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ABSTRACT
In this paper, we define the reoptimization variant of the
closest substring problem (CSP) under sequence addition.
We show that, even with the additional information we have
about the problem instance, the problem of finding a closest
substring is still NP-hard. We investigate the combinatorial
property of optimization problems called self-reducibility.
We show that problems that are polynomial-time reducible
to self-reducible problems also exhibits the same property.
We illustrate this in the context of CSP. We used the prop-
erty to show that although we cannot improve the approx-
imability of the problem, we can improve the running time
of the existing PTAS for CSP.
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1. INTRODUCTION
The consensus pattern problem is a combinatorial problem
applied to a wide range of applications from string match-
ing problems in genomic sequences [4] to finding repeated
patterns in graphs [7] and time-series databases [11]. Due
to its utmost importance in the field of genomics, several ef-
forts have been made to characterize the computational re-
quirements needed to solve the problem. If the set of input
instances is constrained only to a set of input strings, the
problem is known as the closest substring problem (CSP).
The problem seeks to identify a pattern that occurs approx-
imately in each of the given set of sequences.

It has been shown that the CSP is NP-hard [9], i.e., unless
P=NP, we cannot obtain a polynomial-time algorithm solv-
ing the problem. Moreover, it was also shown that fixing
parameters such as pattern length or alphabet size, does
not address the intractability of the problem [8]. Aside
from parameterization attempts, other studies tried to re-
lax the condition of always finding the optimal solution by

providing approximation algorithms for the problem. The
first constant-factor approximation algorithm is presented in
[10], then subsequently improved in [12]. These results in-
clude CSP to the class of problems that are constant-factor
approximable (APX). In addition to this, several studies
[12, 13, 14] even presented a polynomial-time approximation
scheme (PTAS) for the problem.

To address the intractability and to improve the solution
quality of approximation algorithms, another approach is
to use additional information about the problem instance
whenever possible. A method called reoptimization has al-
ready been applied to a variety of hard problems in the liter-
ature. The idea of reoptimization is to make use of a solution
to a locally modified version of the input instance. It was
shown that reoptimization can help to either improve the ap-
proximability and even provide a PTAS for some problems
that are APX-hard. These results include improvements for
the metric-traveling salesman problem [3], the Steiner tree
problem [2], the common superstring problem [1], and hered-
itary graph problems [5].

In this paper, we investigate whether reoptimization can
help in approximating the closest substring problem. The
additional information given in advance is a solution to a
smaller instance of the problem. The algorithm for the re-
optimization variant of the problem aims to make use of
the given solution to become feasible for the larger instance.
We show that, using the given solution as a greedy partial
solution to the larger instance, we can achieve an additive
error (with respect to the optimal solution) that grows lin-
early as we increase the number of sequences added to the
original instance, which can be worse than the existing �-
approximation algorithms for the original problem.

The self-reducibility property of some hard combinatorial
problem has been showed to improve the approximability
of the problem. However, existing general approaches incur
a much longer time for providing a solution with improved
quality. Providing an improved ratio is already possible for
CSP, due to the existence of a PTAS. However, [17] deemed
the PTASs in the literature as impractical for small error
bounds. In this paper, we showed that it is possible to im-
prove the running time of the existing PTAS for CSP while
maintaining the same approximation ratio through reopti-
mization.
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2. CLOSEST SUBSTRING PROBLEM
Given a set of sequences S = {S

1

, S
2

, . . . , S
t

} defined over
some alphabet ⌃, where each S

i

is of length n, and for some
l  n, find a string v of length l and a set of substrings y

i

each from S
i

, where v, y
i

2 ⌃l such that the total Hamming

distance
tP
i

d(v, y
i

) is minimized [9].

The closest substring of a given set of input sequences, may
not be unique given the closest substring occurrences y

i

, for
1  i  t. So instead of focusing on the closest substring v,
we will use the collection of y

i

’s to represent a feasible solu-
tion for the problem. We can represent a feasible solution

SOL = (y
1

, y
2

, . . . , y
t

)

using a sequence of substrings obtained from each of the
given sequences to S. We may refer to SOL as a feasible
solution and OPT as the optimal solution for input instance
S.

