show that our
clock synchronization protocol is faster by a factor of
log N , where N is the number of timepieces that are
concurrently synchronizing.

2. IMPROVEDBERKELEYPROTOCOL
WITHRECURSIVEDOUBLINGTECH-
NIQUE

In the Berkeley Protocol (BP), given N clocks namely
C0, C1, . . . , CN−1 with time readings T0, T1, . . . , TN−1,
respectively, where T0 ̸= T1 ̸= · · · ̸= TN−1, the problem
is to synchronize the times without relying on a global
clock Γ. BP does this by averaging the N time read-
ings with the assumption that no time reading is too
extreme to effect a skew to the average. This can be
performed in two ways, through an elected leader and
through distributed computation. In the first method,
an elected leader, usually C0, collects the respective
N − 1 time readings, computes the average T , and then
distributes T to N − 1 others. In the second method,
everybody broadcasts their own time readings to others,
and they respectively compute the average without any-
more additional communication.

2.1 The Elected Leader Computes
In the first method, the collection of the respective time
readings takes N − 1 steps, as the leader C0 needs to
retrieve the time readings of C1, C2, . . . , and CN−1 one
at a time. To compensate for the elapsed time due to
collection of each time readings, every time a reading Ti

is received, C0 puts its own timestamp T0,i on it. At
the end of the N − 1 collection steps, C0 would have

Figure 1: The timeline of C0 showing when in
C0’s own perspective of time it received the
respective time readings, as well as when it com-
puted T .

collected the time readings T1, T2, . . . , and TN−1 with
respective timestamps T0,1, T0,2, . . . , and T0,N−1. At
the time of computation, which interestingly is at T0,
the ith time reading would have aged T0 − T0,i, thus Ti

must be corrected with this difference. Figure 1 shows
the timeline of C0 with respect to the receipt of the time
readings at the respective timestamps.

2.1.1 Computation of the T
The average time T is computed as follows:

T =
1
N

„

T0 + T1 + (T0 − T0,1) +

T2 + (T0 − T0,2) + · · · +

TN−1 + (T0 − TN,N−1)

«

=
1
N

„

T0 + T0 + (T1 − T0,1) +

T0 + (T2 − T0,2) + · · · +

T0 + (TN−1 − T0,N−1)

«

T =
1
N

NT0 +
N−1
X

i=1

(Ti − T0,i)

!

(1)

T =
1
N

NT0 +
N−1
X

i=1

Ti −
N−1
X

i=1

T0,i

!

(2)

In the above equations, it would have sufficed to stop
with Equation 1 but we will soon see that the form in
Equation 2 is practically useful in optimizing the space
complexity of the methodology. The space complexity
requirement of this method is discussed further below
(Subsection 2.1.3).

It would have taken T0,c time to compute for T , thus
T must be corrected with this amount of computation

24

time also. After correction, T + T0,c will be distributed
by C0 to the N − 1 other clocks. This will be done
by C0 one clock at a time for a total of N − 1 steps,
where each step, the elapsed time due to the previous
communication will be added to the corrected T . Thus,
C1 will receive T + T0,c, C2 will receive T + T0,c + D0,1,
where D0,1 is the elapsed time when C0 sent the new
time reading to C1, C3 will receive T +T0,c+D0,1+D0,2,
where D0,2 is the elapsed time when C0 sent the new
time reading to C2, and so on. In general, the ith clock
will receive T + T0,c +

Pi−1
j=2 D0,j , ∀1 < i < N .

2.1.2 Time Complexity Requirement
This method takes N − 1 steps to collect the respective
time readings, one step to compute for the average, and
N − 1 steps to distribute the corrected average for a
total of 2N − 2 steps. Thus the time complexity of this
method is O(N).

2.1.3 Space Complexity Requirement
Intuitively, C0 needs N − 1 spaces to hold the N − 1
collected time readings. This is what Equation 1 pro-
vides at a glance. However, C0 can just use 2 spaces to
separately hold the running sum of the collected time
readings and the running sum of the timestamps. This
is what Equation 2 is showing. C0 can reuse one of the
two spaces to hold the corrected T . Thus, this method’s
best space complexity is O(1).