We can easily obtain a substring v from the collection of
occurrences SOL. This is done by aligning all substrings in
SOL and taking the majority symbol for each column of the
alignment. Let us call this string the consensus of SOL.
Moreover, the consensus of OPT is called the closest sub-
string of S. It is easy to see that the consensus of OPT will
minimize the total Hamming distance for all v 2 ⌃l. On the
other hand, given a string v 2 ⌃l, we can also obtain a set of
occurrences SOL by searching the best aligning substrings
from each of the sequences in S. Given the closest substring,
we can obtain OPT in O(tn).

Naively, we can search for the optimal solution by consid-
ering all possible locations of the closest substring in each
sequence S

i

from S. For smaller alphabet sizes, it is easier
to search over all ⌃l as compared to O(nt) possible occur-
rences. However, since we are considering the general CSP,
we do not restrict the alphabet size of the given sequences.

2.1 Related Works
Algorithms for the CSP can be categorized into three classes:
exact, heuristics, and approximate. Exact algorithms always
obtain the optimal solution, but are exhaustive and imprac-
tical due to the NP-hardness of the problem. Among the ear-
liest exact algorithms, some use graphs to model the prob-
lem. This includes WINNOWER [15] which involves finding
cliques in graphs obtained from the set of sequences. An in-
teger linear programming (ILP) formulation of the problem
was also presented in [18].

Some algorithms make use of some strategy in searching
through the set of all feasible solutions. Algorithms following
this approach are called heuristic algorithms. A majority of
these results use probabilistic models to represent solutions.
When it is possible to guarantee the quality of the solution
by means of identifying the bounds of its solution’s cost,
it is called an approximation algorithm. Since we do not
know the cost of an optimal solution, certain properties of
the input instances and the problem itself are needed to
design the algorithm. For the CSP, the first constant-factor
2-approximation algorithm was presented in [10], which was
subsequently improved in [12].

PTAS Approximation Ratio Running Time

[Li1999] 1 + 4|⌃|�4p
e(

p
4r+1�3)

O(l(tn)r+1)

[Li1999] 1 +O(
q

log r

r

) O(l(tn)r+1)

[Ma2000] 1 + 1

2r�1

+ 3✏r O(l(tn)r+1|⌃|
p

4/✏

2
log tn)1

Table 1: Summary of approximation ratio and run-
ning time of the existing PTASs for CSP in the lit-
erature.

Due to the hardness results presented in [4], several other
e↵orts were made to identify for which types of input in-
stances the problem becomes easier to solve. A result in
[6] shows that even if the set of input instances is defined
over the binary alphabet, we still cannot obtain a practical
polynomial-time algorithm for small error bounds. Aside
from characterizing input instances, one line of research fo-
cused on the parameterization of the problem [8]. Based on
these studies, it is shown that the problem is fixed-parameter
intractable, i.e., fixing a parameter such as the pattern length
or alphabet size will not make the problem easier to solve.

A PTAS for a hard problem is set of polynomial-time algo-
rithms for which one can specify a certain guaranteed qual-
ity. However, since there is a trade-o↵ between the quality
of solution and the running time of the algorithm, we can
expect a longer running time for smaller error bounds.

The summary of the approximation ratio and running time
of the existing PTASs for CSP is shown in Table 1. The
second on the list is a randomized PTAS for CSP, while the
third one assumes a general alphabet ⌃. We can see that the
approximation ratio of the third PTAS is only dependent on
the sampling size r, because the alphabet size is compen-
sated in the running time of the algorithm. In contrast, we
have the alphabet size as a parameter in the approximation
ratio of the first PTAS.

We consider the first PTAS in Table 1 for our study, since we
will only focus on deterministic algorithms for reoptimiza-
tion. Moreover, we assume that the set of input instances
are obtained from a general alphabet ⌃ and so choosing the
third PTAS may not be ideal in our case since it will not
just have r as a parameter but also the alphabet size.

The first PTAS from [12] is shown in Algorithm 1. For each
parameter r, it describes an approximation algorithm for
CSP that outputs a solution SOL with

cost(SOL) 
✓
1 +

4|⌃|� 4p
e
p
4r + 1� 3

◆
· cost(OPT )

in O(l(tn)r+1) time.

An r-sample from a given instance S, i.e.,

r-sample(S) = {y
i1 , yi2 , . . . , yir},

is a collection of r l-length substrings from S. Repetition of
substrings are allowed for as long as no two substrings are
obtained from the same sequence. Let R(S) denote the set
of all possible r-sample from S. The total number of samples
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in S is
�
tn

r

�
which is bounded above by O((tn)r). From each

sample, the algorithm obtains a consensus pattern. Solution
SOL is then derived by aligning the t closest substrings from
the given consensus. The Algorithm 1 minimizes through all
possible r-sample in S to provide a feasible solution with a
guaranteed quality.

Algorithm 1 PTAS for the CSP [Li1999]

Input: Set of sequences S, pattern length l, sampling size
r
Output: SOL and consensus string v

sol

1: min = 1
2: for each r-sample {y

i1 , . . . , yir} from S do
3: v = consensus pattern from {y

i1 , . . . , yir}
4: SOL = ;
5: for each S

i

2 S do
6: y

i

= min
8yi2Si

d(v, y
i

)

7: SOL = merge y
i

to SOL
8: end for
9: return SOL with min cost(SOL)
10: end for

3. SELF-REDUCIBILITY
A solution to a combinatorial optimization problem is com-
posed of a set of discrete elements called atoms [19]. For
certain graph problems, it can be the set of all vertices or
set of all edges, e.g., a clique in the maximum clique problem
is a collection of vertices.

A problem⇧ is said to be self-reducible if there is a polynomial-
time algorithm, �, satisfying the following conditions [19].

1. Given an instance I and an atom ↵ of a solution to
I, � outputs an instance I

↵

. We require that the size
of I

↵

is smaller than the size of I, i.e., |I
↵

| < |I|.
Let R(I|↵) represent the set of feasible solutions to I
containing the atom ↵. We require that every solution
SOL of I

↵

, i.e., SOL 2 R(I
↵

), has a corresponding
SOL [ {↵} 2 R(I|↵) and that this correspondence is
one-to-one.

2. For any set H 2 R(I
↵

) it holds that the

cost(I,H [ {↵}) = cost(I
↵

, H) + cost(I,↵).

Given the properties of a self-reducible problem, we prove
that the following lemma is true.

Lemma 1. CSP is self-reducible.

Proof. With the assumption that the pattern length l
is constant, a valid input instance I to CSP is a set of t
sequences S. A feasible solution SOL 2 R(S) is an ordered
set SOL = (y

1

, y
2

, . . . , y
t

). The set of atoms in CSP are all
possible l-length substrings in S. Let us define a reduction
function �(S, y

i

), which returns a reduced instance S\{S
i

}.
The reduced instance is derived by removing one sequence
S
i

where y
i

is obtained. We argue next that �(S, y
i

) has
the following properties.

1. For a SOL 2 R(S) there is a corresponding SOL
↵

[
{↵} 2 R(I|↵). Note that, SOL = (y

1

, y
2

, . . . , y
t

) guar-
antees at least one occurrence of the closest substring
per sequence. For any atom y

i

, a solution SOL 2
R(S|y

i

) corresponds to SOL
i

� y
i

, i.e.,

(y
1

, y
2

, . . . , y
i�1

, y
i+1

, . . . , y
t

)� y
i

2 R(S|y
i

).

Instead of using the operation ‘[’ for sets, we used �
to denote the merge of an element to a sequence.

2. For any feasible solution SOL
i

to the reduced instance
S \ {S

i

}, we can obtain a feasible solution SOL
i

� y
i

for S with cost(S, SOL
i

� y
i

) equal to the sum of
cost(S \ {S

i

}, SOL
i

) and cost(S, y
i

), since

cost(SOL
i

� y
i

) = cost(S \ {S
i

}, SOL
i

) + cost(S, y
i

)

=
tP

i=1

j 6=i

d(v, y
j

) + d(v, y
i

),

where v is the consensus of SOL
i

� y
i

.

Let us use the concept of polynomial-time reduction for com-
binatorial problems. We say that a problem A is polynomial-
time reducible to B, denoted by A 

P

B, if 9 a polynomial-
time transformation f , which for every input

x 2 A $ f(x) 2 B.