2.1.4 The Pitfall of Simplicity
Regardless of the time and space complexities, the
method suffers from simplicity because it did not con-
sider the additional time it will take for the time
readings to reach C0 from their respective clocks.
In Figure 1 above, Ti is basically the same as T0,i,
∀0 < i < N . This is not the case, however, because
each clock either runs faster or slower than C0. When
C0 collects data from Ci, it must have recorded the
timestamp s0,i at the start of its communication with
Ci. Upon receipt of the time reading Ti from Ci, C0

must have also recorded the timestamp T0,i. If Ci is
synchronized with C0, definitely s0,i < Ti < T0,i. If
we assume that the time it takes for a request from
C0 to reach Ci is the same as the time it takes for
the response from Ci to reach C0, then that time is
E0,i = 0.5(s0,i+T0,i). The amount (s0,i+T0,i) is known
in the literature as the roundtrip time (RTT) [2, 4, 25],
and therefore RTT0,i = 2E0,i. This amount is the one
missing in the above discussion. Figure 2 shows the
visualization of these time values between the exchange
of C0 and Ci.

Considering the asynchronous nature of the clocks, we
can now obtain an estimate for Ti that is closer to its
correct value and it is given as Ti + 0.5RTT0,i. With
this corrected value, Equation 2 must also be corrected
into:

T =
1
N

NT0 +
N−1
X

i=1

Ti+

1
2

N−1
X

i=1

RTT0,i −
N−1
X

i=1

T0,i

!

(3)

Figure 2: The respective timelines of C0 and Ci

showing the time values elapsed when initiating
at timestamp s0,i and completing at timestamp
T0,i the collection of Ti from C − i.

2.1.5 Computation of the RTT
Where will the RTT’s come from? Here, we propose a
methodology that minimizes the error of the estimate
for RTT. The reason for the error is that the time it
will take for C0’s request to reach Ci is almost always
not the same as the time it will take for Ci’s response
to reach C0. Depending on the implementation of the
communication protocol, C0’s initial request might as
well go as little as one bit in length, say the value 0
upon receipt by Ci to mean that the elected leader,
C0, is requesting Ci to send its time reading Ti. The
response, however, could involve a 32-bit integer, rep-
resenting the number of seconds since some reference
year. The propagation of a 1-bit data is faster than the
propagation of a 32-bit data, especially to bandwidth
constrained communication channels. Thus, we want to
create a methodology that ensures that the RTT is rel-
atively constant during the time of the collection of the
time readings, and at the same time, we want to read
Ti while this RTT is seemed to be non-changing.

We propose the following algorithm:

Algorithm 1: Computation of RTT0,i with Ti

1. Set j = 0.

2. Repeat the following:

(a) Increment j by 1

(b) C0 sends a 1 to Ci at time s0,i

(c) C0 receives a 32-bit long data from Ci at time
T0,i

(d) C0 computes for the RTT0,i,j = T0,i − s0,i

until j = some statistically possible value

3. Compute for the average RTTA
0,i = j−1Pj

k=1 RTT0,i,k

and its standard deviation σA
0,i.

4. If σA
0,i is within some set allowed threshold, then

we move to step 5, else we go back to step 1.

25

5. C0 sends a 0 to Ci at time s0,i

6. C0 receives the 32-bit long Ti from Ci at time T0,i

7. We set j = 0 and repeat the steps in 2 to collect
j RTT0,i,j ’s.

8. Compute for the average RTTB
0,i = j−1

Pj
k=1 RTT0,i,k

and its standard deviation σB
0,i.

9. If |RTTA
0,i −RTTB

0,i| < some threshold and |σA
0,i −

σB
0,i| < some threshold,

• then C0 accepts Ti with RTTA
0,i,

• else we repeat the whole process from step 1.

We want to set j in Algorithm 1 such that the time it
takes to compute for the RTT will not dominate the
time it takes to exchange the respective T ’s. Unfor-
tunately, j will depend on the state of the underlying
network which can only be set through experience. We
assume, however, that the network will not be a factor
and that we can set j to a value that can provide a sta-
tistically acceptable degree of freedom. We then further
assume that the contribution of this algorithm to both
the leader computes and the distributed computation
approaches is O(1).

2.1.6 Improvement of the Steps in Collecting
Time Readings

The collection of time readings in the original protocol,
as shown in subsection 2.1.2, takes N−1 steps, or a time
complexity of O(N). We improved this time complexity
to O(log N) by utilizing a recursive doubling technique
which we illustrate here with N = 8 as follows. The
procedure is completed in 3 steps, instead of seven steps.
At step 1, C0 sends a 0 to C4. The 0 bit sent by C0 will
be propagated first to all clocks, while clocks which have
already received the bit will participate in sending. At
step 2, C0 sends a 0 to C2, while C4 propagates the 0
to C6. At step 3, C0 sends a 0 to C1, while at the same
time C2 propagates the 0 to C3, C4 to C5, and C6 to
C7. After step 3, all clocks would have received the 0
from C0.

The sending of the respective time readings will be done
in the opposite manner, also in three steps as follows:
At step 1, C0 receives T1 from C1, and at the same time,
C2 receives T3 from C3, C4 receives T5 from C5, and C6

receives T7 from C7. All pairs will follow the procedure
outlined in Algorithm 1. At step 2, C0 receives T2 and
the corrected T3 from C2, while C4 receives T6 and the
corrected T7 from C6, again both utilizing Algorithm 1.
At step 3, using Algorithm 1, C0 receives T4, T5, T6,
and T7 from C4.

In general, time readings are collected by C0 via a
recursive doubling method in O(log N) steps. However,
the space complexity has increased to a corresponding
O(log N) from O(1). Notice that the amount of data
being transferred from Ci to C0 doubles every step.
Since the total number of doubling is also log N for
N clocks, then the maximum amount of data to be

Figure 3: An example circular 2-shift on a C
1
8,

which can be done via a series of two circular
1-shift operations.

passed is log N times of the original one. This max-
imum happens in the last step, though.

2.1.7 Distributing T in O(log N) Time
After C0 has computed the T , it will distribute the
average time to N−1 clocks via the same recursive dou-
bling technique. The corresponding time complexity is
O(log N) while the space complexity is O(1).

2.2 Distributed Computation of T
In the second method, each of the clocks C0, C1, . . . , and
CN−1 will collect time readings T0, T1, . . . , and TN−1

from the respective other clocks. Once this collection is
completed, each of the clock will perform the averaging
on their own, without any more further communication
to the other clocks. Thus, our analysis focuses on a par-
ticular distribution scheme for the time readings. Intu-
itively, each clock can perform a collection of time read-
ings from other clocks, one at a time. That is, each clock
will be elected as a leader, collect the time readings,
and then compute the average for itself without sharing
it. If this is done in lexicographic way, and since we
have already shown earlier in Subsection 2.1.2 that this
particular method takes O(N) time complexity, then
this method, intuitively will cost O(N log N) time. The
question to be asked, then, is can we do better than
this?

2.2.1 The Circular Shift Operation
Given a set of N nodes V1, V2, . . . , VN that form a
regular circulant graph of order N with q jumps
(or simply C

q
N) [21, 27], the circular q-shift opera-

tion [10, 15, 20] is a special permutation of the nodes’
indexes such that node Vi sends a data packet to node
V(i+q) mod N (Figure 3). Researchers have long proved
that the optimal number of steps for a circular q-shift
on a C

q
N is min(q, N − q). To improve the performance

of the distribution methodology discussed in Section 2.2
above, we have to assume that the clocks are arranged
in a C

1
N . This is not impossible to do since any C

q
N will

perfectly embed into a KN [18].

Intuitively, the distribution of the time readings to all
clocks only needs a circular (N − 1)-shift operation,
which only requires min

`

N − 1, N − (N − 1)
´

= 1 oper-
ation. One can argue that this is true because a circular

26

(N − 1)-shift operation is equivalently a circular (−1)-
shift operation (i.e., a circular 1-shift operation in the
opposite direction). This is not the case, however, as we
will soon see in our modification to the circular q-shift
operation discussed in the next subsection.

2.2.2 Circular (N − 1)-Shift-Copy Operation
We use the fact that a circular (N − 1)-shift operation
can be done by a series of (N −1) circular 1-shift opera-
tions. We modified, however, each circular 1-shift oper-
ation such that the receiving clock copies the time read-
ings that has been shifted to it. We call our new opera-
tion as a Circular q-Shift-Copy Operation. The circular
(N − 1)-shift-copy operation is simply a series of N − 1
alternating circular 1-shift and copy operations.

If a copy operation takes 1 step, then our circular q-shift-
copy operation takes 2(N − 1) steps, or a complexity of
O(N), a vast improvement to the intuitive time com-
plexity discussed in Section 2.2, which is O(N log N).
Since each circular 1-shift-copy operation only requires
sending 1 data item per operation, then the circular 1-
shift-copy operation takes a space complexity of O(1).
However, the receiving node must allocate a buffer that
is equal to the amount of data that will be shifted, so
the operation can take a maximum space complexity
of O(N). We can strategically reduce this space com-
plexity to O(1) if for every intermediate circular 1-shift-
copy operation, the sum of the copied time readings will
already be computed.