In other words, in order to solve problem A, we must at
least solve problem B. The problem of finding the clos-
est substring is reduced to a graph problem in [15]. The
transformation is as follows. Given a set of sequences S
and a pattern length l, an edge weighted t-partite graph
GS = (V,E, c) is obtained, where the problem is reduced
to finding a minimum weighted clique on a t-partite graph
(MWCP). Each substring in S represents a vertex in GS .
A part V

i

⇢ V represents the set of vertices obtained from
a single sequence S

i

2 S. A vertex v 2 V
i

is connected to
all other vertices in V except those belonging to V

i

. The
cost defined by function c : (V ⇥V ) ! Z+ between two ver-
tices can be interpreted as the Hamming distance between
two substrings in S. The cost of a clique in GS , which is
computed by getting the sum of all the edges is equal to
sum of all pairwise Hamming distances of substrings in SOL
in S. Moreover, we can create an instance GS from S in
polynomial-time. Thus, showing a polynomial-time reduc-
tion from CSP to MWCP.

It is also shown that MWCP has an exact reduction to Mini-
mum Weighted Independent Set Problem (MWISP), since a
clique in a graph is an independent set in the corresponding
complement of the graph [9]. In line with this we would like
to cite the following Lemma from [19].

Lemma 2. Maximum Weighted Independent Set Problem
(MWISP) is self-reducible.

Since we proved earlier that CSP is self-reducible and we
know that there is a polynomial-time reduction from CSP
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to MWCP, which is equivalent to a self-reducible problem
MWISP, we are interested to know if all problems that are
polynomial-time reducible to self-reducible problems also ex-
hibit the same property.

Theorem 1. If problem A is polynomial-time reducible
to problem B (A 

P

B), and B is self-reducible, then A is
self-reducible.

Proof. Let A = (D
A

,R
A

, cost
A

, goal
A

) and
B = (D

B

,R
B

, cost
B

, goal
B

) be two NP optimization prob-
lems. Let I

A

2 D
A

, SOL
A

2 R(I
A

), where SOL
A

is com-
posed of atoms ↵

A

. Similarly, let I
B

2 D
B

, SOL
B

2 R(I
B

),
where SOL

B

is composed of atoms ↵
B

.

Given thatA 
P

B, then by definition, there exists a polynomial-
time computable function f such that for every instance I

A

for problem A, f(I
A

) is an instance of problem B and for
every solution SOL

A

to A, f(SOL
A

) 2 IB. Equivalently, as
a decision problem, the polynomial-time reducibility implies

(I
A

, SOL
A

) 2 (D
A

⇥R(IA))

$

(f(I
A

), f(SOL
A

)) 2 (D
B

⇥R(IB))

By definition of self-reducibility, if B is self-reducible then
we can obtain a self-reduction function �

B

(I
B

,↵
B

) = I
↵B ,

such that |I
↵B | < |I

B

| and the following conditions hold.

1. For SOL
B

2 R(I
B

) there is a corresponding SOL
↵B [

{↵
B

} 2 R(I
B

|↵
B

), where SOL
↵B 2 R(I

↵B ).

2. For a subset of atoms H
B

✓ R(I
↵B ), cost

B

(I
B

, H
B

[
{↵

B

}) = cost
B

(I
B

,↵
B

) + cost
B

(I
↵B , H

B

).

Given that B is self-reducible, we need to show that problem
A is also self-reducible. If so, we must construct a self-
reduction function �

A

(I
A

,↵
A

) = I
↵A that follows the two

properties.

Given the polynomial-time function f and the self-reduction
function �

B

, we realize �
A

using �
B

through the following,

�
B

(f(I
A

), f(↵
A

)) = f(I
↵A).

The self-reduction function for �
A

clearly inherits the two
conditions because of our premise that B is self-reducible.
Moreover, the reduction function runs in polynomial-time
since f is polynomial-time computable.

Theorem 1 is presented in the hope that we can use the
current approaches for the reoptimization variants of clique
and independent set problem for providing improvements
for CSP. It is shown that for some defined reoptimization
variant of clique and independent set, a general method is
shown to improve the approximability with trade-o↵ on the
running time of the approximation algorithm.

4. REOPTIMIZATION
For real-world applications, additional information about
the problems we are solving often is available and so we
may not have to solve them from scratch. One of the ap-
proaches is to make use of a priori information, which can
be a solution to a smaller input instance of a problem to
solve a larger instance of it. This approach is called reop-
timization. The idea was first mentioned in [16]. For some
problems, we can transform the given optimal solution so
that it may become feasible for the modified instance in
polynomial-time. Furthermore, this approach can help to
improve the approximability of the problem or the running
time of the algorithms solving it. In fact, we can obtain a
PTAS for a reoptimization variant of some problem given
that the unmodified problem has a constant-factor approxi-
mation algorithm [3].

In the reoptimization variant of any problem, it is impor-
tant to define precisely the modification relation M over
the set of input instances. For graph problems, common
modifications involve addition/deletion of edges and ver-
tices. Other types of modification involve changes in the
edge/vertex weights. A simple definition of reoptimization
is as follows.

INPUT: Original instance I, its optimal solution OPT, and
a modified instance I 0, where (I, I 0) 2 M
OUTPUT: Solution SOL0 to I 0.

For the CSP, we consider the basic type of modification
where one or several sequences are added to S. Since the
length of the pattern remains unchanged, we will only de-
fine the modification relation over the given set of sequences.
When a single sequence is added to S, we have the modifi-
cation relation M

+

, where (S,S 0) 2 M
+

, if S 0 = S[{S
t+1

}
and S

t+1

/2 S. As a generalization, we define the modifica-
tion relation M

k

+ to denote addition of k sequences to S,
i.e., (S,S0) 2 M

k

+ , if S 0 = S [ {S
t+1

, S
t+2

, . . . , S
t+k

} and
S
t+i

/2 S, for 1  i  k.

Let us define the reoptimization variant of the CSP under
single sequence addition. In the following definition, we can
see that we already have the optimal solution with closest
substring pattern v

opt

, of the original instance S. Note that
we can easily compute occurrences of v

opt

in S, i.e., the set
of substrings y

i

, each from S
i

and their positions where v
opt

is obtained.

Definition 1. Reopt-CSPM+

INPUT: Pattern length l, original instance S, the optimal
closest substring v

opt

of S, and a modified instance S 0 where
(S,S 0) 2 M

+

OUTPUT: Solution v0
sol

to the modified instance S 0.

Even with the additional information we have, the reopti-
mization variant of the problem is still NP-hard, i.e., no
polynomial-time algorithm exists to obtain the optimal so-
lution for S 0, unless P = NP .

Theorem 2. Reopt-CSPM+ is NP-hard.
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Proof. Towards contradiction, assume thatReopt-CSPM+

is polynomial-time solvable. We will make use of the polynomial-
time algorithm for Reopt-CSPM+ to solve the CSP.

We start by showing that for two sequences, both of length
n, in S, we can obtain the optimal closest substring v

opt

in
polynomial-time. We can obtain v

opt

in O(l ·n2) by exhaust-
ing all possible l-length patterns in both sequences.

By making use of the optimal solution v
opt

and a polynomial-
time algorithm for Reopt-CSPM+ , we can solve the CSP for
any number of sequences in S in polynomial-time by adding
one sequence at a time. But then, we know that closest
substring is NP-hard. Therefore, Reopt-CSPM+ is also NP-
hard.

4.1 Approximation Algorithms for CSP
For the purpose of our discussion, we may refer to OPT
and OPT 0 to be the optimal solution of the smaller instance
and the larger instance of the problem, respectively. The
output of the presented approximation algorithms is denoted
by SOL0, unless otherwise stated.

First, we show how we can use a simple algorithm to give
an approximate solution for Reopt-CSPM+ . The algorithm
makes use of the given solution as a greedy partial solution
to the larger instance.