Figure 4 shows a visualization of the progression of the
first three 1-shift-copy operations on an N = 8 clock
network.

2.2.3 Circular (N−1)-Shift-Copy Operation with
Recursive Doubling

The circular (N−1)-shift-copy vastly improves the time
complexity of the operation from O(N log N) down to
O(N). The next question is, can we do better? It turns
out that the answer to the question is a resounding yes
as we shall soon see with our new proposed method we
called recursively-doubled circular (N − 1)-shift-copy.
This method takes the time complexity of O(log N)
steps, which we will describe as follows:

1. During the first step, instead of assuming that the
clocks were arranged in a C

1
N , we assumed that the

clocks were arranged in a C
⌊N/2⌋
N . This means that

clock Ci will be connected to clocks Ci+⌊N/2⌋ and
Ci−⌊N/2⌋, ∀0 ≤ i < N . Such a circulant graph con-
tains ⌊N/2⌋ disconnected C

1
2’s. These subgraphs

can alternately be seen as a linear graph L2 of
order 2. The circular 1-shift-copy operation can
be performed in these subgraphs concurrently.

2. During the second step, we assumed that the
clocks were arranged in a C

⌊N/4⌋
N , where each

clock Ci will be connected to clocks Ci+⌊N/4⌋

and Ci−⌊N/4⌋, ∀0 ≤ i < N . Such a circulant
graph contains ⌊N/4⌋ disconnected C

1
4. As in the

previous step, these subgraphs can concurrently

Figure 4: An example progression of a circular
7-shift-copy operation on a C

1
8: (a) The data dis-

tribution before the circular 7-shift-copy oper-
ation; (b) The data distribution after the first
1-shift-copy operation; (c) The data distribution
after the second 1-shift-copy operation; and (d)
The data distribution after the third 1-shift-copy
operation.

perform a circular 1-shift-copy operation each. In
general, at step k, we assumed that the clocks

were arranged in a C
⌊N2−k⌋
N . The original network

will be composed of ⌊N2−k⌋ disconnected C
1
2k ’s.

These subgraphs will concurrently perform a cir-
cular 1-shift-copy operation each to distribute the
data.

3. At the last step (i.e., (log N)th step), the clock
will be assumed to be arranged in a C

1
N , where

the circular 1-shift-copy operation distributes the
final set of time readings.

In this new method, the distribution of the time read-
ings takes a time complexity of O(log(N)). Figure 5
shows the evolution of the circulant graphs at each step
of the methodology with N = 8.

2.2.4 Complexities of the Recursively Doubled
Circular (N − 1)-Shift-Copy

Intuitively, the time complexity of the recursively dou-
bled circular (N − 1)-shift-copy operation is O(logN).
Notice however that the space complexity doubles every
step, with the (log N)th step taking N spaces. Obvi-
ously, the space complexity is O(N). However, we can
strategically reduce the space complexity if at every step
we already compute the sum of the time readings. Thus,
the space complexity of our proposed method can be as
good as O(1) space.

27

Figure 5: An example progression of a recur-
sively doubled circular 7-shift-copy operation on
a C

1
8: (a) The data distribution after step 1 where

the clocks were arranged as a C
4
8; and (b) The

data distribution after step 2 where the clocks
were arranged as a C

2
8.

2.3 Comparison between Leader Com-
putes and Distributed Computation

Both the Elected Leader Computes and the Distributed
Computation have the same time and space complex-
ities of O(log N) and O(1), respectively. This does
not mean that we can now select any of the two in
the implementation of the methodology. For all prac-
tical purposes, we chose to implement the distributed
computation method because the elected leader com-
putes method will suffer from being “orphaned” when
the elected leader decided to leave the network at the
middle of the computation. Thus, we see the distributed
computation method as a more robust method from the
dynamism brought about by the constant movement of
the clocks in and out of the ad hoc network.

2.4 Implementation of the Distributed
Computation through Computer Net-
work Simulation

We implemented the distributed computation by
writing a program P that averages the internal clocks
of computers connected in a local area network (LAN).
We used a simple socket programming [26] so that clock
information can be distributed among the computers in
the LAN, using the efficient recursively doubled circular
(N − 1)-shift-copy operation.