Algorithm 2 Given a sequence S
t+1

2 ⌃n and solution
SOL of input instance S, procedure BEST-ALIGN produces
a feasible solution SOL0 by aligning the closest substring
from S

t+1

to v
sol

1: procedure BEST-ALIGN(SOL, S
t+1

)
2: v

sol

= Consensus pattern from SOL
3: min = 1
4: for each l-length substring x of S

t+1

do
5: if d(v

sol

, x) < min then
6: min = cost(x)
7: y

t+1

= x
8: end if
9: end for
10: SOL0 = (y

1

, . . . , y
t

, y
t+1

)
11: return SOL0

12: end procedure

Algorithm 2 searches for the best aligning substring y
t+1

to the given solution. In adding one sequence to S, the
computed solution may or may not be the optimal solution
for the larger instance.

For the first case, if OPT is subset of OPT 0 for S 0, then the
result of Algorithm 2 will yield the optimal solution for S0.
Otherwise, there exists a non optimal solution for S that
is part of the optimal solution for S 0, i.e., 9SOL ⇢ OPT 0.
The solution SOL0 of Algorithm 2 is obtained by merging
the given optimal solution OPT with the best possible align-
ing substring in the new sequence. Algorithm 2 obviously
runs in linear time with respect to the length of the addi-
tional sequence S

t+1

. To illustrate that we cannot always

get the optimal solution using Algorithm 2, let us consider
the following example.

Example 1. Let S = {S
1

, S
2

, S
3

, S
4

} with S
5

as the ad-
ditional sequence for the modified input S 0. If we are looking
for a closest substring of length l = 4, the optimal solution
for S is v

opt

: AAAA.

S
1

: A A A A B B B B
S
2

: B B B B A A A A
S
3

: A A A A B B B A
S
4

: B B B B A A A A

S
5

: B B B B B B B B

Algorithm 2 will return a solution by aligning the most sim-
ilar substring y

5

: BBBB from the new sequence S
5

. The
solution produced by Algorithm 2 will have cost(SOL0) = 4.
On the other hand, the optimal solution for S 0 is v0

opt

:
BBBB with cost(OPT 0) = 1.

In this case, the subset of the optimal solution for the larger
instance is not the optimal solution for the smaller instance.
Algorithm 2 obviously runs in linear time with respect to
the length of the additional sequence S

t+1

, multiplied by
getting the cost of each substring x.

To get the quality of the approximation algorithm, we need
to compare cost(OPT 0) and cost(SOL0). Using Algorithm
2 and the second property of self-reducibility, we have

cost(SOL0) = cost(OPT ) + d(v
opt

, y
t+1

),

where y
t+1

is the best aligning substring to v
opt

from the new
sequence. We know that the cost of the optimal solution for
the smaller instance is less than or equal to the cost of the
optimal solution for the larger instance, i.e., cost(OPT ) 
cost(OPT 0). Therefore,

cost(SOL0)  cost(OPT 0) + d(v
opt

, y
t+1

).

In the worst case scenario, we can get

cost(SOL0)  cost(OPT 0) + l.

Since we only added a single sequence, the quality of the
solution depends solely on how long the pattern is. Using
Algorithm 2, we can get a feasible solution for S 0 in O(ln).
Compared to the 2-approximation algorithm for CSP with
running time O(l(tn)2) from [10], our approach can benefit
an improved approximation ratio and running time for in-
stances S 0 where OPT 0 < l. Note that, the first property of
the self-reducibility of CSP allows us to provide a feasible so-
lution for the modified instance by extending the additional
information that we have. We illustrate in the following gen-
eralization that it is possible to produce a feasible solution
even if we add k-sequences to S.

4.2 Generalization
In this section, we consider the extension of the reopti-
mization variant where, instead of adding one sequence, the
modification relation, denoted by M+

k

, is characterized by

5



adding k sequences to the original instance. The definition
of the generalized reoptimization version under sequence ad-
dition is as follows.

Definition 2. Reopt-CSPM+
k

INPUT: Pattern length l, original instance S, the optimal
closest substring v

opt

of S, and a modified instance S0 where
(S,S0) 2 M+

k

OUTPUT: Solution v0
sol

to the modified instance S 0.

Since Reopt-CSPM+
k

is a generalization of Reopt-CSPM+ ,

where k = 1, we no longer need to show that this variant
is also NP-hard. To give an approximate solution, we can
generalize Algorithm 2 for Reopt-CSPM+

k
.

Algorithm 3Given k additional sequences {S
t+1

, . . . S
t+k

},
where each S

t+i

2 ⌃n and solution SOL for input instance
S, procedure K-BEST-ALIGN produces a feasible solution
SOL0 by aligning the closest substrings from each of the
additional sequences to v

sol

1: procedure K-BEST-ALIGN(SOL, {S
t+1

, . . . S
t+k

})
2: v

sol

= Consensus pattern from SOL
3: for each i in 1 to k do
4: min = 1
5: for each l-length substring x of S

t+i

do
6: if d(v

sol

, x) < min then
7: min = cost(x)
8: y

t+i

= x
9: end if
10: end for
11: end for
12: SOL0 = (y

1

, . . . , y
t

, y
t+1

, . . . , y
t+k

)
13: return SOL0

14: end procedure

Given v
opt

, we can give a feasible solution for S 0 by getting
the best aligning substring y

t+i

from each of the newly added
sequences. Let Y be the set of substrings y

t+i

and let

cost(Y ) =
kX

i=1

d(v
opt

, y
t+i

)

be the contribution of the set Y to SOL0. If v
opt

is the same
as v0

opt

, then we can always guarantee optimality, otherwise

cost(SOL0)  cost(OPT 0) + cost(Y ).

In the worst case scenario, we can have

cost(SOL0)  cost(OPT 0) + kl.

The extension of Algorithm 3 for Reopt-CSPM+
k

can pro-

duce a feasible solution in O(kln). However, the quality of
the solution degrades as we increase the number of sequences
added to the original instance. A general method for reop-
timization is applied to several self-reducible hard problems
to further improve the approximability of the problem but
with tradeo↵ on the running time of the algorithm. The
PTAS for the CSP already provides the option of improving
the approximation ratio by increasing the sampling size r in
Algorithm 1. As r approaches t, we can have a solution with
error that converges to 0 but with running time that is com-
parable to the naive exhaustive search that is exponential in

t. In the following section, we illustrate how reoptimization
can help in improving the running time of the PTAS in [12].

4.3 Improving the PTAS for Reopt-CSPM
k+

Let us consider an input instance S 0 = {S
1

, . . . , S
t

} for
CSP with a given optimal solution for a subset of its se-
quences. Without loss of generality, suppose we have an
optimal solution OPT for the first r sequences in S 0, i.e.,
S = {S

1

, . . . , S
r

}. Let us also assume that |S 0 \ S| = k.

Algorithm 1 can provide a feasible solution for S 0 with an
approximation ratio of 1+ 4|⌃|�4p

e(

p
4r+1�3)

in O(l ·(tn)r+1). We

argue in this section that we can achieve the same approxi-
mation ratio in O(ltn((t� r)n)r) time using the given OPT
for S, as presented in Theorem 3

In the following approximation algorithm, we implement the
PTAS in Algorithm 1 by using the given optimal solution
OPT.

Algorithm 4 Approximation algorithm for Reopt-
CSPM

k+ using the K-BEST-ALIGN procedure from Algo-
rithm 3.
Input: Set of sequences S 0 = {S

1

, . . . , S
t

}, pattern length
l, and optimal closest substring OPT of S = {S

1

, . . . , S
r

}
Output: Solution SOL0 for S 0.

1: SOL0
A

= K-BEST-ALIGN(OPT, {S
r+1

, . . . , S
t

})
2:
3: SOL0

B

= ;
4: min = 1
5: for each r-sample 2 {R(S 0) \R(S)} do
6: SOL0 = K-BEST-ALIGN(SOL, sample)
7: if cost(SOL0) < min then
8: min = cost(SOL0)
9: SOL0

B

= SOL0

10: end if
11: end for
12:
13: if cost(SOL0

A

) < cost(SOL0
B

) then
14: return SOL0

A

15: else
16: return SOL0

B

17: end if

Theorem 3. Algorithm 4 is a 1+ 4|⌃|�4p
e(

p
4r+1�3)

PTAS for

Reopt-CSPM+
k

which runs in O(ltn · (t� r)n)r).