Figure 6 shows the screen capture of an (N = 6)-
clock synchronization problem implemented in six
LAN-connected x686 processors, each running a multi-
programming Gnu/Linux operating system.

3. TIME SYNCHRONIZATION WITH
MULTI-AGENT SYSTEM

Our multi-agent-based [19, 24] time synchronization
protocol is basically composed of three simple steps
that can be implemented by any mobile simulated clock
Ci depending on what state Ci is in: (1) Update own
time from the global clock Γ; (2) Update of own time
from other clocks, and (3) Update other clocks. In our
protocol, we assumed that each clock has the following:

1. Time Record (Ti) – The current time of each clock;
each clock has different time records since they are
not synchronized;

2. Γ Synchronization Record (ΓSRi) – A time record
when clock Ci last synchronized its time from Γ;
and

3. Clock Synchronization Record (CSRi) – A time
record when Ci last synchronized its time from
other clocks.

The clock Ci can be in any of these two states:

1. IN(Γ) – This means that Ci is under the influence
of a global clock Γ; and

2. OUT(Γ) – This means that Ci is not under the
influence of Γ.

3.1 Time Synchronization under IN(Γ)
When Ci is under the influence of a global clock Γ,
Ci immediately synchronizes with Γ via a peer-to-peer
protocol (P2P). The immediacy of the synchronization
scheme assures those clocks which enter the circle of
influence in an almost tangent to the edge of synchro-
nization. Entering at a tangent means that these clocks
will soon be out of the influence of Γ. Whenever Ci

synchronizes with Γ, it updates with it its ΓSR as well.
After the first synchronization, Ci may either be in
one of the two available modes: (1) Passive Mode; or
(2) Aggressive Mode. These modes were developed to
favor those clocks which are equipped with ranging-
capable device. A clock with no ranging capability auto-
matically chooses the aggressive mode, while a clock
with ranging capability first chooses the passive mode
and then switches to aggressive mode. When a range-
capable clock Ci can range that its distance from Γ is
decreasing, it uses the passive mode. However, when
Ci can sense that its distance from Γ is increasing, then
it switches to the aggressive mode. The passive mode
allows for the conservation of power, especially for those
clocks that are powered by batteries.

3.1.1 Passive Mode at IN(Γ) State
Upon entry of Ci into the influence of Γ, it first queries
the Γ which always returns the current global time G. If
|G−Ti| is lesser than some threshold value Th, then Ci

does not do anything. However, the moment |G−Ti| >
Th, Ci immediately updates its Ti with G, as well as its
ΓSR. While still under the influence of Γ, Ci continually
queries the Γ for G, until |G − Ti| > Th.

3.1.2 Aggressive Mode at IN(Γ) State
Regardless of the |G − Ti| compared to Th, Ci always
immediately updates its Ti with G. The aggressive
mode assures the clock that it always has the most
recent ΓSR upon leaving the influence of Γ.

3.2 Time Synchronization under OUT(Γ)
When a clock Ci is out of the influence of Γ, then it
could be under the influence of other clocks Cj, ∀j ̸= i

28

Figure 6: Screen capture of executing the clock synchronization application P running on a 6-computer
LAN through a remote secured shell (SSH) session. Shown in this screen capture are six terminals,
each connected to the different computers where internal clock of each is being synchronized.

within its immediate broadcast vicinity. Assuming that
Ci enters a broadcast vicinity of N − 1 other clocks,
then we can use the protocols discussed in Section 2,
particularly the distributed computation scheme. How-
ever, we will modify the protocol to compute for the
maxN−1

i=0 (ΓSRi) instead. We now propose a new method
we called recursively doubling circular (N−1)-shift-max
operation, where at each step of the operation, Ci com-
pares its ΓSRi with what it received from its imme-
diate neighbor, and retains the maximum between the
two. This operation runs in O(log N) time complexity
and, since we only need to get the maximum, definitely
with O(1) space complexity. Figure 7 shows the visu-
alization of the progression of time synchronization of
N clocks using the recursively doubling (N − 1)-shift-
max method.

For clocks with ranging capabilities, they will select to
include those clocks that approach them into the net-
work to prolong the life of their ad hoc community. Def-
initely, those clocks that are already going away from
them will soon be out of their group’s circle of influence.
We do not want to include those clocks which may leave
the network before the synchronization is completed.