Proof. To prove that Algorithm 4 provides the same ap-
proximation ratio as Algorithm 1 from [12], we need to show
that the set of all samples in R(S 0) is considered in Algo-
rithm 4. SOL

A

is obtained by aligning OPT to k other
sequences in S 0 using Algorithm 2. Since we have the op-
timal solution for S, cost(SOL

A

) is equal to the minimum
over all feasible solutions sampled over R(S). On the other
hand, solution SOL

B

is obtained by getting the minimum
over all feasible solutions sampled from R(S 0) \ R(S). The
output SOL0 is the minimum between SOL

A

and SOL
B

.
Thus, all samples from R(S 0) are considered in Algorithm
4.
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For the running time of Algorithm 4, getting SOL
A

will re-
quire O(kn) steps. Line 5 will iterate in O((tn)r � (rn)r).
Getting the best alignment for each sample will requireO(tn)
and getting the distance between two l-length substrings will
take O(l). Thus, Algorithm 4 runs in O(ltn · (t� r)n)r).

5. CONCLUSION AND FUTURE WORK
In this paper, we presented reoptimization variant of the
CSP under sequence addition. The additional information,
i.e., optimal solution to a smaller instance, does not help
to address the intractability of the problem, as shown in
Theorem 2.

We considered the basic type of modificationM
+

, where the
new instance contains an additional sequence. The general
approach in reoptimization is to transform the given optimal
solution for it to become feasible to the new instance. For
some cases, i.e., v

opt

= v0
opt

, our simple transformation can
lead to OPT 0, otherwise we can have the worst case scenario
where OPT cannot help to obtain OPT 0. In fact, even for a
small modification such as M

+

, v
opt

can be totally di↵erent
from v0

opt

.

We generalized this approach by considering the modifica-
tion M

k

+ , characterized by adding k new sequences to the
original instance. By using the same approach for Reopt-
CSPM+ , we can obtain an error that grows as the number
of additional sequences is increasing. However, we showed
that by using the given optimal solution for reoptimization
we can improve the running of the existing PTAS for CSP.
With the same approximation ratio, we can improve the
running time from O((tn)r) to O(((t� r)n)r).

It is natural to consider the opposite scenario, where an
optimal solution to a larger instance is given and we are
looking for the solution to a smaller subset of the instance.
We argue that we are not also guaranteed to get the optimal
solution by transforming the larger solution to provide a
feasible solution to the smaller instance. Example 1 can also
illustrate the idea. Exploring other techniques to make use
of such kind of information is still part of our future work.
Moreover, we would like to study other types of modification
in the input instance such as changes in pattern length l.
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Vialette. Finding approximate and constrained motifs
in graphs. Theoretical Computer Science, 483:10–21,
April 2013.

[8] Patricia A. Evans, Andrew D. Smith, and H. Todd
Wareham. On the complexity of finding common
approximate substrings. Theoretical Computer
Science, 306(1-3):407–430, September 2003.

[9] Michael R. Garey and David S. Johnson. A Guide to
the Theory of NP-Completeness. Computers and
Intractibility, January 1979.

[10] J. Kevin Lanctot, Ming Li, Bin Ma, Shaojiu Wang,
and Louxin Zhang. Distinguishing string selection
problems. Information and Computation,
185(1):41–55, August 2003.

[11] Heng Li and Nils Homer. A survey of sequence
alignment algorithms for next-generation sequencing.
Briefings in Bioinformatics, 11(5):473–483, September
2010.

[12] Ming Li, Bin Ma, and Lusheng Wang. Finding similar
regions in many strings. Proceedings of the thirty-first
annual ACM symposium on Theory of computing -
STOC ’99, 65(1):473–482, August 1999.

[13] Bin Ma. A Polynomial Time Approximation Scheme
for the Closest Substring Problem. Combinatorial
Pattern Matching, Lecture Notes in Computer
Science, 1848:99–107, 2000.

[14] Bin Ma and Xiaoming Sun. More e�cient algorithms
for closest string and substring problems. Lecture
Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 4955 LNBI(4):396–409,
2008.

[15] Pavel Pevzner and Sing-Hoi Sze. Combinatorial
approaches to finding subtle signals in DNA
sequences. Proceedings of the International Conference
on Intelligent Systems for Molecular Biology ; ISMB.
International Conference on Intelligent Systems for
Molecular Biology, 8:269–278, 2000.
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