3.3 Simulation of the Protocol
This protocol was simulated using a multi-agent-based
simulation environment [5, 6, 13, 17]. We considered
three scenarios as follows (Please refer to Figure 8):

1. Scenario A – In this scenario, we located the global
clock (green circle) at the middle of the environ-
ment, and placed three synchronization-disrupting
areas (blue circles). Clocks are symbolized by the
person icons, which randomly roam about the
environment.

2. Scenario B – This scenario is similar to Scenario A
with the difference that the global clock is inside a
fenced area and only those authorized persons are
allowed to enter the area. This simulates the situ-
ation wherein the global clock is only available to
a few select people and that time synchronization
will only happen if these select people will come
in contact with those that were not selected.

3. Scenario C – This scenario is similar to Scenario B
but this time the fenced global clock is already
located at the center, while the synchronization-
disrupting areas are placed near the fence of the
global clock.

For comparison purposes for each scenario, we imple-
mented a simple protocol that mimics how the current
time-synchronization is currently being implemented.
Synchronization happens when a newly Γ-synchronized
clock Cx meets another clock Ci. In this protocol,
Cx always shares its time with Ci via a simple P2P
data exchange. Figure 9 shows the percentage of
Γ-synchronized clocks within the first 30-s of the simu-
lation time. This figure shows that the synchronization
protocol that we developed can provide about 70% to

29

Figure 7: An example progression of a recur-
sively doubled circular 7-shift-max operation on
a C

1
8: (a) The data distribution before step 1;

The respective data distributions after steps 1
(b), 2 (c), and 3 (d).

Figure 8: Snap shots of the multi-agent imple-
mentation of the second protocol using a sim-
ulation environment: (a) Scenario A; (b) Sce-
nario B; and (3) Scenario C.

80% synchronous clocks while the simple protocol can
only provide up to 30% synchronous clocks for any
scenario.

Figure 9: Plot of the percentage of Γ-
synchronized clocks during the first 30-s of the
simulation for Scenario A (top line plot), Sce-
nario B (middle line plot), and Scenario C
(bottom line plot). The horizontal axis is
in seconds while the vertical axis is in per-
centage of Γ-synchronized clocks. Blue lines with
square points are for the proposed protocol while
orange lines with diamond points are for the
simple protocol.

30

4. CONCLUSION
In this paper, we argued that the DOST’s “Juan Time,
On Time” program of using the PST with a simple syn-
chronization protocol does not provide high percentage
of Γ-synchronized clocks because of the inherrent clock
drift brought about by the simple protocol. In fact,
the clock drift is even enhanced by the simple protocol.
We then provide an alternative automated protocol that
synchronizes N clocks in O(log N) time using only O(1)
memory. To prove that the proposed O(log N) pro-
tocol can provide a higher percentage of Γ-synchronized
clocks, we simulated three scenarios where the proposed
protocol is used. We compared the percentage of Γ-
synchronized clocks to the same scenarios but this time
when the simple protocol is used. For all scenarios, the
proposed protocol provides 70% to 80% Γ-synchronized
clocks while the simple protocol can only provide 20%
to 30% Γ-synchronized clocks. Our protocol improved
the number of Γ-synchronized clocks by at most 400%
during the same time span.

References
[1] R.M. Aldaba. Assessing Competition in Philippine

Markets. 2008.

[2] E.m. Ar reyouchi, K. Ghoumid, K. Ameziane,
and O.E. Mrabet. Performance analysis of round
trip time in narrowband RF networks for remote
wireless communications. International Journal of
Computer Science and Information Technology, 5
(5):1–20, 2013.

[3] J.D. Balboa, F.L.E. Del Prado, and J.T. Yap.
Achieving the ASEAN Economic Community 2015:
Challenges for the Philippines. 2010.

[4] S. Biaz and N. Vaidya. Is the round-trip time cor-
related with the number of packets in flight? In
ACM SIGGCOMM Internet Measurement Confer-
ence, 2003.

[5] F.E.V.G. Castro and J.P. Pabico. A study on the
effect of exit widths and crowd sizes in the forma-
tion of arch in clogged crowds. Philippine Com-
puting Journal, 8(1):21–29, 2013. ISSN: 1908-1995.

[6] F.E.V.G. Castro and J.P. Pabico. Microsimulations
of arching, clogging, and bursty exit phenomena
in crowd dynamics. Philippine Information Tech-
nology Journal, 6(1):11–16, 2013. ISSN: 2012-0761.

[7] Philippine Congress. Section 6(b) of Batas Pam-
bansa Bilang 8: An Act Defining the Metric
System and Its Units, Providing for Its
Implementation and for Other Purposes,
1978.

[8] F. Costa, L. Silva, G. Fedak, and I. Kelley. Opti-
mizing the data distribution layer of BOINC with
BitTorrent. In Proceedings of the IEEE Interna-
tional Symposium on Parallel and Distributed Pro-
cessing, 2008. doi:10.1109/IPDPS.2008.4536446.

[9] T. Gotoh, K. Imamura, and A. Kaneko. Improve-
ment of NTP time offset under the asymmetric net-
work with double packets method. In Proceedings

of the IEEE 2002 Conference on Precision Electro-
magnetic Measurements, pages 448 – 449, 2002.

[10] H. Gruber and M. Holzer. Language operations
with regular expressions of polynomial size. Theo-
retical Computer Science, 410(35):3281–3289, 2009.

[11] C. Hollweg and H.M. Wong. Measuring Regulatory
Restrictions in Logistics Services. 2009.

[12] G. Iglesias. e-Government Initiatives of Four
Philippine Cities. 2010.

[13] D. Kornhauser, W. Rand, and U. Wilensky. Visual-
ization tools for agent-based modeling in NetLogo.
In Proceedings of the AGENT, 2007.

[14] K.A. Marzullo. Maintaining the Time in a Dis-
tributed System: An Example of a Loosely-Coupled
Distributed Service. PhD thesis, Stanford Univer-
sity, February 1984.

[15] A.N. Maslov. Cyclic shift operation for languages.
Problems of Information Transmission, 3:333–338,
1973.

[16] S.J. Murdoch. Hot or not: Revealing hidden ser-
vices by their clock skew. In Proceedings of the
13th ACM Conference on Computer and Commu-
nications Security, 2006. Alexandria, VA, USA, 30
October – 3 November.

[17] I. Muscalagiu, H.E. Popa, and J. Vidal. Clus-
tered computing with NetLogo for the evaluation
of asynchronous search techniques. In Proceedings
of 12th IEEE International Conference on Intelli-
gent Software Methodologies, Tools and Techniques
(SOMET 2013), pages 115–120, 2013.

[18] P. Mutzel and R. Weiskircher. Computing optimal
embeddings for planar graphs. In Proceedings
of the 6th Annual International Conference on
Computing and Combinatorics (COCOON 2000),
pages 95–104. Springer-Verlag, 2000. Lecture Notes
in Computer Science 1858; DOI: 10.1007/3-540-
44968-X 10.

[19] M. Niazi. Agent-based computing from multi-
agent systems to agent-based models: A visual
survey. Scientometrics, 89(2):479–499, 2011. DOI:
10.1007/s11192-011-0468-9.

[20] T. Oshiba. Closure property of the family of
context-free languages under the cyclic shift opera-
tion. Transactions of IECE, 55(D):119–122, 1972.

[21] J.P. Pabico. Paths with jumps: Definition,
topology-preserving dynamics, and applications.
Asia Pacific Journal of Education, Arts and Sci-
ences, 1(2):61–69, 2014. ISSN : 2362-8022.

[22] D. Plagger and W.K. Wilson. Time corrected, con-
tinuously updated clock, 1986. US Patent 4,582,434
issued 15 April.

[23] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips.
The Bittorrent P2P File-Sharing System: Measure-
ments and Analysis, volume 3640, pages 205–216.
Springer, 2005. Lecture Notes in Computer Science.

31

[24] T. Salamon. Design of Agent-Based Models :
Developing Computer Simulations for a Better
Understanding of Social Processes. Bruckner Pub-
lishing, 2011. ISBN: 978-80-904661-1-1.

[25] P. Sessini and A. Mahanti. Observations on round-
trip times of TCP connections. In Proceedings
of the 2006 International Symposium on Perfor-
mance Evaluation of Computer and Telecommuni-
cation Systems (SPECTS’06), 2006.

[26] W.R. Stevens. UNIX Network Programming: Net-
working APIs: Sockets and XTI, volume 1. Pren-
tice Hall, 2nd edition, 1998. ISBN: 0-13-490012-X.

[27] H. Whitney. Congruent graphs and the connec-
tivity of graphs. American Journal of Mathematics,
54(1):150–168, 1932. DOI: 10.2307/2371086.

32

